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Abstract:- A lot of recent research has focused on both 

computer vision and natural language processing. Our 

research focuses on the intersection of these, specifically 

generating pictures from captions. We focus on the lower 

data regime, using the COCO and CUB data sets which 

include 200k and 11k picture and caption pairs 

(respectively). We will use a hierarchical GAN 

architecture as our baseline[7][24][26]. To improve our 

baseline we attempt various methods targeting the 

upsampling blocks, and adding residual or attention-

based layers. We will compare the inception score of the 

methods to analyze our results. We will also consider 

qualitative results to assure there is minimal mode 

collapse and memorization. We find that of all our 

improvements, improving the up-sampling technique to 

use a Laplacian pyramid method with transposed 

convolutional layers obtains the best results with a 

minimal increase in computation time and memory needs. 
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I. INTRODUCTION 
 

A. Text and Image Modeling 

Caption generation from images has been a relatively 

recent research focus, with many promising advances 

[9][8][19][21]. We will focus on creating images from 

captions. One of the earliest known attempts at this drew in 

patches onto a canvas using an attention-based language 

model and a generative RNN [12]. GANs quickly became one 
of the most popular methods. The first application of GANs 

used a DC-GAN that was conditioned on the caption 

encoding [14]. Related attempts used a similar text 

conditioning concept, but with an additional classification 

auxiliary loss [2]. Research into applying hierarchical GANs 

made progress in performance. StackGAN was one of the 

first attempts to do this. It has an initial layer that generates a 

simple, low-resolution image, whereas the second layer 

generates a more detailed and high-resolution image [24]. 

Notably, StackGAN used c-GANs [13] for both layers and 
introduced conditioning augmentation to handle 

discontinuity in the latent text space [24]. StackGAN++ 

improved on this framework using multiple generative and 

discriminative layers in a tree [26]. Additional improvements 

have been made in this task by introducing new concepts [4]. 

By including attention to the stacked GAN architecture the 

generative process weighs important elements of the caption 

more [22]. Siamese architectures have also been introduced 

that use two distinct branches [4]. One version of this allows 

the model to learn high-level semantics using contrastive 

losses [23]. 
 

B. StackGAN Architecture 

For our baseline approach, we used the StackGan 

architecture [24]. Specifically, this is a hierarchical 2-stage 

GAN with two layers of GANs. The first layer outputs a 
lower resolution image, whereas the second layer outputs a 

higher resolution image and corrects any major issues. 

Generally, the first stage sketches primitive shapes and colors 

based on the given text descriptions and the second generates 

high resolution, photo-realistic versions of the earlier images. 

Figure 1 shows the overall StackGAN. 

 

 

 

 

 

Fig. 1: The StackGAN architecture proposed in [24] that we use for our baseline and build upon. 
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This diagram is taken from the author’s paper and gives 

a general overview of the training and generating process of 
the GAN architecture. Our implementation is adapted from 

the author's implementation. We retained all the components 

in the original architecture for our baseline and attempted 

improvements unless we explicitly state otherwise. 

Moreover, we also maintained the same hyperparameter 

configurations and general experimental setups unless stated 

otherwise. 
 

Notable novelties of [24] include the architecture itself 

(which can generate high-resolution photo-realistic images) 

and the conditional augmentation technique to stabilize 

conditional GAN training and improve the diversity of 

induced examples. Figure 1 is a quite standard hierarchical 

GAN architecture for image generation [7]. However, the 

conditioning augmentation is unique. To reduce discontinuity 

in the latent data manifold, conditioning augmentation 
produces conditioning variables cˆ which are randomly 

sampled from some Gaussian distribution N (μ(φt ), Σ(φt )) 

(achieved using the semi-empirical trick). Here the mean 

μ(φt) and diagonal covariance Σ(φt) are functions of the text 

embedding φt. This augmentation makes it easier for the 

generator to learn and introduces randomness that is 

beneficial for modeling text-to-image translation [24]. 
 

