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Abstract:- “A smart drug delivery system consists of 

intelligent nanocarriers, process selection, and relaxation 

techniques. This study highlights the recent novel 

development of Smart Drug Delivery Systems for a 

variety of technical nanocarriers, including liposomes, 

micelles, dendrimers, mesoporous silica nanoparticles, 

gold nanoparticles, super paramagnetic iron oxide 

nanoparticles, carbon nanotubes, and quantum dots and 

their impact on cancer treatments. This study is expected 

to be of widespread interest to those who are looking for 

new future research in this field and to those who are 

about to start their research into smart nano-carrier-

based drug delivery. Smart Drug Delivery Systems could 

distribute drugs to low-dose sites and regulate means to 

remove the side effects that are otherwise induced by 

traditional drug delivery systems. Chemotherapy is 

widely used for treating cancer, which would be the 

world's second-largest cause of death.” Choosing the 

best strategies for cancer cell detection follows the 

selection of an acceptable kind of nanocarrier. SDDs 

identify cancer sites by using the physiochemical 

variations between cancer cells and healthy cells. The 

location of the cancer cells is described precisely by two 

main methods: passive targeting and active targeting. 

Passive targeting allows for the cancer site to be 

recognized implicitly by using the Enhanced 

Permeability (EPR) effect. Active targeting uses cancer 

cell surface receptors which are over expressed 

specifically for targeting cancer cells. The next move is to 

discharge drugs at a particular concentration at the 

stated site. Drugs can be released by external or internal 

stimulation from nanocarriers, depending on the shape 

and smartness of nano-carriers. 
 

Keywords:- Novel techniques, smart drugs delivery system 
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I. INTRODUCTION 
 

Cancer is the world's second-largest cause of death. “It 

is responsible for reported deaths of 9.6 million in 2018. 
About 1 in 6 deaths worldwide are due to cancer. Around 70 

percent of cancer deaths occur in low- and middle-income 

countries such as India [1, 2]. Chemotherapy [3, 4] plays a vital 

role in the treatment of the micro-focuses on undetectable 

cancer and free cancer cells. Chemotherapy chemicals 

destroy or block cancer cell growth [5]. As cancer cells 

evolve faster than healthy organisms, the key targets of 

chemotherapeutic agents are fast-growing cells; and as there 

are healthier cells that still grow rapidly, chemotherapy 

drugs often destroy such fast-growing healthy cells. This 

needless attack causes a malfunction in traditional 
chemotherapy [6]. Moreover, multidrug resistance (MDR)[7–9] 

provides another big impediment to effective chemotherapy. 

By developing cytotoxic drug tolerance during or shortly 

after therapy, MDR helps cancer cells avoid the 

chemotherapeutic impact. Conventional chemotherapy 

drawbacks have led to the development of advanced Nano 

carrier-based drug delivery schemes, also known as the 

Advanced Drug Delivery System (SDDS). SDDSs consent 

to prescribe medications to particular targeted sites [10]. 

While Paul Ehrlich's magic bullet concept [11]is the 

cornerstone of the connection between drug delivery and 
nanoparticles, Speiser et al. [12] first reported well-controlled 

active delivery using a bead polymerization technique. 
 

The SDDS are the basis for Nano carriers. 

Unfortunately, not all kinds of Nano carriers are effective as 
drug carriers in SDDSs. In order to qualify as an ideal Nano 

carrier in SDDSs, a Nano carrier should meet certain basic 

criteria, addressed in detail in the related sections. This 

analysis highlights the most known Nano carriers: 

Liposomes, micelles, dendrimers, mesoporous silica 

nanoparticles (MSNs), gold nanoparticles (GNPs), super-

paramagnetic iron oxide nanoparticles (SPIONs), carbon 

nanotubes (CNTs), and quantum dots (QDs) in their 

structure, classification, synthesis, and smartness. Choosing 

the best cancer cell detection strategies follows the selection 

of a suitable kind of Nano carrier. SDDS uses the 

physiochemical differences between cancer cells and 
healthy cells in order to recognize cancer sites. The cancer 

cell site is precisely defined by two main methods: passive 

targeting and active targeting. Passive targeting enables an 

implied detection of the cancer site by the use of the 

Enhanced Permeability (EPR) effect [13]. The direct response 

uses surface receptors of cancer cells that are expressed on 
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the surface to specifically target cancer cells like a guided 

missile [14]. The next step is to release drugs at the specified 
location at a specific concentration. Medicines may have 

been released from either the Nano carriers by external or 

internal stimulation, depending on the form of Nano carriers 

and their intelligence [15]. 
 

This study concentrates on three different forms of 

DDS nanoparticles reflecting different sources of 

nanoparticles materials: nanoparticles (MSNs), gold 

nanoparticles (GNPs), super-paramagnetic iron oxide 

nanoparticles (SPIONs), carbon nanotubes (CNTs). They 

integrate the methods and applications in providing smart 

drugs for effects on cancer care. The study also outlines the 

current barriers that nanoparticles could face for clinical use, 

and the future development of DDS nanoparticles. 
 

