
Volume 7, Issue 5, May – 2022                                International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT22MAY1644        www.ijisrt.com      869 

An Efficient and Scalable Traffic Load Balancing 

Based on Webserver Container Resource  

Utilization using Kubernetes Cluster 
 

Ashok L Pomnar1, 

1Student of ME Computer, 
Department of Computer Engineering, 

AVCOE Sangamner 422 605, 

Maharashtra, India. 
 

Dr. S.K. Sonkar2 

Assistant Professor, 
Department of Computer Engineering, 

AVCOE Sangamner 422 605,  

Maharashtra, India 
 

Abstract:- A Today digital transformation era, traditional 

web based systems and application architecture become 

the bottleneck of scaling, high availability, portability, 

and many more downtime and performance-related 

challenges so the world is started adopting the cloud and 

cloud-based services to get its benefits. Virtualization 

technology played a very crucial role to migrate 

applications from traditional physical systems to 

virtualized systems but again because of limitations and 

challenges associated with virtualized system scalability, 

high availability, and application portability, the 

Container technique is gaining increasing attention in 

recent years and has become an alternative to traditional 

virtual machines to run the application.  
 

Few of the primary motivations for the enterprise to 

adopt container technology include its convenience to 

encapsulate and deploy applications, lightweight, as well 

as efficiency and flexibility in resource sharing. 

Considering current vertical and horizontal application 

scaling challenges for the high traffic websites, in this 

paper we explains the benefits of cloud technology, 

virtualization, container and Kubernetes clustering 

features. Also, discuss the algorithm for building dynamic 

scaling large traffic platforms and applications, which 

will be runtime, scaled up and down as per user request 

and traffic demand.  
 

Recent growth in e-business, online web application 

and mobile user accessibility are exponentially grown 

with the widespread of Internet of Things, Data 

Processing and data analytic and many more online 

portal. To improve better web application performance, 

web application availability and scalability resource 

utilization many service provider start design services 

using micro services and deploy them on the container 

using Kubernetes cluster. However, the exiting 

approaches fail to address service availability, handling 

high traffic load result to dissatisfaction to end users and 

business impact. To address these issues, in proposed 

work evaluate many interesting aspects of running high 

traffic website applications on containerized dynamic 

scaling and high availability cluster. Proposed Setup run 

on the cloud again, such as how convenient the execution 

environment can be set up, what are makes pans of 

different workloads running in each setup, how efficient 

the hardware resources, such as CPU and memory, 

utilized, and how well each environment can scale. The 

results show that compared with virtual machines, 

containers are more easy-to-deploy and scalable 

environment for high traffic workloads. 
 

Keywords:- Docker, Cloud Computing, Kubernetes Cluster, 

K8S, Micro service, Web Server, Haproxy Load Balancer, 
NFS Storage. 

 

I. INTRODUCTION 
 

In today’s digital transformation area, Docker and 

Kubernetes have revolutionized the way of DevOps 

consulting and both are leading container orchestration 

tools[1]. There is always a challenge to control an increase in 

the demand for scaling and auto-healing of the network and 
virtual instances. Managing the containers is always a task 

for any company because microservicesthat are running on 

the containers do not communicate with each other. They 

work independently as a separate entity. This is where 

Kubernetes steps in. Kubernetes is nothing but a platform to 

manage containers. These containers can be Docker 

containers or any other alternative containers. Kubernetes 

orchestrates, manages, and forms a line of communication 

between these containers [5].  

 The first Section covers Docker: Containerization Using 

Docker, Docker for networking, The Docker File, and 

hosting a web server using Docker.  

 In the Second Section, we have covered Kubernetes: The 

Role and Architecture of Kubernetes, basic concepts, 

features, Kubernetes clusters, scaling and deploying 

applications, and hosting a Web Server Using Helm.  

 In the third section, I have planned to deploy the Cloud 

platform to deploy the complete. Kubernetes and Dockers 

on Virtual machines which run on either Xen or VMware 

Cloud. Its compatibility, services, features, and how 

dockets Kubernetes and Cloud go hand in hand and last.  

 The last section deploys the back-end script to monitor the 

traffic on the load balancer server and then automatically 
scales up and down the webserver containers to distribute 

the traffic. To summarize, the project will be by taking 

advantage of each of the cloud and cloud services emerging 

technology to deploy the highly scalable and high 

availability platform to run high traffic applications. 
 

