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Abstract:- Conservation laws and symmetries of partial 

differential equations (PDEs) are very useful in finding 

new methods for reducing PDEs. In this paper, we study 

the conservation laws and symmetries of a class of a 

famous fourth-order Kuramoto Sivashinsky (KS) 

equation. The invariance properties of the conserved 

vectors with the Lie point symmetry generators are 

examined using the Double reduction method. With the 

Double reduction method, the equation is reduced into 

solvable PDEs or even ordinary differential equations. 

Some of these reductions yielded some important 

differential equations that have been investigated by 

many reseachers. Furthermore, we obtain important and 

nontrivial solution in terms of generalized 

Hypergeometric function which possesses significant 

features in evolution phenomena. Our results not only 

contributed extra features to the already existing 

solutions in literature but are also useful in the analysis of 

wave propagation in plasma, solid state and fluid physics. 
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I. INTRODUCTION 
 

A large number of global physical systems are defined 

by nonlinear partial differential equations (NLPDEs). These 

equations are very necessary because they can show case the 

real features in many course of applications, for example, gas 

dynamics, fluid mechanics, relativity, thermodynamics, 

combustion theory, biology and many others. It is very hard 

to solve analytically NLPDEs of real life problems. 
Obtaining exact solutions of the NLPDEs is a very crucial 

task and plays a vital role in nonlinear sciences. 
 

A lot of effective methods for determining exact 

solutions of NLPDEs have been found and developed in the 
past few years. Some of these methods are the inverse 

scattering transform method [1], Bäcklund transformation 

[2], Darboux transformation [3], Hirota's bilinear method [4], 

the homogeneous balance method [5], the extended tanh 

method [6], the exp-function method [7] and Lie group 

analysis. [8,9,10,11].Marius Sophus Lie (1842-1899) 

originally developed Lie group analysis. His study resulted in 

the current theory of what is now globally as a group called 

Lie. Subsequently, numerous studies have been produced in 

literature on the subject of Lie groups applied to differential 

equations in regard to the Lie point symmetries by the 
equation understudy. One parameter point transformation 

which permit the differential equation to be invariant is the 

Lie point symmetries of a differential equation. The 

invariance property of symmetries is essential in the sense 

that mapping a differential equation from one form to another 

maintaining its fundamental properties without alteration. 

Symmetries are used for reduction of order of scalar ODEs 

[8]. For PDEs, symmetries is applied to minimize the existing 

PDEs system to ODEs that could yield an exact solution to 
the PDE when solved. 

 

In the mid1980s, Peter G. L. Leach and his student, 

Fazal M. Mahomed [12] introduced Lie group theory to 

South Africa. Afterwards, this line of study researcher from 
various field of study started showcasing interest in which 

differential equation play a vital role. Lie group theory has 

vast applications in solid-state mechanics, modern physics, 

fluid mechanics, biological and physical systems, to name a 

few. Lately, lots of research have been carried out on the 

applications of Lie group theory to PDEs in various fields of 

engineering and natural sciences. These include linearization 

of ODEs and PDEs, generating new solutions from existing 

ones,  construction of equivalence groups, solving group 

classification problems, reductions of PDEs (by invariant or 

similarity solutions), solving initial and boundary value 

problems, construction of generalized local symmetries and 
nonlocal symmetries,  approximate symmetries, symmetries 

of difference equations, symmetries of functional differential 

equations,  symmetries of stochastic differential equations, 

symmetries of integro-differential equations, symmetries of 

geodesic equations, construction of conservation laws, 

construction of invariants of algebraic and differential 

equations etc.  
 