II. SCOPE AND CHALLENGES 
 

SDDS reflects no exception. The obstacles to efficient 

SDDSs are the toxicity of the Nano carriers of the human 

body, cost-effectiveness of the system, diversity and 

heterogeneity in cancer, and lack of clear regulatory 

guidance. Nano carriers carry and activate the anticancer 

drugs at the targeted sites to destroy the cancer cell. The 

concern is with the ultimate fate of drug-carrying Nano 

carriers. Traditional Nano carriers accumulate in different 

vital organs such as the lungs, spleen, kidneys, liver, and 
heart, depending on the chemical composition, size, form, 

specific surface area, surface charge, and the presence and 

absence of a shell around the Nano carrier. In animal cases, 

several in vitro and in vivo toxicity tests have been carried 

out; toxicity studies in the human body are, unfortunately, 

very limited. There is a large area available for toxicity 

research. In the transformation of CNTs into the best 

bioactive management modules, there are great challenges, 

including purification and dispersibility. Taking into account 

their positive characteristics such as biocompatibility, non-

immunogenicity, stability, and easy modification, they 
appear to be very promising as drug delivery systems. 

However, limitations, such as the surface / mass ratio, non-

biodegradability, and purification, pose challenges. In 

conclusion, before fully exploiting the potential of the CNT, 

it is imperative to generate data on their safety, 

effectiveness, and profitability. 
 

III. IMPACT OF NOVEL TECHNIQUES OF SMART 

DRUGS DELIVERY SYSTEM 
 

The drug delivery system (DDS) was clinically and 

preclinically used to distribute medicinal substances for the 

treatment of diseases. Conventional DDS is either given 

orally or by injection. Notwithstanding many benefits of 

traditional DDS, such as ease of administration and 

widespread acceptance by patients. A smart drug delivery 

system utilizing liposomes as Nano carriers consist of smart 

Nano carriers carrying anti-cancer drugs to the cancer site, 

cancer site location mechanisms, and pre-located cancer site 

stimulation techniques. The following sections analyze eight 

Nano carriers in detail, their targeting mechanisms, and 

stimulus techniques. 
 

Smart Nano carrier particles in the order of 1–100 nm 

are popularly known as nanoparticles, with at least one 

dimension. Currently, nanoparticles are graded as Variable 

Surface Volume (VSSA). Nanoparticles are generally 
defined as particles with a volume of VSSA equal to or 

greater than 60 m2 / cm3 of the material [16]. If nanoparticles 

are used as transport tubes for other compounds, they'll be 

called Nano carriers. Conventional Nano carriers do not 

have the ability to retain and release drugs at the right 

concentration on the target site, under external or internal 

strain. Therefore archetypal Nano carriers aren't smart. They 

have to be changed or functionalized to make them smart. 

Smart Nano carriers should have the following 

characteristics. Second, smart Nano carriers can prevent 

surgery from cleaning up the body's immune system. 
Second, they can accumulate only at the target site. Thirdly, 

smart Nano carrier will release the cargo at the targeted site 

at the correct concentration under external or internal 

stimulation. Finally, chemotherapeutics and other items 

should be co-delivered, such as genetic materials, imaging 

agents, etc.[17–19]. 
 

There are several steps to turn traditional Nano carriers 

into intelligent ones, depending on the Nano carriers types 

and applications (Table .1). Second, Nano carriers face 

many biological barriers including the reticuloendothelial 

system (RES) cleaning up on the way to the intended 

location. The RES briefly takes the Nano carrier out of 

circulation and accumulates in the liver, spleen, or bone 

marrow some Nano carriers carrying anti-cancer drugs. 

PEGylation is a special way of finishing the washing 

process. PEGylation lets Nano carriers escape RES. First 
described on PEGylation, by Davies and Abuchowsky[20]. 

Unfortunately, PEGylation greatly decreases cell intake of 

medicinal products [21, 22]. This twist is known as the 

PEGylation dilemma [23, 24]. Second, Nano carriers can be 

functionalized to distinguish the cancer cells precisely out of 

healthy ones. The physiochemical variations between cancer 

cells and healthy ones are the distinguishing marks that 

distinguish the two types of cells. The surface of the cancer 

cells overexpresses a few proteins. The main destinations of 

the smart Nano carrier are the over-expressed proteins. The 

Nano carriers are modified with ligands to balance the 
overexpressed proteins. The smart Nano carrier’s ligands 

identify the receptor proteins into cells. Thirdly, delivering 

the drug to the destination site is not the end of the process. 

The next big challenge is to free up the drug under pressure 

from the smart bag. To make Nano carriers sensitive to the 

stimulus system, different chemical groups may be grafted 

on the surface of the Nano carriers. Fourth, it also modifies 

the codelivery of anti-cancer drugs along with other 

substances, including genetic materials [25], imaging agents, 

or even additional anti-cancer drugs. Liposomes, micelles, 

dendrimers, GNPs, quantum dots, and MSNs show co-

delivery promise [26–30]. Eight promising Nano carriers are 
discussed in detail below concerning their structure, 

classification, synthesis, and smartness (Table.1). 
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Subject Novel Techniques/Research Gap Future Recommendation 

Smart 

nanocarriers 

PEGylation[20]. This having some research gap either than 

liposome. 