C. Baseline Experiments 

The StackGAN model was trained on the CUB and COCO 

datasets and evaluated using a similar procedure to that 

outlined in [24] with the same meta-parameters. We verified 

the inception score reported for the COCO dataset and 

obtained an inception score of 4.956 ± 0.377 on the CUB 

dataset. We proceed to work on the CUB dataset for 
computational efficiency, so this inception score will be the 

baseline we hope to beat. 
 

In the baseline there was good variety in model outputs 

for both the CUB and COCO datasets, indicating that the 
model does not suffer from a mode collapse. We note it was 

relatively difficult to get variety in the CUB dataset since 

there are more limited samples, but diversity in bird shape, 

color, and background was clear. Moreover, the model 

seemed to capture the gist of the caption well, outputting 

images that were largely relevant to the caption. There were 

two clear shortcomings of the model on the difficult MS 

COCO dataset. The first being the presence of artifacts in the 

outputs. These appear in the form of extraneous features and 

a lack of structure in outputs. We see that the model seems 

to have successfully learned and outputted relevant textures, 
however, it fails to assign these textures within well-defined 

regions/shapes. The second shortcoming is that the model 

isn’t truly creative and likely suffers from some degree of 

memorization. We saw this most clearly in the case of the 

zebras (in COCO) where all baseline model outputs place the 

“zebras” in grassy fields. This is understandable since that’s 

where we expect to find zebras rather than deserts; however, 

the outputs seem to indicate that the model ignored the word 

“desert" entirely or somehow entangled the two concepts 

(zebras and grass) together from the training data (i.e. 

memorized). These shortcomings were also present when 

training the baseline on the smaller CUB dataset. We see in 
Figure 2 that the: 

 

Fig. 2: Note how the Stage 1 output seems to have the general structure of the image correct, but the Stage 2 output seems to lose 

this output structure and focuses on texture (as noted by the presence of grey feathers but the absence of an apparent head or body). 
 

The model again struggles to assign textures to 

reasonable regions, often blurring any sort of bird shape to 
just a textured output or extending the bird region to an area 

that is not reasonable (i.e. the image of the white bird for our 

second caption in Figure 3). On the CUB dataset 

memorization is not as clear, however, the baseline model 

does appear to stick to the most common angle and shape of 

a bird in most of its outputs. Specifically, we see most 

baseline outputs with a recognizable bird where the bird has 

a short body and neck (perching-type), is rendered from a 

profile angle and has its wings down. 

 

Importantly, we noticed again when training the 

baseline on CUB that the Stage-I output images often had 
better overall structure, whereas stage two had more details 

and better colors, often without the structure. Thus, we 

hypothesize that during the down-sampling or making the 

stitch to the Stage-II GAN, the information containing the 

structure is lost as shown in Figure 2. 
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II. RELATED WORK 
 

A. Upsampling Techniques 

We consider three interpolation-based methods that can 

be thought of as standard methods. The original model, our 

baseline, used nearest neighbors (NN) upsampling. This 

method is relatively fast, but relies on duplicating pixels and 
thus can lead to blocky upsampled results [20]. We also used 

bi-linear up-sampling, which is a more computationally 

intense technique that performs linear interpolation on both 

axes of the image, one at a time [20]. We can think of it as 

sampling new pixels from the line that connects the original 

pixels. We also considered a bi-cubic interpolation, which 

again increases computation and smoothing. Similar to bi-

linear interpolation, cubic interpolation samples new pixels 

based on the cubic function that connects the previous pixels 

over each axis. The benefit of each of these techniques is that 

they require very little memory since we are not learning any 
parameters for them. However, they can often lead to over-

smoothed results [20]. 
 

B. Laplacian Pyramids for Up-sampling 

Laplacian Pyramid architectures are very effective in 
image-related task super-resolution [10]. This task involves 

taking a low-resolution image and up-sampling to create a 

sharp high-resolution image. We focused on this algorithm 

primarily due to its lower computational cost and 

effectiveness compared to other learned up-sampling 

techniques. This architecture is unique for its feature 

extraction layers that occur at various points within the up-

sampling pipeline[10]. To achieve this feature extraction, 

multiple convolutions are performed on the image. While up-

sampling blocks are performed by transposed convolutions 

layers with learned parameters. Transposed convolutions 

expand the image by inserting zeros into it, then perform a 
convolution to get to the desired output shape. [20]. 