The conservation laws contribute immensely in the 

analysis of differential equations. Conservation law is used to 

describe physical conserved quantities such as energy, 

momentum, mass and angular momentum, as well as charge 

and other constants of motion [13] . They have been utilized 

in the study of the uniqueness, stability and existence of 

solutions of NLPDEs [8]. In addition, they have been used in 

the use and development of numerical methods [14]. The 
integrability of a PDE is significant on the presences of a 

large number of conservation laws of the PDE [8]. Various 

methods of applying conservation laws on PDEs have been 

elaborated on. The study of conservation laws is closely 

connected to that of Lie symmetries due to the work of 

Emmy Noether [15]. Noether's theorem gives a constructive 

and stylish way of solving conservation laws for a system of 

PDEs that has a Lagrangian formulation [16]. In the calculus 

of variations, the main problem is finding the Lagrangian, 

such that an Euler-Lagrange equation is generated from a 

differential equation. This issues is known as the inverse 
problem in the calculus of variations [15, 17]. 
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Conservation laws can also be obtained through other 

means without making use of a Lagrangian. These include 
the direct method introduced by Anco and Bluman[18,19], 

the multipliers approach which involves writing a 

conservation law in characteristic form, where the 

characteristics are the multipliers of the differential equations 

[20] and the partial Noether approach, introduced by Kara 

and Mahomed [21].  The Noether approach for differential 

equations with “a partial Lagrangian” is the same as the  

partial Noether approach. Noether symmetry is associated 

with conservation law for variational systems which has 

already been established. 
  
Recently, the thought of relating Noether symmetries 

with conservation laws was extended to Lie-Bäcklund 

symmetries [22] and non-local symmetries [23]. The 

association of a conserved vector with symmetry results to 

double reduction theory for PDEs which was done on GB 
equation and VB equations by Okeke Et. al  [24] to obtain 

exact solution. 
 

In many physical problems like quantum field theory 

and solid mechanics etc. there emerges a very distinguished 
and remarkable NLPDEs, which is known as Kuramoto-

Sivashinsky (KS) equation [25] 
 

𝑢𝑡𝑡+𝛼𝑢𝑥𝑥𝑥𝑥-Υ(𝑢𝑥
𝑛)x = 0          (1) 

 

The KS equation (1) is a fourth order NLPDE derived 

by Yoshinki Kuramoto and Gregory Sivashinsky. They used 

the equation to model the diffusive instability in a flame front 

in the late 1970’s [26]. 
 

The extensive use of conservation law and symmetry 

has helped to reduce the NLPDEs to ODEs which in many 

cases are not complicated to solve. Okeke Et.al [27] used 

various other methods including the extended-tanh method 
and Lie analysis method on equation (1) to obtain the exact 

solutions. 
 

Thus, we will show that an invariant of a conservation 

law under Lie point symmetry leads to double reduction of 
the KS equation (1) which can be easily solvedto obtain new 

exact solutions. 
 

II. METHODOLOGY 
 

A. Definition And Notations 

This section contains definitions, notations and theorems 

used in this work. 
 

A kth-order (k ≥ 1) system of s partial differential 

equations of n-independent variables x = (x1, x2, ..., xn) and 

m-dependent variables u  = (u1, u2, ..., um) is defined by 
 

Eσ (x, u, u(1), ..., u(k)) = 0,  σ = 1, ..., s,          (2) 
 

where u(1), ..., u(k)  denote the collection of all first, 

second, ..., kth-order partial derivatives. 

 

 

 Definition1. The Euler operator, for each α, is defined by 

𝛿

𝜕𝑢𝛼
 = 

𝜕

𝜕𝑢𝛼
+∑ (−1𝑠𝑠≥1 ) 𝐷𝑖1 …𝐷𝑖𝑠 

𝜕

𝜕𝑢𝑖1....𝑖𝑠
𝛼   ,𝛼 =1,…,m        (3)  

 

The Euler operator is also sometimes referred to as 

the Euler-Lagrange operator [18] where 
 

Di =
𝛿

𝜕𝑥𝑖
+𝑢𝑖

𝛼 𝛿

𝜕𝑢𝛼
+𝑢𝑖𝑗

𝛼 𝛿

𝜕𝑢𝑗
𝛼+…,    i=1, 2,…,n          (4) 

 

is the total derivative operator with respect to xi. The 

Euler-Lagrange equations associated with (2) are 
 

𝜕𝐿

𝜕𝑢𝛼
 = 0, 𝛼 = 1,2,…,m             (5) 