 

 

 

 

 

http://www.ijisrt.com/


Volume 7, Issue 5, May – 2022                                International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT22MAY1644        www.ijisrt.com      870 

II. LITERATURE REVIEW 
 

 Ruchika Muddinagiri, Shubham Ambavane, Simran Bayas  

[3] In this paper,the author has deployed the 
containerization application using docker and minikube 

tools on the local system, so there is future scope to build 

Kubernetes cloud-deployed scalable application on same 

which can provide availability as well as scalability. 

 RobertBotez,Calin-MarianIurian,Iustin-

AlexandruIvanciu,VirgilDobrota [5]: In this paper, authors 

have evaluated a solution for monitoring vehicles in real-

time using containerized applications. However, there is the 

future scope for work on evaluating the Docker 

performance and security as well set up a Kubernetes 

cluster on a private cloud. The cluster nodes are made up of 
multiple Raspberry Pi platforms that will collect more 

sensor information. 

 Jay Shah, Dushyant Dubaria [4]: In this paper,the 

WordPress blog application is deployed using 

containerization technology with a standalone and static 

resource on the Google Cloud Platform. The major 

advantage of using Kubernetes is orchestrating between 

many applications. It is also very useful for scaling many 

applications in very less time. By using this, we can save 

our costs and time. 
 

III. PROPOSED METHODOLOGY 
 

A. Architecture 
In this paper, three virtual Machines need to deploy the 

Virtual Machin on the Cloud Service Provider (ESDS 

eNlight360/AWS/Microsoft Azure) with high available 

Cloud.  Install and set up the Kubernetes cluster on all these 

three-node with one master and 2 worker/slave kinds of 

architecture where we will get the benefit of container 

failover advanced in case any VM is failed/rebooted.  
 

We can deploy any PHP application container using 

apache-PHPDocker container using Kubernetes 

deployment,pods, services, and endpoints features and make 

the application accessible with IP address and port number 
using Kubernetes networking. A persistent volume is used to 

save and store application data after failover of VM, 

Kubernetes nodes, or container restarting.  
 

We can deploy another HaProxy container to distribute 

the traffic of web server traffic among different application 

containers, which are dynamically scaling up and down as 

container resource utilization and traffic increase. Kubernetes 

scheduler and monitoring continuously monitor the traffic 

utilization and CPU and memory utilization of the container 

and increasing application container using application 

deployment, which quickly gets available behind the 

HaProxy load balancer to server the web traffic.  
 

When web request, CPU, and memory utilization are 

decreased, the Kubernetes scheduler and Kubernetes manager 

are reducing the container and back to the default min 

container count.  
 

We do use the Round Robin algorithm to equally 

balance the load among all application containers.  
 

B. Main System Components  

 Centos VM: Setup the three CentOS-based Virtual 

machines on any Cloud platform.  

 Setup and Configuration Kubnernet Cluster: Setup and 

configure the three-node one Master node and 2 Worker-

Slave nodes Kubernetes cluster on these three VM.  

 Deploy Application Container: Deploy the apache-PHP 

web servers, MySQL database Docker container, and 

installed on the Kubernetes cloud.  

 Application Accessibility: With help of Kubernetes 
networking, services and endpoint make the application 

accessible with a web serverURL.  

 Web Server Load Balancer: Deploy the haproxy Docker 

container on Kubernetes cloud with dynamical container 

scaling feature automatically detect to enable or disable the 

application container whenever traffic demand is increasing 

or decreasing.  

 Web Traffic generating tool: Using the Siege or curl 

method to generate real-time traffic on the webserver. 
 

 

Fig. 1: Solution Architecture Diagram 
 

The proposed system will be comprised of the following 

modules:  

 Module 1: Setup phase: Build and set up the Virtual 

machine on the cloud to set up the Kubernetes clustering 

with required resources.  

 Module 2: Build Kubernetes Cloud and Containers: 
Build and set up the Kubernetes clustering with high 

availability option.  

 Module 3: Deploy Application: Deploy containerized 

services like web container, database container, and load 

balancer container to run the WordPresscontainerized 
application.  

 Module 4: Deploy backend scripts: Deploy the 

proposed algorithm in the form of script, whichmonitor 

real-time traffic patterns, and as per container traffic 

handling limit/threshold set it will dynamically scale up, 

scale down the web servers container, and add the same 

behind load balance too to balance the traffic.  