PEGylation greatly decreases cell intake 

of medicinal products[21,22]Various 

studies indicate the possibility of stopping 
the cancer-causing by PEGylation 

Liposome 

and its 

smartness 

largeuni-lamellar (LUV) vesicles and small uni-lamellar 

(SUV) vesicles[33,34]. This having some research gap 

either than Micelles 

Liposome to target the cancer site 

specifically. Several studies indicate the 

possibility of stopping the cancer-causing 

byliposome 

Micelles and 

its smartness 

PG-PCL, PEEP-PCL[64], PEG-PCL[65] and PEG-

DSPE[66]. This having some research gap either than 

Dendrimers 

The co-delivery technique, using a 

multifunctional micelle, is very important 

for the synergetic effects in cancer 

treatment. Several studies indicate the 

possibility of stopping the cancer-causing 

byMicelles 

Dendrimers 

and its 

smartness 

nucleus, dendron-branching, and surface-active 

groups[75], poly (PPI or POPAM), PAMAM, POPAM, 

POMAM[78], polylysinedendrimer, dendritic 
hydrocarbon, dendrimer based on carbon / oxygen, 

dendrimer based on porphyrin, ionic dendrimer, silicon 

based dendrimer, dendrimer based on phosphorus[79], and 

Newkomedendrimer[80]. This having some research gap 

either than  mesoporous silica 

The cationic nature of PAMAM, among 

other dendrimers, makes this extremely 

useful for the transmission of genetic 
materials. Many studies indicate the 

possibility of stopping the cancer-causing 

byDendrimers 

Nanoparticle

s from 

mesoporous 

silica and its 

smartness 

porous silica (SiO2), mixtures of zeolite-silica gel with a 

well-defined and uniform porosity[96] 

Usually there are two types of MSNs, namely (1) ordered 

hollow or rattle-like meso-porous silica NPs (MCM-41, 

MCM-48, and SBA-15), and (2) meso-porous silica 

NPs[102]. This having some research gap either than  Gold 

nanocarriers 

Its controlled drug delivery capacity. So 

many studies indicate the possibility of 

stopping the cancer-causing by various 

kind of nanoparticles from mesoporous 

silica. 

Gold 

nanocarriers 
and its 

smartness 

GNPs [113] are metal nanocarriers that come in special 

shapes and sizes. GNPs have excellent prospects as 
metallic candidates to carry payloads. This having some 

research gap either than  SPIONs 

Various ligands can change the surface of 

GNPs for targeted delivery of drugs. 
Various studies indicate the possibility of 

silencing the cancer-causing gene by 

transfection of GNP 

Super 

paramagneti

c iron oxide 

nanoparticle

s (SPIONs) 

and its 

smartness 

The SPIONs group also includes mixed iron oxides, such 

as copper, cobalt, and nickel. As magnetic particles are 

reduced to 10–20 nm they show a strange phenomenon 

called super para-magnetism [130,131]. This having some 

research gap either than  CNTs 

SPION synthesis methods are distinct, 

including co-precipitation processes, 

thermal decomposition, hydrothermal, 

micro-emulsion, sono-chemical, 

microwave-assisted synthesis. Some 

studies indicate the possibility of stopping 

the cancer-causing bySPIONs 

Carbon 

nanotubes 

(CNTs) and 
its smartness 

There are two types of CNTs: single walled (SWCNT) and 

multi-walled (MWCNT) [141,142]. This having some 

research gap either than QDs 

Functionalized CNTs can be used as early 

cancer diagnostic instruments [153]. 

Many studies indicate the possibility of 
stopping the cancer-causing byCNTs 

Quantum 

dots (QDs) 

and their 

smartness 

QD-based SDDSs had drawn significant attention for a 

variety of reasons. QD's have a tiny core diameter of 2–10 

nm. This having some research gap either than current new 

possibilities. 

QDs are especially common for cancer 

imaging, due to their inherent florescence. 

Some studies indicate the possibility of 

stopping the cancer-causing byQuantum 

dots 

Table 1: Novel techniques of smart drugs delivery system have played more important role for the cancer treatment 
 

A. LIPOSOME AND ITS SMARTNESS 
Liposomes [31], based on phospholipids are naturally 

occurring amphipathic nanocarriers. Phospholipids, an 

essential part of the cell membrane, consist of a hydrophobic 

fatty acid tail and a phosphate-dependent hydrophilic head. 

Gregory Gregordians demonstrated in 1973 that when 

phospholipids are introduced into an aqueous medium, they 

self-assemble into a two-layer vesicle with the non-polar 

ends forming a bilayer, and the polar ends facing the water. 

The center of the bilayer will pull water or water-soluble 

medicines [32] in. Depending on the number of bilayers and 

the size of the liposome, there are two forms: multi-lamellar 

vesicles and uni-lamellar vesicles It is possible to divide uni-

lamellar vesicles further into two groups: large uni-lamellar 

(LUV) vesicles and small uni-lamellar (SUV) vesicles [33, 34]. 

Many methods for preparing liposomes [35, 36] are available, 
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including the thin film hydration process or the 

Banghammethod [37], reverse phase evaporation [38], solvent 
injection technique [39], and detergent dialysis [40]. Many 

failures are linked to conventional methods. To overcome 

these constraints, some revolutionary technologies such as 

supercritical fluid technology, a supercritical anti-solvent 

method [41], and supercritical reverse-phase evaporation [42] 

have been built. 
 

Conventional liposomes have many problems, 

including instability, insufficient preparation of drugs, the 

quicker release of drugs, and shorter circulation times in the 

blood, so they are not wise. Conventional liposomal 

functionality [44], makes them intelligent. Like other 

nanocarriers, liposomes need to resolve the RES issue, too. 

