
Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 356

Creation of an Android Application and the Use of

Transfer Learning to Recognize Insect Species

Prabhat Kumar Singh*

Electronics and Communication Engineering

Maharaja Surajmal Institute of Technology (GGSIPU)

Delhi, India

Pawan Kumar

Electronics and Communication Engineering

Maharaja Agrasen Institute of Technology (GGSIPU)

Delhi, India

Abshar Imam

Electrical and Electronics Engineering

Maharaja Agrasen Institute of Technology (GGSIPU)

Delhi, India

Abstract:- Insect numbers are dwindling over the world,

and some species have gone extinct in the past.

Exploration of seldom seen Insect species has therefore

become a difficult endeavor for Entomologists and Insect

Watchers. We created an Android application based on

deep learning to assist users in recognizing 280 different

insect species, making insect categorization much more

user-friendly. We employ Convolutional Neural

Networks (CNN) pre-trained on ImageNet Dataset as

freeze layers of the network in this article, then train the

final output layer, which has 280 separate classes. The

accuracy of CNN models such as EfficientNet-lite0,

InceptionV3, Xception, ResNet-50, MobilenetV2, and

InceptionResNetV2 has been evaluated, and the mobile

app's operation has been discussed. Maximum train data

accuracy of 99.81 percent and test data accuracy of 98.62

percent is accomplished.

Keywords:- Transfer Learning, Classification of Bird

Species, Deep Learning, Recognition of Image, CNN,

Android Application.

I. INTRODUCTION

Following favorable results in psychoanalysis, it has

been proven that viewing insects and hearing to their

melodies can assist in psychotherapy. Learning how the

number and diversity of essential well-being benefit

providers, such as insects, contribute to nature's total

advantages could be crucial for determining how best to use

them.

Entomologists study insect ecology under extreme

situations, conduct research, and develop strategies to

increase species' survival because insects are so important to

humans' existence.

Insect species categorization has become a serious

challenge after taking everything into account. A user-

friendly mobile application is simple to carry about and may

provide Entomologists with several benefits. This application

may be more useful for an Insect watcher who sees an

unnoticed Insect, takes a picture of it, and then identifies the

species.

There are a variety of strategies that can help in picture

categorization. Deep convolutional networks may be used to

extract features from pictures in a computer vision approach

called image classification. The Keras core library includes

some of the best-performing Convolutional Neural Networks

(CNNs), which can categorize 1000 different object

categories and are largely trained on the ImageNet dataset.

These pre-trained Neural networks aren't only limited to

ImageNet data; they can also generalize over a wide range of

categories thanks to transfer learning, which includes feature

extraction and fine-tuning.

Convolutions are preferred over completely linked

layers because they allow for parameter sharing and

connection sparsity. The key difference with CNN is that by

conducting the Convolution process, the initial image

matrix's dimensions are reduced to a smaller dimension in the

first layer itself. Despite this, the network's final layer is a

fully linked layer resulting from convolution and label

classification of the picture matrix.

We're employing TensorFlow Hub pre-trained models as

the foundation for our CNN network, and we're evaluating

model accuracy using two optimizers: Adam and RMSprop.

As a result, the focus of our efforts is on developing a flexible

platform for facilitating access to such resources. The

description of CNN, Transfer Learning, software design, and

how the application works are all included in the following

parts and subsections. There has been no study on huge

species categorization up to 280 classes, which is why we

have created a useful software with improved accuracy. In

addition to the test dataset, we test our software on a variety

of other images. We have used drawing and cartoon images

to test the app's functionality, and it does a fantastic job on

them.

II. APPROACH AND TECHNIQUES USED

A. Convolutional Neural Network

The Convolutional Neural Network (CNN) is a kind of

neural network that uses convolutional Neural Network

(CNN) , also known as ConvNet and is combined with the

feed- forward architecture. When compared to other networks

with completely linked layers, ConvNets have an incredible

http://www.ijisrt.com/
mailto:krsinghp8@gmail.com
mailto:chauhanpawan000@gmail.com
mailto:absharimam333@gmail.com

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 357

capacity to generalize. The principle of weight sharing is

critical to the success of CNN. As a result, the number of

training parameters is drastically decreased, resulting in

effective generalization [1]. As a result, parameters are

lowered, the CNN training process is resolved, and the odds

of overfitting are minimized [2]. CNNs are now widely

employed in a variety of fields, including image

classification, object identification, face detection, voice

recognition, vehicle recognition, facial expression

recognition, and many more, thanks to their superior

performance. The following components can be used to

characterize CNN:

 An input layer is a matrix of input raw pictures with the

dimensions HxWxC, where H is the image's height, W is

its width, and C is the number of channels employed.

RGB pictures, for example, have three colours, hence the

number of channels is three.