 

where L is referred to as a Lagrangian of          (2) 

 

 Definition 2. The Lie-Bäcklund or generalized operator is 

given by 

X = 𝜉
𝜕

𝜕𝑥𝑖
 +𝜂𝛼

𝜕

𝜕𝑢𝛼
.    𝜉i , 𝜂𝛼 ∈ 𝒜,          (6) 

 

where 𝒜 is taken to be the universal vector space of 

differential functions.An expanded form of the operator (6) 

is the infinite formal sum given as 
 

X = 𝜉
𝜕

𝜕𝑥𝑖
 +𝜂𝛼

𝜕

𝜕𝑢𝛼
 +∑ 𝜁𝑖1

𝛼
𝑠≥1 ,…, is

𝜕

𝜕𝑢𝑖1....𝑖𝑠
𝛼             (7) 

 

where the 𝜍𝑖1
𝛼 , … ,is can be determined from 

 

𝜍𝑖1
𝛼  = Di(𝜂𝛼) - 𝑢𝑗

𝛼Di(𝜉j ) , 

 

𝜍𝑖1,
𝛼 …,is= Dis 𝜍𝑖1 ,

𝛼 …, is-1 - 𝑢𝑗𝑖
𝛼

1,…,I s-1Dis (𝜉j), s >1.          (8) 

 

The Lie point symmetry of equation (2) is a generator X of 

the form (7) that satisfies 
 

X[k] ElE=0 = 0,             (9) 
 

where X[k] is the kth prolongation of X. 
 

X[k] = 𝜉(𝑥, 𝑢)
𝜕

𝜕𝑥𝑖
 +𝜂𝛼(𝑥, 𝑢)

𝜕

𝜕𝑢𝛼
 +𝜁𝑖1

𝛼(𝑥, u, u(1))
𝜕

𝜕𝑢𝑖
𝛼 + …  

+𝜁𝑖1
𝛼…,ik(𝑥, u, u(k)) 

𝜕

𝜕𝑢𝑖1....𝑖𝑘
𝛼              (10) 

 

A Lie-Bäcklund operator X of the form (7) is called a 

Noether symmetry generator associated with a LagrangianL 

of (5) if there exists a vector 𝐵 = (𝐵1, 𝐵2, … , 𝐵𝑛)   such  

that 
 

𝑋𝐿 + 𝐿𝐷𝑖(𝜉
𝑖) = 𝐷𝑖(𝐵

𝑖)         (11) 
 

 

 

 

 

 Definition 3: A conserved vector of (2) is n-tuple 
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𝑇 = (𝑇1 , 𝑇2 , … , 𝑇𝑛),𝑇𝑗 = 𝑇𝑗(𝑥, 𝑢, 𝑢(1) , 𝑢(2) , … , 𝑢(𝑘)) ∈

𝒜, 𝑗 = 1,… , 𝑛such that 

𝐷𝑖𝑇
𝑖 = 0 (12) 

is satisfied for all solutions of (2). 
 

Remark: Once the conditions in Definition 3 are met, 

(12) is called a conservation law for (2). 
 

B. Symmetry and conservation law relation 
 

 Definition 4[22]A Lie-Bäcklund symmetry generator X 

of the form (7) is associated with a conserved vector T 

of the system (2) if X and T satisfy the conditions 
 

𝑋(𝑇𝑖) + 𝑇𝑖𝐷𝑘(𝜉
𝑘) − 𝑇𝑘𝐷𝑘(𝜉

𝑖) = 0, 𝑖 = 1,… , 𝑛 (13) 
 

The conserved vectors 𝑇𝑖  are found using equations 

(12) and (13)  
 

C. Double reduction of PDEs  
 

a) Main Theorems 

The first theorem will help us to investigate whether 

the symmetry X is associated with a conserved vector T. 
 