 Module 5: Dynamic scaling and High availability: 
Demonstrate the container scale up whenever the traffic 

spike or increased and scale down when traffic is reduced. 

Also, demonstrate the application’s high availability in 
terms of any web server container failure, any 

http://www.ijisrt.com/


Volume 7, Issue 5, May – 2022                                International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT22MAY1644        www.ijisrt.com      871 

Kubernetesnode (VM) failure, VM failure, or any cloud 

node failure.  

 Module 6: Analysis Reports: Prepare the details analysis 

report to consider the traffic pattern, traffic balancing 

among several web servers, container scale up and scale 

down as per traffic pattern, and high availability report in 

terms of components failure.   
 

IV. ALGORITHMS 
 

A. Web Request Balancing Algorithm:  Round robin 
We do use the Round Robin algorithm to balance the load 

among all application containers. The round-robinload-

balancing algorithm is one of the popular methods for 

distributing web traffic across a group of web servers. Going 

down the list of servers in the group, the round-robin load 

balancer forwards a request to each server in turn. When it 

reaches the end of the list, the load balancer loops back and 

goes down the list again (sends the next request to the first 

listed server, the one after that to the second server, and so 
on). 

 

 

Fig. 2: Web Request balancing using Round Robin 

Algorithm 
 

B. Horizontal Container Scaling Algorithm: 

Desired App Replicas = ceil [current App Replicas* 

(current Scaling Metric Value / desired Scaling Metric 

Value)] 
 

Desired App Replicas: Application Replicas pod count 

that will sent to the controller after calculations. 
 

Ceil (): This function that rounds a fractional number.  

For example,ceil (11.28) is 12. 
 

Current App Replicas: Current number of Application 

Replicas pods for a given deployment or any other superset 

of “scale” object type. 
 

Current Scale Metric Value: Current value of metric for 

a given scaling factor metric. Can be 800m or 1.5Gi, for 

custom metrics, it can be 500 events per second, etc. 
 

Desired Scale Metric Value: Metric that has been set to 
maximum scalability of application pod. Eventually, with all 

mechanisms provides, your app runs at this metric value. 

This value should not be too low or too high. 
 

Let us say we have a scaling configuration with a target 

CPU usage of 70%, a minimum pod count of 4, and a 

maximum pod count of 20. 
 

The current deployment status issix pods averaging 

95% usage. 
 

Desired Replicas = ceil [6*(85/70)] = ceil (8.14) = 9 
 

Scaling down Algorithm: 

Let us say we have a pod-scaling configuration with a 

target CPU usage of 70%, a minimum pod count of 4, and a 

maximum pod count of 20. 
 

The current application pod deployment status is: There 

are 10 total pods. 10 pods averaging 45% usages. 
 

The same algorithm we used to scale down the 

application pod: 
 

The formulais applied to all normal pods. 

Desired Replicas = ceil [10*(45/70)] = ceil (6.42) = 7 > 

10 
 

With the above calculation three application pods are 

extra, so as per the scaling downtime set in the configuration 

it will scale down the application pod to seven. 
 

V. WORKING 
 

A. Kubernetes Cloud and Container Status: 
We can set up and create three Centos VM virtual 

Machines on the eNlight360 Cloud to build the High 

Available Kubernetes Master-Slave clustering. Below is the 

Kubernetes cluster node status  

 

 

Fig. 3: Kubernetes cluster status 
 

B. Deploy the apache-PHP base application container: 

We can deploy and install the PHP-Apache  web server 
application container using k8s deployment components 

which run on the respective worker nodes with a minimum 

number of the replica set and maximum, minimum replica 

scaling number when pod CPU and memory demands 

increased because of a total number of web request increases. 

 

 

Fig. 4: K8s pod, deploy status 

http://www.ijisrt.com/


Volume 7, Issue 5, May – 2022                                International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT22MAY1644        www.ijisrt.com      872 

 

Fig. 5: Load balancer deployment status 

 

 
Fig. 6: Load balance traffic status 

 

C. Generate the web request and check application pod 

scaling stats: 

We can use the siege /curl command to generate the web 

request on the application server, which equally get a balance 

among the number of application pod, whichis automatically 

added behind the load balancer.  When the total number of 

web requests demand increases, the application pod CPU and 

memory utilization start increasing, once it crossesdesired 

limit it scalesthe replica threshold value, and the system 

automatically starts deploying additional application pods to 
sustain the web request demand and enhance system 

performance. 