 

 

 

 

 

 

 

 

C. Residual Connections 

To avoid losing the structural information from the Stage-
I image, we hypothesize that explicitly carrying this 

information forward into the Stage-II generation stages will 

result in improved performance. We achieve this through the 

use of residual connections [5]. In addition to making deeper 

models easier to train, models incorporating residual 

connections have often achieved state-of-the-art 

performances in visual tasks[5] [6]. We also introduce an 

inception module to carry over different granularities of 

information in these residual connections. [17]. 
 

D. Attention for Image Generation 

Attention-based methods have become increasingly 

popular in recent times and many state-of-the-art approaches 

for any task tend to include some sort of attention mechanism 

in their architectures. [12] [21][18]. Since Stage-I images 

tend to have some relevant details for the final image but are 
largely blurry background noise, we hypothesize that having 

an attention mechanism that can attend to relevant regions of 

the stage-I image would provide better results. 
 

For image generation, GANs, [25] propose a self-
attention module for their architecture that leverages long-

distance information during generation - overcoming a 

shortcoming of the largely local convolution-only GANs. 

Another approach, AttnGan [22] attends to the word features 

in different stages of the generation process. As increasingly 

higher resolution images are generated, the generation module 

attends to the word features so it can focus on specific details. 
 

Implemented 5 new methods to change the up-sampling 

blocks or extract/propagate information through attention 

and residual connections. Based solely on the inception 

score, we see that each of the new up-sampling techniques 

performs better than our baseline nearest neighbors. The 

transposed convolutional (TC) Laplacian-based model has 

the highest inception score overall. We also see that both the 

inception-based residual model and the attention-based 
model with nearest neighbors perform better than our 

baseline. However, there is still overlap in the plausible 

ranges of inception scores based on the standard deviation of 

our inception scores. 
 

Table 1: Inception scores of the different models along with the standard deviations of these scores 

Model    Inception Score (with error) 

Baseline 

Bi-linear Up-sampling TC 

Laplacian Pyramid Based NN 

Laplacian Pyramid Based 

Inception-Based Residual (with nearest neighbors) 

Attention-Based Model (with nearest neighbors) 

4.956 ± 0.377 

5.198± 0.531 

5.474 ± 0.505 

5.219 ± 0.453 
5.031 ± 0.458 

5.060 ± 0.324 

 

Since the inception score has been criticized for being a 

sub-optimal metric and GANs do not have a widely accepted 

metric for evaluation, we also rely on qualitative analysis of 

our results. 
 

From our output test images (Figure 3) that despite a 

seemingly better inception score than our baseline, bi-linear 

up-sampling stands out as far over-smoothed and lacking 

bird-like structure. This motivated us to not move forward 

with bi-cubic up-sampling since we expected similarly over-

smooth results. In each of our other methods, we see some 

exceptionally life-like birds that mostly match the captions, 

along with some misshapen birds. This is likely a result of the 

relatively small dataset size and possibly suboptimal 

training/model hyperparameters. We also note that despite 

the relatively lower inception score for our inception residual 
and attention-based models, they returned images 

comparable to the TC Laplacian Pyramid-based model. We 
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note that the inception residual, attention, and TC Laplacian 

pyramid all seemingly improved on providing images that 
had a bird like-structure. For each of these images, it 

appeared much rarer to find over-smoothed and over-textured 

images than with our baseline, bi-linear, and the NN 
Laplacian model. These results: 

 

 
Fig. 3: Qualitative results for the different models. We see the model outputs (image columns 2-7) given a particular caption (left) 

and the corresponding "real" image from the dataset (image column 1). 
 