 The Convolution Layer is a smaller dimensional matrix

than the input layer. It employs a filter matrix and

conducts convolution across the whole size of the input

matrix while maintaining a constant stride. The output

layer's dimension same amount of parameters. Xception

has a linear of depthwise separable convolution layers

preceded residual connections as its architecture. In this

section, a theory is advanced that is more prominent than

the hypothesis of the may be evaluated by formula

Inception design, and it explains how cross-channel

interactions and spatial interactions in the feature maps of

convolutional neural networks may be completely

In the following equation, n denotes the layer size of the

input, p represents padding, f specifies the number of channels

used, and s is used for stride.

 Pool layers, also known as down sampling, decrease the

size of the layer to speed up calculation. It employs two

methods: average pooling and maximum pooling. The

most common pooling method is max-pooling. When a

filter is applied to different sections of the matrix, the

max-pooling approach assigns the maximum value to the

output layer for that specific region.

 Fully Connected Layers are the network's last layer,

corresponding to output classes.

 Transfer Learning

We deployed six CNN models trained on huge picture

datasets such as Imagenet in this study. The transfer learning

approach makes pre-trained networks relevant for analogous

new situations. Transfer learning is often applicable when the

current dataset to train is less than the initial dataset used to

train the pre-trained model [3]. In this study, we train a dataset

of insect species using prominent models as EfficientNet-

Lite0, ResNet50, Xception, InceptionV3,

InceptionResnetV2, and MobilenetV2. Furthermore, we

employ these models as the neural network's freeze layer to

extract image features and substitute the network's final

softmax layer to generate 280 output classes, evaluating the

performance of the stated pre-trained neural networks based

on their accuracy.

EfficientNets [4] are a series of models that offer

substantially higher accuracy than earlier Convolutional

Neural Networks. On the ImageNet dataset, EfficientNet-B7

achieves state-of-the-art top-1 accuracy of 84.3 percent.

EfficientNet-B7 is also 8.4 times smaller and 6.1 times

quicker than the best-known Convolutional Network.

EfficientNet models have the benefit of being easily scaled

up, and by employing fewer parameters, models can

outperform state-of-the-art accuracy.

The Lite version of EfficientNet runs on TensorFlow

Lite and is designed to run on mobile CPUs, GPUs, and

EdgeTPUs. EfficientNet-Lite comes in five ranges, ranging

from Lite0 to Lite4, with Lite0 being the smallest and Lite4

being the largest.

ResNet50 [5] is built using residual networks created by

connecting blocks of 34 parameters in the ImageNet design

with skip connections. To develop it a 50-layer ResNet, these

skip connections were made using 2-layer blocks in a 34-

layer design, and each 2-layer block was switched with a 3-

layer bottleneck block.

InceptionV3 [6] is the runner-up for image

classification at the 2015 ILSVRC. It is an optimised version

of GoogleNet (also known as InceptionV1 and InceptionV2).

Inception Networks are useful for large volumes of data since

they have a lower processing cost than VGGNet. It has fewer

parameters and can be accessed if memory is constrained.

The Xception [7] and Inception V3 architectures have the

decoupled.

InceptionResNetV2 [8] is a leftover form of inception

networks which employs 1 1 convolution blocks without

activation and utilizes cheaper Inception blocks. Filter-

expansion layers are another name for these block

confluences. This layer is being used to scale up filter banks

and then match the input depth by conducting addition to

compensate for the Inception block's dimensionality

reduction. InceptionRes-NetV2 and the newly introduced

Inception-v4 networks have the same raw costs. Batch-

normalization was only implemented on top of the

conventional layers in this network, unlike non-residual

Inception networks.

MobileNetV2 [9] the first fully convolutional layer with

32 filters is accompanied by 19 residual bottleneck layers.

The term bottleneck comes out from neck of a bottle, and it

refers to the layer that has less dimensions than the node

before it. The framework of MobileNetV2 is constructed on

depth-separable linear bottleneck convolution with inverted

residuals. It just reduces computation costs by a tiny decline

in accuracy when compared to standard convolutions. This is

ideally suited for smart phone computer vision models

because of its lightweight feature.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 358

III. WORK PROPOSED

A. Dataset

We're using a Kaggle dataset including 280 insect

species. The model may overfit when a network is well

adapted to a small number of data points. It means the model

perceives noise and random abnormalities in training data as

a concept, that will have a negative impact on new data. As a

result, the term "data augmentation" is used to represent the

process of arbitrarily removing 224 224 patches from the

original photographs, blurring, colour contrast, and zooming

in and out to increase the dataset magnitude. The

ImageDataGenerator class has been used to resize pixel

values from 0-224 to 0-1 for neural network models before

training.