Theorem 1: [22]Suppose that X is any Lie Bäcklund 

symmetry of equation (2) and 𝑇𝑖 , 𝑖 = 1,… , 𝑛  are the 

components of its conserved vectors. Then  
 

𝑇∗𝑖 = (𝑇𝑖 , 𝑋) = 𝑋(𝑇𝑖) + 𝑇𝑖𝐷𝑗(𝜉
𝑗) − 𝑇𝑗𝐷𝑗(𝜉

𝑖) = 0, 𝑖 =

1,… , 𝑛            (14) 
 

form the components of a conserved vector of (2), i.e.,  
 

𝐷𝑖𝑇
𝑖|(2) = 0 

 

Theorem 2. [28] Suppose that𝐷𝑖𝑇
𝑖 = 0 is a conservation 

law of the PDE system (2). Then under a contact 

transformation, there exist functions 𝑇 �̃�such that 

𝐽𝐷𝑖𝑇
𝑖 =  𝐷�̃�𝑇

�̃� where 𝑇 �̃�is given as 
 

(

𝑇1̃

𝑇2̃

⋮
𝑇�̃�

) = 𝐽(𝐴−1)𝑇 (

𝑇1

𝑇2

⋮
𝑇𝑛

) , 𝐽 (

𝑇1

𝑇2

⋮
𝑇𝑛

) = 𝐴𝑇 (

𝑇1̃

𝑇2̃

⋮
𝑇�̃�

)         (15) 

 

in which  
 

𝐴 =

(

 

𝐷1̃𝑥1 𝐷1̃𝑥2 … 𝐷1̃𝑥𝑛
𝐷2̃𝑥1 𝐷2̃𝑥2 ⋯ 𝐷2̃𝑥𝑛
⋮

𝐷�̃�𝑥1

⋮
𝐷�̃�𝑥2

⋮
⋯

⋮
𝐷�̃�𝑥𝑛)

            (16) 

 

𝐴−1 = (

𝐷1𝑥1̃ 𝐷1𝑥2̃ … 𝐷1𝑥�̃�
𝐷2𝑥1̃ 𝐷2𝑥2̃ ⋯ 𝐷2𝑥�̃�
⋮

𝐷𝑛𝑥1̃

⋮
𝐷𝑛𝑥2̃

⋮
⋯

⋮
𝐷𝑛𝑥�̃�

)           (17)  

 

and J = det (A). 

Theorem 3.[28] (fundamental theorem on double reduction) 

Suppose that 𝐷𝑖𝑇
𝑖 = 0 is a conservation law of the PDE 

system (2). Then under a similarity transformation of a 

symmetry X of the form (7) for the PDE, there exist 

functions 𝑇 �̃� such that X is still a symmetry for the PDE 

satisfying 𝐷�̃�𝑇
�̃� = 0 

and  
 

(

𝑋𝑇1̃

𝑋𝑇2̃

⋮
𝑋𝑇�̃�

) = 𝐽(𝐴−1)𝑇(

[𝑇1, 𝑋]

[𝑇2, 𝑋]
⋮

[𝑇𝑛 , 𝑋]

),              (18) 

 

Where 
  

𝐴 =

(

 

𝐷1̃𝑥1 𝐷1̃𝑥2 … 𝐷1̃𝑥𝑛
𝐷2̃𝑥1 𝐷2̃𝑥2 ⋯ 𝐷2̃𝑥𝑛
⋮

𝐷�̃�𝑥1

⋮
𝐷�̃�𝑥2

⋮
⋯

⋮
𝐷�̃�𝑥𝑛)

  

 

𝐴−1 = (

𝐷1𝑥1̃ 𝐷1𝑥2̃ … 𝐷1𝑥�̃�
𝐷2𝑥1̃ 𝐷2𝑥2̃ ⋯ 𝐷2𝑥�̃�
⋮

𝐷𝑛𝑥1̃

⋮
𝐷𝑛𝑥2̃

⋮
⋯

⋮
𝐷𝑛𝑥�̃�

) 

 

and J = det(A). 
 

Theorem 4.[28] A PDE of order 𝑛 with two independent 

variables, which admits symmetry X that is associated with a 

conserved vector T, can be reduced to an ODE of order 𝑛 −
1,  namely Tr= k, where Tr is defined in (15). 
 