Suggest that for these 3 models, our changes intended 

to increase structural information retention were successful. 
It also shows that the transposed convolutional layers are 

important for the performance of our TC Laplacian model. 
 

To verify our models were working reasonably well we 

also looked for failure cases, specifically mode collapse and 
memorization. We more closely looked at these for the TC 

Laplacian pyramid-based model. We see from Figure 4 that 

this model can create distinct-looking birds based on the 

caption. Specifically, the final column showed 3 birds with 

long necks, as described in the caption. However, the first 

column shows 3 short-necked(perching-type) birds. We also 

see that the direction of the bird changes, as well as placement 

and background. Though it was clear that most birds appeared 

perched on some sort of a branch, this is not always the case. 

This analysis holds for the rest of our models; however, this 

type of analysis is not as relevant for our vanilla bi-linear and 

NN Laplacian pyramid models as they did not return 
reasonable birds. 

 

III. METHODS 
 

Our methods involved keeping the general architecture 

of the StackGan model and changing key components, 

described below, to improve picture generation. Since we 

found through our baseline results that Stage-I pictures 

appeared to hold important information around the structure 
of the pictures, that was often lost in stages when texture and 

color were introduced. To handle this we decided to change 

the upsampling blocks, as we hypothesized that the original 

up-sampling and downsampling blocks may blur some of the 

structure in the images so that it is not carried through to the 

Stage-II. 
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Fig. 4: Mode collapse analysis for the transposed convolution TC Laplacian pyramid-based model. We have 3 different captions, 

and 3 example outputs for each caption. These results indicate the absence of mode collapse in this model. 
 

Images. Additionally, we hypothesized that adding 

residual or attention-based layers would also help carry over 

this structural information. 
 

A. Upsampling 

Our up-sampling methods changed each up-sampling 

block to use a different technique in both the Stage-I and 
Stage-II models. 

 

For each interpolation-based up-sampling block, 

nearest neighbors, and bi-linear, we performed the relevant 

up-sampling, followed by a 3x3 convolutional layer, a batch 
normalization layer, and finally a ReLU activation. For these 

methods, we stack multiple of these up-sampling blocks to 

take the image from a 192×4×4 image to 3×64×64 images. 

Downsampling is then performed by multiple convolutional 

layers. We noticed that bi-linear up-sampling over-smoothed 

the results and did not help to retain structural information, so 

we did not proceed with other interpolation-based up-

sampling. 
 

 

For our Laplacian pyramid-inspired architecture, an 

additional feature extraction block consisting of three 3x3 

convolutional layers, where all but the last is followed by a 

ReLU activation, is used. This block has a single transposed 

convolution to assure the output size matches the next layer. 

We feed it the output of our second to last up-sampling block, 

then the output of this layer is added to the output of our final 

up-sampling block. We first used up-sampling layers that 

consisted of a transposed convolutions layer (TC Laplacian 

Based model), which matches the Laplacian Pyramid original 

paper. However, to investigate which part of our changes 
were most influential we also used nearest neighbors up-

sampling followed by a 3×3 convolution (NN Laplacian 

Based Model). 
 

B. Inception-based Residual Connection 
We directly took the 64 × 64 × 3 output of the Stage-I 

GAN, applied a transformation to it, and added it to the inputs 

to the up-sampling layers in the Stage-II GAN. This 

transformation was an inception module [17] consisting of 1 

× 1, 3 × 3, and 5 × 5 convolutional layers. This would allow 

 

 
Fig. 5: Our up-sampling structure for both interpolation-based methods (left) and Laplacian Pyramid inspired architecture (right) 

the Stage-II GAN to better leverage multiple granularities of structural information from Stage-I outputs, ultimately resulting in 

better-generated images. 
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C. Attention-augmented Model 

 

Fig. 6: Overview of the attention module implemented to better couple the visual features and text features. This module is added 

to the Stage-II GAN to better propagate the relevant structural information from Stage-I 
 