PEGylation allows the liposomes to escape RES. PEGylated 

liposomes, therefore, have a longer circulating time in the 

blood [45]. Smart nanocarriers can compute the difference 
between healthy cells and cancerous ones. Monoclonal 

antibodies, antibody fragments, proteins, peptides, vitamins, 

carbohydrates, and glycoproteins are usually grafted onto 

the liposome to target the cancer site specifically [46–49]. 

Smart liposomes are responsive to various external and 

internal stimulants including changes in pH, transformation 

of enzymes, redox reactions, light, ultrasound, and 

microwaves [50–52]. A radio-ligand-functionalized liposome 

is recognized as a liposome marked with radiation. 

Radiolabeled liposomes [53] can be used to determine the 

biodistribution of liposomes in the body and to diagnose the 

tumor in accordance with treatment. Theranosticliposomes 

[55, 56] are classified as liposomes that can contain both 

therapeutic agents as well as imagery [54]. In addition to 

providing imaging agents along with chemotherapy, 

liposomes are promising in the co-delivery of two 

chemotherapeutic drugs, chemotherapeutic gene agents [57] 

and chemotherapeutic anticancer drugs [58]. 
 

B. MICELLES AND ITS SMARTNESS 

Having both hydrophilic and hydrophobic elements, 

amphiphilic molecules show peculiar self-assembly 

characteristics when exposed to a solvent. If the solvent is 

hydrophilic and its concentration reaches the critical 

concentration of the micelle (CMC), the polar parts of the 

co-polymer are drawn toward the solvent, while the 

hydrophobic parts are oriented away from the solvent. The 

hydrophobic portions thus form a nucleus, whereas the 
hydrophilic portions form a crown. This type of arrangement 

is called a polymeric micellar direct or regular [59, 60]. 

Amphiphilic molecules exposed to a hydrophobic solvent on 

the other hand build a reverse structure known as a reverse 

micelle. That is, in a reverse micelle, the hydrophilic 

portions make the heart and the hydrophobic portions make 

the corona [61–63]. Examples of some micelles are PG-PCL, 

PEEP-PCL [64], PEG-PCL [65], and PEG-DSPE [66]. 
 

The processing of micelles is based on the copolymer 

solubility used [67]. Two processes are used for a relatively 

water-soluble co-polymer, namely the direct dissolution 

method and the casting process for films. By contrast, 

dialysis or oil is used in water treatment because the co-

polymer is not readily water-soluble [68, 69]. By crossing the 

CMC, Micelles can experience the immature release of the 

drugs. In addition, animals blood contact and plasma protein 

absorption can disrupt the micelle-blood balance. The 
solution to that problem is a smart micellar. Usually, 

micelles are cross-linked to overcome the aforementioned 

problems; that is, they bind two polymer chains by forming 

disulfides [70]. There are two types of cross-linking schemes: 

core cross-linking polymer micelles, and cross-linking 

polymer micelles. Various types of ligands are used to 

actively target cancer cells to decorate the micellar surface, 

including folic acid, peptides, carbohydrates, antibodies, 

aptamers, and so on[66]. The micelle's heart or corona may be 

functionalized at the right concentration to activate the anti-

cancer drug. In micellular SDDSs, the stimuli used are pH 

gradients, temperature changes, ultrasound [71], enzymes, 
and oxidation [66]. The co-delivery technique, using a 

multifunctional micelle, is very important for the synergetic 

effects in cancer treatment. Seo et al .have reported a 

method of co-delivery based on the temperature-responsive 

micelle, which can hold genes together with anti-cancer 

drugs [72]. In cancer detection and monitoring, single-photon 

emission computed tomography (SPECT), magnetic 

resonance imaging (MRI), computed tomography (CT), 

positron emission tomography (PET), and ultrasonography 

all play an important role. The surface of the micelle can be 

drawn with an imager[73]. Kennedy and colleagues reported 
combined doxorubicin delivery with ultrasound imaging of 

tumors [74]. 
 

C. DENDRIMERS AND THEIR SMARTNESS 

Polymers with several branches are called dendrimers 
and can be represented as a suction cup graphically. There 

are three distinct sections of Dendrimer: nucleus, dendron-

branching, and surface-active groups [75]. The dendrimer's 

physiochemical properties are calculated on the dendrimer 

surface by the active groupings. Depending on the surface 

groups this can be either hydrophobic or hydrophilic. 

Because of its nanoscale size, its monodispersenature [76], 

water-solubility, bio-compatibility, and highly branched 

structure, it is of great interest. Because of the size of the 

nanoscale, it growing to be used as a drug carrier [77]. The 

branched structure makes polyvalent the dendrimer. 
Moreover, all its active surface groups face outwards, 

resulting in a greater degree of encapsulation of the 

compound. Different forms of dendrimer have been 

reported, such as poly (PPI or POPAM), PAMAM, 

POPAM, POMAM[78], polylysinedendrimer, dendritic 

hydrocarbon, dendrimer based on carbon/oxygen, dendrimer 

based on porphyrin, ionic dendrimer, silicon-based 

dendrimer, dendrimer based on phosphorus[79], and 

Newkomedendrimer[80]. Dendrimer model approaches which 

are commonly known include the divergent method [81] and 

the convergent method [82], respectively. Fritz Vogtle et al. 

in 1978 first introduced to Dendrimers[83]. The poly 
(amidoamine) of Tomalia (PAMAM) [84, 85] and the 'arboreal 

system' of Newcome[86,87] are the dendritic structures that 

have been extensively investigated and gained widespread 

attention. 
 