D. Lie point symmetry of KS equation 

The Lie point symmetries of the KS equation (1) takes the 

form 

X = 𝜉¹(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
 +𝜉2(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
.        (19) 

 

The operator X satisfies the Lie symmetry criteria     (9) 
 

X[4] [𝑢𝑡𝑡+𝛼𝑢𝑥𝑥𝑥𝑥-Υ(𝑢𝑥
𝑛)x]│(1) =0                               (20) 

 

X [4] is the fourth prolongation of the operator X and can 

be calculated from (7). When equation (20) is expanded and 

separated with respect to the powers of different derivatives 

of u, an overdetermined system in the unknown coefficients 

of 𝜉¹, 𝜉2and 𝜂 are obtained. Solving the over determined 

system for𝜉1(𝑡, 𝑥, 𝑢), 𝜉2(𝑡, 𝑥, 𝑢)and 𝜂(𝑡, 𝑥, 𝑢), gives rise to  
 

𝜉1(𝑡, 𝑥, 𝑢) = C1 + tC3           (21) 
 

𝜉2(𝑡, 𝑥, 𝑢)= C2 +
1

2
𝑥C3                                   (22) 

 

𝜂(𝑡, 𝑥, 𝑢) =
1

2
(
𝑛−3

𝑛−1
)𝑢𝐶3+ C4 +C5        (23) 

 

where C1, C2, C3, C4 and C5[29] are arbitrary constants. 
 

Based on the structure of solutions (21) --(23), unique 

cases of equation (1) namely, (i) n = 1 and (ii) n = 3 are 

considered. Hence, the symmetries of equation (1) for these 
two cases shall be examined. From equations (21)– (23) we 

obtained a five-dimensional Lie algebra spanned by the 

following basis 
 

X11=
𝜕

𝜕𝑡
  , X12 =

𝜕

𝜕𝑥
  , X13=𝑡 

𝜕

𝜕𝑡
 +
1

2
𝑥 

𝜕

𝜕𝑥
  + 

1

2
(
𝑛−3

𝑛−1
)𝑢

𝜕

𝜕𝑢
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X14=
𝜕

𝜕𝑢
  , X15=t

𝜕

𝜕𝑢
                (24) 

 

b) Unique cases. 

a) n =1 
Linear wave equation is obtained in this case and is 

given by  

 𝑢𝑡𝑡 + 𝛼𝑢𝑥𝑥𝑥𝑥-Υ𝑢𝑥𝑥 = 0                    (25) 
 

Equation (24) produces four Lie point symmetries given 

by 

 X21=
𝜕

𝜕𝑡
  , X22 =

𝜕

𝜕𝑥
  , X23=𝑢 

𝜕

𝜕𝑢
               (26) 

  

Including an infinite symmetryX24 = 𝐹(𝑡, 𝑥)
𝜕

𝜕𝑢
 , where 

𝐹(𝑡, 𝑥)is the solution of equation (25). This symmetry is 

always presence whenever the equation in question is linear. 

We discover the misplacement of invariance under dilations 
in time and space (X23). This misplacement is indeed well 

taking care of by the infinite-dimensional Lie sub algebra 

(X24).  
 

b) n=3 

In this case, equation (1) reduces to a acclaimed PDE, 

the modified Boussinesq equation [29]. 
 

𝑢𝑡𝑡+𝛼𝑢𝑥𝑥𝑥𝑥-Υ(𝑢𝑥
3)x = 0,                (27) 

  

which was shown in the recognized Fermi-Pasta-Ulam 

problem.  
 

Its symmetries are 
 

X31=
𝜕

𝜕𝑡
  , X32 =

𝜕

𝜕𝑥
  , X33=𝑡 

𝜕

𝜕𝑡
 +
1

2
𝑥 

𝜕

𝜕𝑥
  , X34=

𝜕

𝜕𝑢
  , X35=t

𝜕

𝜕𝑢
  (28) 

 

Equation (27) is very useful in the study of the behavior 

of systems which are mainly linear but a non-linearity is 

presented as a perturbation. It can also be found in other 
physical applications. 