B. Comparison of algorithms (1)Architecture of the model

EfficientNet-Lite0 has been the model that we

eventually deployed on Android, and its architecture consists

of an input layer, one Entirely-connected layer, and the end

softmax layer in outcome. As a result, each layer consists

convolution. Pre-trained models have been used for feature

extraction. E very convolution layer in the EfficientNet-lite0

model uses ReLU 6 activation for making the list of these

characteristics. The MBConvterm is recognized as an

Inverted Residual Block in architecture. In Figure 1, the terms

layers, channels, resolution, and operator refers to the size of

both the filter and operator, the dimension of the input

matrix, the number of channels, and the number of each time

block is repeated accordingly, Skip connections are utilized

internally in convolutional design. It is, as the name implies,

a technique for bypassing some layers and feeding the

outcome of one layer towards the next non-skipped layer. The

bypass connection is a different route that allows the gradient

to be more converged. In Fig. 2, we selected a picture and

used it as an input, displaying the entire feature extraction and

classification method.

Fig. 1. EfficientNet's Architectural style

 Experimental Work

For improving the CNN's performance we used transfer

learning. We froze the pre-trained model and only changed

the Neural Network's final softmax layer. EfficientNet-Lite,

Xception, and MobileNetV2 are all associated together.

 By training the InceptionV3, and InceptionResNetV2

models on the 280 insect species dataset, we were able to

determine their correctness. To train the model, we used a free

online cloud-based Collaboratory with GPU. The figure of

parameters that each model is made up of is shown in Table

I. In general, the larger the model and the more parameters it

contains, the better the result. However, this raises prediction

delay, as well as using extra energy and running slowly on a

big scale, gradually heating up the device. A huge model also

increases the size of the software. A smaller model will operate

quicker and lower power consumption than a larger one, but it will

give less accuracy. To close this gap, we used the Efficient-Lite0

model, that is smaller than Table I but has greater accuracy. Using

the fine-tuning strategy, we enhanced the accuracy of the

Efficient-Lite0 model by eliminating some layers, adding certain

dense layers with activation functions, and adding some

normalizing layers.

Optimizers are that kind of algorithms which alter weights

and learning rates in order to decrease losses and improve

efficiency. This model is being trained by using Adam and

RMSprop optimizers.

Rmsprop optimizer is a gradient descent acceleration

technique. When we finally implement gradient descent,

there will be oscillations in both the vertical and horizontal

directions. To slow down the vertical learning rate, we utilise

the RMSprop optimizer, which attempts to increase the

learning rate in the horizontal direction by taking larger steps.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 359

Fig. 2. Architecture of EfficientNet. TABLE I.SIZE COMPARISON OF MODELS

Table 1:- Size Comparison Of Models

Adam refers for Adaptive Momentum estimation; it

combines momentum and RMSprop with a sparse gradients

handling technique.

mt = β1mt−1 + (1 – β1)gt (1)

Table 2:- Model Comparison With Adam Optimizer

Table 3:- Model Comparison with Rmsprop Optimizer

vt = β2vt−1 + (1 – β2)gt2 (2)

m & v represents moving averages, and g is the gradient

on the current mini batch in the equations above. These may

be used to calculate the mean (first instant) and variance

(second moment) (second moment).

For the moment, β1 and β2 are exponentially decaying

percentages or we can say hyper-parameters for evaluating

exponentially weighted mean.

mˆt = mt/(1 – β1t) (3)

vˆt = vt/(1 – β2t) (4)

Equations (3) and (4) are bias-corrected estimators for

the first and second moments, respectively. Tables II and III

show the performance of several models with the Adam and

RMSprop optimizers, respectively. Run Time refers to the

amount of time it takes for a model to be trained per epoch.

Tables II and III show that Adam optimizer is superior than

RMSprop (105s) for training the model in less time and with

higher accuracy (90s). Table II shows that EfficientNetLite0

with Adam optimizer performs the best on train data, with an

accuracy of 99.81 percent. MobileNetV2 performs

remarkably well with the RMSprop optimizer shown in Table

III, obtaining an accuracy of 99.71 percent, which is greater

than EfficientNet-Lite0 (97.47 percent).

We are loading the trained model weights in (.h5)

extension at the time of testing. After additional analysis, we

can find that EfficientNet-Lite0 has the best test accuracy

with both the optimizers, including Adam (accuracy 98.62

percent) and RMSprop (accuracy 98.76 percent), and the least

loss on test data of all. We created complete two-dimensional

graphs in Fig. 3 and 4 to better visualize the comparison of all

model's accuracy using a popular Py-thon tool called

Matplotlib.

Lastly, we analyzed EfficientNet-Lite0 using Adam

optimizer since it performs better over both test & train data

and computational cost than EfficientNet--Lite0 with

RMSprop. The finished model's Confusion Matrix is

represented in Figure 5.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 360

Fig. 3. Accuracy with Adam optimizer.