Conventional dendrimers face rapid clearance of the 

immune system and lower absorption of cells from cancer. 

Adjustment to dendrimer is the solution to those limitations. 

Chemical modification, linear polymer copolymerization, 
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and hybridization with other nanocarriers, as mentioned to 

date [89], are options to overcome those limitations. Peptides, 
proteins, carbohydrates, aptamers, antibodies, etc. may 

modify the surface of dendritic structures to actively target 

the cancer site. For different stimulus-responsive systems 

such as light, heat, pH transfer, protein, and enzyme 

transformation, the dendrimer surface can also be changed 
[90, 91]. The cationic nature of PAMAM, among other 

dendrimers, makes this extremely useful for the 

transmission of genetic materials. Efficiency in distribution 

is a function of producing PAMAM. In 1993 Haensler and 

Szoka were the first to announce the availability of 

PAMAM based nucleic acid [75, 92]. A very promising tumor-

imaging dendritic contrast agent [93]. 
 

D. NANOPARTICLES FROM MESOPOROUS SILICA 

AND ITS SMARTNESS 

Mesoporous materials are materials containing pores in 
diameters between 2 and 50 nm, as described by IUPAC [94]. 

MSNs [95] have porous silica (SiO2) structures similar to that 

of a rabbit. 40 years ago, the term MSN was coined to 

describe mixtures of zeolite-silica gel with a well-defined 

and uniform porosity [96]. MSNs are widely studied because 

of their tunable particle size (50 nm to 300 nm), uniform and 

adjustable pore size (2–6 nm) [97], large area, high pore 

volume, and biocompatibility [98–100]. Tunable particle size is 

an important requirement for being a smart nanocarrier, and 

the size of the tunable pore allows the loading of drugs of 

different molecular types. The high surface areas of the 

inner (pores) and outer surface are suitable for grafting on 
MSNs of different functional classes. Besides bio-

compatibility, the adhesion of this carrier to cancer cells by 

the action of the EPR makes it a great choice for them [101]. 

Usually, there are two types of MSNs, namely (1) ordered 

hollow or rattle-like mesoporous silica NPs (MCM-41, 

MCM-48, and SBA-15), and (2) mesoporous silica 

NPs[102,104,105]. Among those MSNs, MCM-41, synthesized 

by a Mobil Corporation scientist, is the most researched 

MSN for Biomedical Applications. In 2001, MCM-41 

became known for its controlled drug delivery capacity [96]. 

Methods for generating MSNs are the soft template method 
and the hard template method [106-110]. 

 

E. GOLD NANOCARRIERS AND THEIR SMARTNESS 

Due to their unique features such as customizable size, 

large surface-to-volume ratio, easy synthesis, noble optical 
properties, cancer cell thermal ablation, and quick surface 

functionalization, metallic nanocarriers are of considerable 

interest [111]. Studies show that the size and shape of the 

colloidal nanocarriers depend on the intercellular take-up of 

nanocarriers[112]. GNPs [113] are metal nanocarriers that come 

in special shapes and sizes. GNPs have excellent prospects 

as metallic candidates to carry payloads. Payloads may be 

drug molecules or large bimolecular like proteins, DNA, and 

RNA. GNPs are also interesting because of the surface 

plasmon resonance (SPR) phenomenon [114,115] which 

enables them to convert light to heat and disperse the heat 

produced to kill the cancer cells. GNPs are mainly 
synthesized by a variety of paths, including chemical [116], 

physical [117], and biological [118,119]. The blood-brain barrier 

(BBB) [120] could be greatly surmounted by greasing GNP 

surfaces with proper ligands. Smart nanocarriers should be 

chemically stable in biological media, biocompatible, 

efficient in targeting, and sensitive to external or internal 
stimuli. Unmodified GNPs are unstable in blood and face a 

higher absorption of RES. To surmount these limits, gold 

nanocarriers need to be PEGylated. Under physiological 

conditions, PEGylated GNPs exhibit greater solubility and 

stability [122]. Various ligands can change the surface of 

GNPs for the targeted delivery of drugs. For example, 

transferrin (TF) can be grafted to the surface of GNPs, 

because many tumors over-express the TF receptor on their 

surface [123]. Even folic acid may alter the surface of GNP 

since folic acid receptors are often overexpressed on 

different tumor cells [124,125]. The substance can be 

discharged from GNP by either (1) external stimuli (laser, 
ultrasound, and X-ray, light [126] or (2 ) internal stimuli (pH, 

redox, metalloproteinase matrix)[127]. Various studies 

indicate the possibility of silencing the cancer-causing gene 

by transfection of GNP [128]. GNPs combined with 

fluorescently labeled heparin can be used to diagnose cancer 

sites [129]. 
 

F. SUPERPARAMAGNETIC IRON OXIDE 

NANOPARTICLES (SPIONS) AND THEIR SMARTNESS 

In 1960 Freeman et al. proposed the concept of using 

magnetic materials along with magnetic fields in medicine 
[109]. The magnetic materials have the commonly studied 

SPIONs. Two SPIONs are small, synthetic maghemite and 

magnetite particles (Fe3O4) with cores ranging in diameter 

from 10 to 100 nm. The SPIONs group also includes mixed 

iron oxides, such as copper, cobalt, and nickel. As magnetic 
particles are reduced to 10–20 nm they show a strange 

phenomenon called super para-magnetism. When applying a 

magnetic field, the magnetic nanoparticles are magnetized to 

their saturation but do not have any residual magnetism after 

removing the magnetic field [130,131]. Production of SPIONs 

includes three processes including a physical process, a wet 

chemistry process, and a microbial system [132]. SPION 

synthesis methods are distinct, including co-precipitation 

processes, thermal decomposition, hydrothermal, micro-

emulsion, sonochemical, microwave-assisted synthesis [133]. 