 

E. Conservation Laws. 

In this section, we give short details on the use of 
symmetry generators for variational equations to obtain the 

conserved vectors of equation (1) via Noether’s theorem. A 

vector 𝑇 = 𝑇1 , 𝑇2 , … , 𝑇𝑛  is conserved if it satisfies 
 

  𝐷𝑖𝑇
𝑖 = 0        (29) 

 

For all result of the equation in question [30]. 
  
A Lagrangian of equation (1) is 
  

 L= 
1

2
𝑢𝑡
2 - 

1

2
𝛼𝑢𝑥𝑥

2  - 
𝛾

𝑛−1
𝑢𝑥
𝑛+1 .                       (30) 

 

Substitution of the Lagrangian (30) into the equation 

(11) and using each of the symmetries of equation (24) result 

to Noether symmetries of equation (1). The generator 
X15does not satisfy criteria (11) which imply that it is not 

variational via this Lagrangian. Therefore, it will not give rise 

to conservation law. Finally, we obtain four conservation 

laws for equation (1) via Noether’s theorem. presented below 

[29] 

.X11 

T =11
𝑡 1

2
 (𝛼𝑢 +𝑥𝑥

2  𝑢 )𝑡
2 +

1

𝑛−1
𝛾𝑢𝑥

𝑛+1 

 

T =11
𝑥 𝛼(𝑢𝑡𝑢𝑥𝑥𝑥 - 𝑢𝑥𝑥 𝑢𝑥𝑡−𝛾𝑢𝑥

𝑛𝑢𝑡)                             (31) 
 

X12 

 T =12
𝑡 𝑢𝑥𝑢𝑡 

 

T =12
𝑥 𝛼(𝑢𝑥𝑢𝑥𝑥𝑥 - 

1

2
𝑢 )𝑥𝑥

2  - 
1

2
𝑢 −𝑡
2 1

𝑛−1
𝛾𝑛𝑢𝑥

𝑛+1            (32) 

 

X13 

 T =13
𝑡 𝑢𝑡 

T =13
𝑥 − 𝛾𝑢𝑥

𝑛 + 𝛼𝑢𝑥𝑥𝑥                                                  (33) 
 

X14 

T =14
𝑡  t 𝑢𝑡-u    

T =14
𝑥  t (−𝛾𝑢𝑥

𝑛 + 𝛼𝑢𝑥𝑥𝑥) .                                           (34) 

       

Conservation laws for (i) n=1and (ii) n=3. 

(i) n =1 

In this case, the Lagrangian is given by 

L= 
1

2
𝑢𝑡
2 - 

1

2
𝛼𝑢𝑥𝑥

2  - 
1

2
𝛾𝑢𝑥

2. (35)    

As a result of the linearity nature of the wave equation (25), 

all the symmetries (26) in conjunction with the infinite one 

form Noether symmetries and are variational. The conserved 

vectors obtain are 

X21 

T =21
𝑡 1

2
 (𝛼𝑢 +𝑥𝑥

2  𝑢 +𝑡
2 𝛾𝑢𝑥

2) 

T =21
𝑥     𝛼(𝑢𝑥𝑢𝑥𝑥𝑥-𝑢𝑥𝑥 𝑢𝑥𝑡−𝛾𝑢𝑥𝑢𝑡)                            (35) 

X22 

 T =22
𝑡 𝑢𝑥𝑢𝑡 

T =22
𝑥     𝛼(𝑢𝑥𝑢𝑥𝑥𝑥-

1

2
𝑢 )𝑥𝑥

2 - 
1

2
(𝑢 +𝑡

2 𝛾𝑢𝑥
2)                       (36) 

X23 

 T =23
𝑡 𝑢𝑡 

T =23  
𝑥  𝛼𝑢𝑥𝑥𝑥- 𝛾𝑢𝑥                                                     (37)  