Fig. 4. Accuracy with RMSprop optimizer.

A model's weight is another important attribute to have

before it can be deployed on the Android platform. We can

see from Table I that MobileNetV2 has strong training

accuracy and minimum weight, but EfficientNet-Lite0 has

superior test accuracy and test loss, resulting in the second

lighter model after MobileNetV2, therefore we install the

TFLite version of EfficientNet-Lite0 on the android

application.

C. Implementation and working of model on android app

The app's functionality is seen in Figure 6. As

demonstrated, clicking on the Load Picture button will take

you to the gallery; once the image has been added, clicking

on Identify will display information about the image on the

screen.

The values of the weights, biases, gradients, and other

variables were recorded in the checkpoint file as an extension

(.ckpt) once the model was trained. We changed the stored

model to (.tflite) format in order to further deploy this trained

model on Android. The TFLite file aids in the reduction of

model file size and introduces non-accurate optimizations.

Fig. 5. Confusion Matrix.

Fig. 6. App interface for determining insect species.

The label.txt file, which contained all 280 insect classes,

and the model.tflite files were uploaded to the IDE (integrated

development environment), and the image was predicted

using a computing job.

Home, Classify, and Settings are the three activities that

make up this user-friendly software. As illustrated in Fig.

7(a), it represents a card view in the home, with numerous

species' pictures and names. All identification procedures are

carried out in the Classify section with the user's assistance,

including the provision of name and information about

specific species. The backdrop theme may also be changed

from light to dark under Settings. We upload photos of

drawings and cartoons to our program to further test it, and it

accurately classifies them as shown in Figure 7(b).

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR529 www.ijisrt.com 361

Fig. 7. App interface for determining insect species.

IV. CONCLUSION AND FUTURE SCOPE

Finally, we applied EfficientNet-Lite0 to determine

insect species from submitted photos. The planned Android

app includes a categorization system for 280 insect species.

The app does not require an internet connection and displays

the result in real time, saving you time. In comparison to

previous studies, our app provides a greater number of insect

species classifications, with a model accuracy of 98.62

percent on testing data. The derived F1 score is 0.9859, with

Precision and Recall of 0.9901 and 0.9861, respectively. It

outperforms the MobileNetV2 model, which was created

specifically for its lightweight and high accuracy results on

single picture categorization. When compared to its

competitors, our model offers the lowest test

loss.EfficientNet-lite0, to our knowledge, produces the

greatest results, and our implementation in the Android app

further confirms that EfficientNet-lite can eventually replace

MobileNets.

Future development might involve testing the app in

real- world circumstances and using the fresh data to further

train the model for improved outcomes. Because insects are

eaten as a meal they can be recognized by the consumer.

Moreover, the app can be used by the farmers to detect a

particular type of insect that is destroying their crop so that

they can use specific pesticides. More innovative applications

can be created with a larger dataset to help scientists.

Furthermore, the software may be enhanced with sounds of

various insects, allowing a normal user to identify an insect

based just on the sound captured in their environment.

REFERENCES

[1]. S. Indolia, A. Goswami, S. Mishra, and P. Asopa,

“Conceptual under- standing of convolutional neural

network- a deep learning approach,” Procedia

Computer Science, vol. 132, pp. 679–688, Jan 2018.

[2]. Y. Wang, Z.-P. Bian, J. Hou, and L.-P. Chau,

“Convolutional neural networks with dynamic

regularization,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 32, pp. 2299–2304, May

2021.

[3]. R. Ribani and M. Marengoni, “A survey of transfer

learning for convolutional neural networks,” in 2019

32nd SIBGRAPI Conference on Graphics, Patterns and

Images Tutorials (SIBGRAPI-T), pp. 47–57, 2019.

[4]. M. Tan and Q. Le, “EfficientNet: Rethinking model

scaling for con- volutional neural networks,” in

Proceedings of the 36th International Conference on

Machine Learning, vol. 97 of Proceedings of Machine

Learning Research, pp. 6105–6114, PMLR, Jun 2019.

[5]. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.

[6]. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.

Wojna, “Rethinking the inception architecture for

computer vision,” in 2016 IEEE Confer- ence on

Computer Vision and Pattern Recognition (CVPR), pp.

2818– 2826, 2016.

[7]. F. Chollet, “Xception: Deep learning with depthwise

separable convo- lutions,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp.

1800–1807, 2017.

[8]. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi,

“Inception-v4, inception-resnet and the impact of

residual connections on learning,” in Proceedings of the

Thirty-First AAAI Conference on Artificial Intelli-

gence, AAAI’17, p. 4278–4284, AAAI Press, 2017.

[9]. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-

C. Chen, “Mobilenetv2: Inverted residuals and linear

bottlenecks,” pp. 4510– 4520, Jun 2018

http://www.ijisrt.com/