Chemical synthesis is amongst others the most prevalent. 
 

The functionality builds on the smartness of post-

manufactured SPIONs. Functionalization prevents 

aggregation of SPIONs, protects their surfaces from 

oxidation, provides a barrier for drug conjugation and ligand 
targeting increases blood circulation by avoiding RES, and 

decreases non-specific targets [130]. Stimulus-responsive 

polymer-coated SPIONs undergo intensive research for 

selective drug delivery. Responsive polymers undergo 

physical and chemical transformations including process, 

hydrophobicity, solubility, and conformation. A recent study 

has shown that polymer-modified SPIONs are dually 

sensitive to pH gradients and temperature changes [135]. For 

regulating the carrier an external magnetic field can be used. 

Because of the existence of the phosphate group, nucleic 

acids are negatively charged; thus SPIONs can be modified 

to carry genetic materials with cationic lipids and polymers 
[136]. SPIONs are members of the theranostic-property family 

of nanocarriers. This is observed by an external magnetic 

field as a magnetic nanocarrier[137,138]. 
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G. CARBON NANOTUBES (CNTS) AND THEIR 

SMARTNESS 
The CNTs are a type of fullerene, a class of hollow 

spheres, ellipsoid, tubes, and several other types of 

allotropic carbon [139,140]. The type is called the CNT when a 

sheet of graphene is rolled up into a smooth cylindrical tube. 

There are two types of CNTs: single-walled (SWCNT) and 

multi-walled (MWCNT) [141,142]. The strong optical 

absorption of the CNT in the near-infrared region makes this 

particle a good candidate for photothermal ablation; 

however, nanoparticles with sizes ranging from 50 to 100 

nm are easy to absorb. MWCNTs may cross the boundary 

between various cellular compartments, and PEGylated 

SWCNTs may be located in a specific cellular compartment. 
The CNTs can be synthesized by heating carbon black and 

graphite in a controlled flame environment. But this method 

cannot control the shape, scale, mechanical strength, 

consistency, and purity of the synthesized CNTs. Electric 

arc discharges [142,143,144], the chemical vapor deposition 

method [145,146,147], and the laser ablation method have been 

reported to address the limitations of the controlled flame 

collection. SWCNTs are more efficient in drug delivery than 

MWCNTs because of the better-defined SWCNT walls and 

comparatively more structural MWCNT defects 
[5,144,148,149,150-153]. 

 

H. QUANTUM DOTS (QDS) AND THEIR SMARTNESS 

Quantum dots[154], semiconducting fluorescent 

nanocarriers, often consisting of hundreds to thousands of 

group II and group VI atoms and possessing unique 
photophysical properties[155]. This nanocarrier may be used 

when releasing the drug at the desired position to image the 

tumor. The majority of commercially available QDs are 

made up of three components: a nucleus, a shell, and a cap. 

The center consists of a semiconductor material, e.g. CdSe. 

See. Another semiconductor, such as ZnS, is used to create 

shells that surround the semi-conductor center. A cap 

encapsulates the double layer QD's with various materials 
[156]. QD-based SDDSs had drawn significant attention for a 

variety of reasons. QD's have a tiny core diameter of 2–10 

nm. This role renders it useful as a tracer in other drug 
delivery systems. Second, versatile surface chemistry 

enables different approaches to modification of the surface 

of QD. Third, their photophysical properties provide extra 

QD mileage for real-time monitoring of drug-carrying and 

drug release [157]. To synthesize QD's, either a top-down 

approach or a bottom-up process can be used. Molecular 

beam epitaxy (MBE) [158], ion implantation, e-beam 

lithography, and x-ray lithography [159] are part of top-down 

processing; on the other hand, colloidal QDs are prepared by 

self-assembly in chemical reduction solution, which is a 

bottom-up approach[160]. As with other smart nanocarriers, 

the functionalization of archetypal QDs also plays an 
important role. As recorded for other nanocarriers, QDs also 

experience non-specific RES uptake. PEGylation is also a 

fantastic remedy for QDs. Properly PEGylated QDs can 

accumulate in tumor sites without a targeting ligand through 

an increased permeability and retention (EPR) effect. In 

order to effectively target a tumor site, various ligands such 

as peptides, folate, and large proteins (monoclonal 

antibodies) can be grafted onto the QD surface [162]. 

Iannazzo and others. The promising prospects of controlled 

drug delivery based on graphene QD have recently been 

demonstrated. They covalently attached QDs to the tumor-
targeting module, biotin, to find the biotin receptor 

overexpressed on tumor cells. This process will successfully 

release a drug under pH stimulation [163]. QDs are especially 

common for cancer imaging, due to their inherent 

fluorescence. A complex of folic acids has been used to 

diagnose ovarian cancer [164]. Chemotherapeutic and siRNA 

co-delivery was developed to combat MDR [165]. Gao et al 

.researched and optimized bioconjugated and polymer-

encapsulated QD samples for cancer imaging [166,167]. 
 