 

 

Fig. 7: Generate the web traffic using the curl command 
 

Total number of application pod status with normal stats 

 

 

Fig. 8: Total no of pod running at normal traffic scenario 
 

The total number of application pod status after web 

requests started increasing  

 

 

Fig. 9: Container (pod) scaling status 

 

 
Fig. 10: Total of no pod scale after web traffic load increased 

 

 

Fig. 11: The total no of the pod that got auto deployed after 

load increased 

 

 

Fig. 12: Load balance web traffic status 
 

Check application pod stats after web request demand 

reduce:  Once web request demand decrees 
 

The total number of application pod statuses after web 

request demand decreased. 

 

 

Fig. 13: Pod scaling down after web traffic decreased 

 

 

Fig. 14: Total no of POD reduce stats after traffic decreased 
 

 
Fig. 15: Total no of POD terminate after traffic decreased 
 

 

http://www.ijisrt.com/


Volume 7, Issue 5, May – 2022                                International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT22MAY1644        www.ijisrt.com      873 

VI. CONCLUSION 
 

By adopting the cloud native services benefit, 

Virtualization, containerization technology are used to build 
and migrate applications from a traditional physical system to 

virtualized system, the containerized system which 

convenient to encapsulate and deploy applications, 

lightweight operations, as well as efficient and flexible in 

resources scaling. 
 

Considering current vertical and horizontal application 

scaling challenges for high traffic websites, in this paper 

taking the benefit of the cloud, virtualization, container, and 

Kubernetes clustering features we proposed a dynamic 

scaling algorithm considering backend latency for large 

traffic platforms and applications which will be dynamically 

scaled up and down as per user request and traffic demand. 
 

REFERENCES 
 

[1.] Ruchika Muddinagiri, Shubham Ambavane, Simran 

Bayas , ”Self-Hosted Kubernetes: Deploying Docker 

Containers Locally With Minikube” , IEEE Xplore, 

Conference,18 August 2020 ISBN Information: ,DOI: 

10.1109/ICI- TAET47105.2019.9170208” 

[2.] Jay Shah,Dushyant Dubaria”,Building Modern Clouds: 

Using Docker, Kubernetes Google Cloud 

Platform”,IEEE Xplore Conference: 14 March 2019 

,DOI: 10.1109/CCWC.2019.8666479 
[3.] Robert Botez,Calin-Marian Iurian,Iustin-Alexandru 

Ivanciu,Virgil Dobrota ,”Deploying a Dockerized 

Application With Kubernetes on Google Cloud 

Platform”, IEEE Xplore Conference: 16 July 2020,DOI: 

10.1109/COMM48946.2020.9142014 

[4.] K. Matthias, and S.P. Kane, “Docker:Up and Running”, 

O’Reilly, 2015 

[5.] Deploy on Kubernetes Documentation , Aug 2021 

[Online], Available: 

https://docs.docker.com/desktop/kubernetes/ 

[6.] Kubernetes Cloud Setup Documentation, Aug 2021, [ 

Online] Available: 
https://kubernetes.io/docs/setup/production-

environment/ 

[7.] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. 

Wilkes, “Borg, omega, and kubernetes”, 2016. 

[8.] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu and W. Zhou, 

"A Comparative Study of Containers and Virtual 

Machines in Big Data Environment," 2018 IEEE 11th 

International Conference on Cloud Computing 

(CLOUD), San Francisco, CA, 2018, pp. 178-185, doi: 

10.1109/CLOUD.2018.00030. 

[9.] ‘DevOps; Puppet, Docker and Kubernetes – Learning 
path’ by Thomas Uphill, Arundel, Khare, Saito, Lee and 

Carol Hsu, Packt Publications, First Edition, 2017 

[10.] ‘Cloud Native Applications- The Intersection of Agile 

Development and Cloud Platforms’ by Douglas 

Bourgeois, David Kelly, Thomas Henry members of 

Deloitte Touche Tohmatsu Limited,2016 

[11.] ‘Kubernetes from the ground up, deploy and scale 

performant and reliable containerized applications with 

Kubernetes’ by Level Up Kubernetes Program, Basit 

Mustafa, Tao W, James Lee, Stefan Thorpe, 2018 

http://www.ijisrt.com/
https://docs.docker.com/desktop/kubernetes/
https://kubernetes.io/docs/setup/production-environment/
https://kubernetes.io/docs/setup/production-environment/