For the attention module, we consider the 16 × 16 × 768 

encoding of the Stage-I image and obtain a single 768 

dimension vector by attending to the 1024 dimensional text 

embedding. This is obtained by projecting the text embedding 

into a 768-dimensional vector and passing it through a non-

linearity. We then take the dot product of this projected text 

embedding with each of the 16 × 16 visual embeddings of 
dimensionality 768 and compute a softmax function using the 

values of the dot products. The softmax outputs are used as 

attention weights to combine the 16 × 16 × 768 dimensional 

encodings into a single 768-dimensional representation. This 

is then concatenated with the original text embedding which 

is finally projected to a single 1024 dimensional vector using 

a linear layer and then passed into the conditioning 

augmentation module of StackGAN. These steps are visually 

depicted in Figure 6. 
 

This procedure allows us to more explicitly model the 

carrying over of caption-relevant information from the 

Stage-I image into the later generative layers of Stage-II, 

thereby minimizing the loss of important information from 

downsampling. 
 

D. Evaluation 

Evaluation metrics for GANs is still an area of active 

research. We decided to base our evaluation on the inception 

score. Our inception score model uses the Inception-v3 

classifier pre-trained on the ImageNet dataset and returns p(y 
x) for each of our generated images. Using the metric exp 

Ex[KL(p(y|x), p(y))] assures the generated data is similar to 

the data trained on (high entropy of p(y|x)) and diverse (high 

entropy of p(y))[16]. We note that this metric is limited in 

many ways, in particular since the model is trained on images 

other than birds, our generated images will consistently have 

a low probability of appearing in the data set [1]. 
 

 

 

 

IV. DISCUSSION 
 

Overall, our methods appeared to improve performance 

on the CUB dataset by generating more realistic images to go 

with each caption. We notice in particular that the TC 

Laplacian up-sampling method appeared to improve 

performance compared to the baseline both in terms of 

inception score and quality of output images. The residual 

inception score and attention-based models both also 

generated better images, though their inception scores were 

not much higher than our baseline. Based on this, it is clear 

that explicitly passing forward information helped to 
minimize the loss of key information, ultimately resulting in 

better output images. We have shown through our work that 

reasonable improvements can be made to models simply by 

improving up-sampling, an area that has not been widely 

considered. We also note that these improvements were 

achieved with slightly more memory, but with very similar 

computational time compared to our baseline. 
 

Thus, to boost our methods further, we could add 

additional feature extraction layers to our TC Laplacian 

pyramid-based model. We could additionally add multiple 

points of attention or residual connections. Perhaps the most 

interesting area would be to combine the Laplacian style up-

sampling with attention models that have already proved to 

be effective like AttnGan [22]. 
 

Additionally, a limitation in our approach was not 

altering the text-embeddings and relying on pre-trained char-

CNN-RNN embeddings that only involved forward 

connections between words [15]. Recent successes have been 

made using bi-directional recurrent neural networks that 
consider both forward and backward connections between 

words [27]. Moreover, BERT-based models might also be 

useful to extract more meaningful information from the text 

itself [3] [11]. More sophisticated techniques to learn caption 

representations that contain features salient to image 
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generation would also likely result in improved performances 

[11]. In particular, this may help areas where our model can 
get the correct colors on the bird, but they are on the wrong 

body part (e.g. drawing red only on the crown or cheek like 

the 3rd and 4th caption in Figure 3. This is an area that would 

be interesting to pursue further. 
 

We again note that there are inherent limitations to 

using the inception score for our quantitative evaluation 

metric. Inception scores are sensitive to the specific weights 

of the inceptions model, as well as the split of our test 

examples, two metrics that do not correspond to image 

generation ability [1]. Additionally, the inception score relies 

on the assumption that the underlying distribution of classes 

we generate matches the distribution of classes in the 

inception model [1]. However, since we used an inception 

model pre-trained on ImageNet, our classes do not line up and 

we may have issues due to this inherent difference between 
distributions [1]. An important improvement we could make 

would be to fine-tune or entirely train the inception model on 

the CUB dataset. 
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