IV. MECHANISM OF CANCER TREATMENT AND 

IMPACT OF STIMULUS 
 

When the anti-cancer drug-carrying intelligent 

nanocarrier passes the cleaning phase of our body's immune 

system, then the smart nanocarrier can find the cancerous 

area of the body. A smart drug delivery system uses two 

ways of focusing: passive targeting and active targeting 
[168,169]. Passive targeting makes use of the EPR effect [170] 

for the cancer site role. Successful targeting uses the ligand-

receptor technique to locate the ultimate objective-the 
individual cancer cell. 
 

A. Passive targeting 

The penetration rate of drug-laden nanocarriers into a 

tumor is much higher than in normal tissue, due to the leaky 
endothelium of the tumor vasculature. This phenomenon is 

known as the enhanced permeability effect. The corporeal 

drainage system is the lymphatic channel. A defect in the 

lymphatic system contributes to nanoparticles deposited in 

the tumor. This retention is known as the enhanced retention 

effect. Both phenomena are collectively known as the EPR 
[171] effect. Compared to healthy body tissue, the 

concentration of anti-cancer drugs in the tumor could be 

multiply increased by using this EPR effect. Another barrier 

to efficient accumulation of drug-laden nanocarriers in a 

solid tumor is interstitial fluid pressure (IFP)[172,173]however; 
successful nanocarrier modifications can overcome many 

biological barriers, including IFP and RES[174]. 
 

B. Active targeting 

Active targeting means directing the nanocarriers that 
deliver the drug into cancer cells, such as guided missiles 
[175]. Cancer cells and regular cells can be distinguished in 

terms of cell surface receptor expression and antigen 

production. Cell surface receptors are proteins found in the 

cell membrane that are responsible for trans-membrane 

communication. Cancer cells have various cell surface 

receptors usually recognized as cell markers such as folic 

acid and cell surface antigen suppression or overexpression. 

Drug-packed nanocarriers are equipped with targeting 

ligands. These ligands recognize their corresponding target 

on the surface of over-expressed cancer cells. Some ligands 

examined include folate, transferrin, anticorps, peptides, and 
aptamers. 
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C. The stimulus for drug release 

Both kinds of stimuli are exogenous and are endogenous. 
An extra-corporeal signal is known as a temperature shift for 

the extraction of drugs from nanocarriers, such as a 

magnetic field, electromagnetic waves, an electric field, an 

exogenous stimulus. An endogenous stimulus is called a 

signal that is produced from within the body to release anti-

cancer drugs. Examples of endogenous triggers include pH 

transition, the transformation of the enzymes, temperature, 

and redox reactions [176]. 
 

D. Endogenous stimulus and its Impact 

In the case of endogenous stimulation, the triggering 

signal comes from the internal pH level, the action of 

enzymes, and the action of body redox. Different forms of 

endogenous stimuli are discussed in more detail below [177]. 
 

E. The pH-responsive stimulus 

According to the Warburg effect, the tumor cells 

produce energy primarily via enhanced glycolysis, followed 

by lactic acid fermentation in the cytosol[178]. This 

production of extra acids helps decrease the pH in cancer 

cells. The pH-responsive drug delivery mechanism is 
important because the pH level varies from organ to organ, 

and from tissue to tissue. In tumors, the extracellular pH has 

an acidic state compared to an intracellular pH much more 

stable [179]. Thus pH has been described as an important 

physiological property for the delivery of smart drugs to 

tumor sites across several studies. This acidic extracellular 

pH is the result of poor blood flow, hypoxia, and lactic acid 
[180] in tumors. The extracellular pH range approximately is 

6–7[181]. Apart from this pH gradient between cells, there is a 

pH change between cell compartments. The lysosomal pH is 

approximately 5 while the cytosol has a pH of 7.2[182]. 

Usually, pH-sensitive nanocarriers store and stabilize anti-
cancer drugs at physiological pH, then release the drug 

rapidly at a pH trigger stage; ensuring intracellular drug 

concentration reaches a peak. The goal can be accomplished 

by various methods including the introduction of ionizable 

chemical groups such as amines, phosphoric acid, and 

carboxyl groups, among others. These groups undergo pH-

dependent physical and chemical changes that result in the 

release of drugs. 
 

F. Redox sensitive stimulus 

Glutathione sulfhydryl (GSH) has the greatest efficacy 

as an antioxidant. It contains 3 amino acids. GSH is present 

in higher concentrations in any mammalian tissue [183]. GSH 

governs the reductive microenvironment. GSH 

concentration is at least four times higher in a tumor site 

than in normal cells. The intracellular concentration of GSH 
is 1000 times that of the bloodstream [70,184]. GSH, a 

functional group with an R-S-S structure, will reduce the 

disulfide bonds of the nanocarriers. Disulfide bond 

reductions lead to the release of an encapsulated drug[185]for 

instance, the GHS cell-site can reduce the disulfide bond of 

cross-linked micelles. Reducing disulfide bonds results in 

efficient unloading of nano-vehicle cargo [186]. 
 

 

 

 

 

G. Enzyme stimulus 

The nanocarriers of the enzyme-stimulus are called 
nanocarriers whose surfaces are modified to make the 

nanocarriers responsive to enzyme bio-catalytic action. 

Enzymes are catalysts for biochemical reactions which are 

produced by living organisms. Enzymes play a key role in 

regulating the functioning of cells; thus, they are very 

important targets for drug delivery. Enzymetriggered 

approaches use the enzyme that is overexpressed from the 

extracellular environment of tumor sites. This technique 

does not apply to the release of intracellular drugs, because 

intracellular enzyme concentrations in cancer cells and 

healthy cells are approximately the same [187]. Proteases, an 

enzyme that breaks down proteins and peptides, are an ideal 
candidate for the extraction of liposomal drugs [188,189]. 
 

H. Exogenous stimulus 

In extrinsic stimulation systems, contrast agents have 
been used to imaging the accumulation of nanocarriers in 

cancer sites. An external factor such as a magnetic field, 

ultrasonic waves, light and electric fields [190] stimulates the 

accumulated nanocarriers to release drugs at the correct 

concentration. 
 

I. Magnetic field responsive stimulus 

An extracorporeal magnetic field is used in magnetically 

induced systems after the injection of nanocarriers to store 

drug-charged nanocarriers in tumor sites. Some suitable 

candidates for magnetic stimulation are core-shell-shaped 

nanoparticles filled with silica, polymer, or 

magnetoliposome (liposome-encapsulated 

maghemitenanocrystals) [191,192]. Magnete-guided 

nanocarriers may also carry genetic materials. The magnetic 

nanocarriers emit heat in the surrounding medium when 

positioned under an oscillating magnetic field. This heat 
brings with it structural changes in nanocarriers[193–195]. 
 

J. Thermo-responsive stimulus 

The drug-charged nanocarriers release their payloads in 
response to temperature changes in this process. At a 

predetermined temperature, the nanocarriers change their 

conformation, solubility, or hydrophilic and hydrophobic 

balance. A few nanocarriers release their cargo if they 

undergo a temperature change. The thermo-sensitive 

nanocarriers show a lower critical solution temperature 

(LCST) phenomenon [196,197]. The aqueous polymer solutions 

show one phase below LCST and above-temperature phase 

separation. There is a systematic thermo-responsive analysis 

of micelles [198, 1999]. Thermo-sensitive hydrogels and poly 

(N-isopropyl acrylamide) (PNIPAAm) display sol-gel 

reactive temperature transitions [200]. 
 

K. Light-triggered stimulus 

The latest development of light-triggered drug delivery 

is a new path for the on-demand distribution of drugs. The 

light can be visible or near-infrared in the ranges of 
ultraviolet. The stimulation is accomplished by sensitizing 

the nanocarriers[201–203] to the sun. CNTs and GNPs are good 

candidates for light stimulation, especially for the Near 

Infrared Range (NIR). Nanocarriers of metal absorb light 

and heat the absorbed light to kill cancer cells [204]. 
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L. Ultrasound-responsive stimulus 

Ultrasound is under comprehensive investigation for the 
extraction of drugs from nanocarriers due to its non-invasive 

properties, deep body penetration, and non-ionizing 

irradiation [205]. Using ultrasound can cause both mechanical 

and thermal effects to release the charged drug into the 

nanocarriers. Dromi et al.[206] used high-intensity ultrasound-

based waves to investigate the release of drugs from 

temperature-sensitive liposomes in 2007 [207 208]. 
 

M. Electric field-responsive stimulus 

This stimulation approach uses an electrical field to 

switch on payloads. The aforementioned thermo-responsive, 

light-triggered, and ultrasonic stimulating systems also 

require large or specialized drug release equipment. On the 

contrary, electric fields can be easily manufactured and 

regulated [209]. The conduction of polymers such as 

polypyrrole (PPy) is responsible for the electrical response 
stimulus. The nanocarriers are modified by conducting 

polymers, and the efficacy of conducting polymers depends 

on the choice of dopant and molecular weight of the 

medicine. Biotin is a dopant that has been tested 

experimentally [210]. MWCNTs can be used as a conductive 

additive to boost electrical conductivity [211]; however, 

hydrogels from polyelectrolytes are also considered [212,213]. 
 

V. CONCLUSION 
 

In summary, Cancer varies in severity and 

heterogeneity; that is, cancers still have undetermined types. 

Furthermore, the physical nature of cancer may vary from 

one person to another. Personalizing anti-cancer treatment is 

also a significant challenge. DNA /RNA-focused anti-cancer 

therapies have a promising future for making medicines 

safer and more personalized. The Drug Delivery System 

(DDS) based on nanoparticles is considered promising in 

treating cancer. Compared to conventional DDS, the DDS 

based on nanoparticles shows enhanced efficacy by 

increasing the half-life of vulnerable drugs and proteins; 
enhancing the solubility of hydrophobic drugs and allowing 

controlled and targeted release of drugs to diseased sites[214]. 

Therefore the development of nanocarriers as carriers of 

DNA / RNA to destroy cancer cells can be a promising 

research field. The way traditional nanocarriers locate 

cancer cells, such as RES, rapid blood clearance (ABC), 

etc., faces several biological obstacles. Traditional 

nanocarriers are modified using different methods to resolve 

these barriers, including PEGylation, grafting ligands on the 

surface of nanocarriers; however, the nanocarriers need to 

be functionalized to release the drugs under stimulation at 

target sites. These modifications result in increased 
production steps which in turn lead to a higher final cost of 

the product. The cost-benefit balance should be beneficial 

for any product launched to be competitive on the market.” 

Hence it would be said that these novel techniques of smart 

drugs delivery systems have played a more important role in 

cancer treatment and it obvious they have more challenges 

day by day. 
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