X24 

T = 𝑓𝑢𝑡 − 𝑢𝑓𝑡24
𝑡  

T =24
𝑥 𝛼(𝑢𝑥𝑓𝑥𝑥-𝑢𝑓𝑥𝑥𝑥 +𝑓𝑢𝑥𝑥𝑥 − 𝑓𝑥 𝑢𝑥𝑥)+𝛾(𝑢𝑓𝑥-𝑓𝑢𝑥)  (38)  

(ii) n= 3 

By using n = 3 into the results of the general case in (31-34) 

we obtain the conserved vectors of the modified Boussinesq 

equation (26)  

 

III. DOUBLE REDUCTION AND EXACT SOLUTION OF 

KURAMOTOSIVASHINSKY (KS) EQUATION 
 

In this part, we apply Double reduction technique to 

equation (1) to find the exact solution. To achieve this, we 

apply the relationship between the Lie point symmetries and 

the conservation law of equation (1) to get its doubly reduced 
equation which can be quickly resolved to obtain the exact 

solution.  
 

A double reduction of (1) by < 𝑿𝟏𝟏 , 𝑿𝟏𝟐 > 

Firstly, we show that 𝑋11 and 𝑋12 are associated with 

𝑇 = (𝑇13
𝑡 , 𝑇13

𝑥 )using Theorem 3.1 for 𝑖 =  1, 2, which is 

given by 
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𝑇∗ = 𝑋 (𝑇
𝑡

𝑇𝑥
) + (𝐷𝑡 𝜉

𝑡 + 𝐷𝑥 𝜉
𝑥)(𝑇

𝑡

𝑇𝑥
) −

(
𝐷𝑡 𝜉

𝑡 𝐷𝑥 𝜉
𝑡

𝐷𝑡 𝜉
𝑥 𝐷𝑥 𝜉

𝑥) (
𝑇𝑡

𝑇𝑥
)    

  (39)  

For 𝑋11 we obtain  
 

𝑇13
∗𝑡

𝑇13
∗𝑥 = 𝑋11

[3] (
𝑇13
𝑡

𝑇13
𝑥 ) + (0 + 0) (

𝑇13
𝑡

𝑇13
𝑥 ) − (

0 0
0 0

) (
𝑇13
𝑡

𝑇13
𝑥 )

= (
𝑈1
𝑈2
),  

 

where the prolongation of 𝑋11
[3] from (10) is given by 

𝜕

𝜕𝑡
. 

𝑈1 = (
𝜕

𝜕𝑡
)𝑢𝑡 = 0  

 

and      
  

𝑈2 = (
𝜕

𝜕𝑡
)(−𝛾𝑢𝑥

𝑛 + 𝛼𝑢𝑥𝑥𝑥) = 0. 

 

Therefore, 𝑋11 is associated with 𝑇 = (𝑇13
𝑡 , 𝑇13

𝑥 ).  

Similarly, for 𝑋12, 
 

𝑇13
∗𝑡

𝑇13
∗𝑥 = 𝑋12

[3] (
𝑇13
𝑡

𝑇13
𝑥 ) + (0 + 0) (

𝑇13
𝑡

𝑇13
𝑥 ) − (

0 0
0 0

) (
𝑇13
𝑡

𝑇13
𝑥 ) =

(
𝑈1
𝑈2
),       (40) 

 

where the prolongation of 𝑋12
[3] from (10) is given by 

𝜕

𝜕𝑥
. 

𝑈1 = (
𝜕

𝜕𝑥
)𝑢𝑡 = 0  

 

and      
  

𝑈2 = (
𝜕

𝜕𝑥
) (−𝛾𝑢𝑥

𝑛 + 𝛼𝑢𝑥𝑥𝑥) = 0. 

 

Therefore, 𝑋12 is also associated with 𝑇 = (𝑇13
𝑡 , 𝑇13

𝑥 ).  

 

We can get a reduced conserved form for equation of 

(1) since 
 

𝑋11and 𝑋12 are both associated symmetries of 𝑇 =
(𝑇13

𝑡 , 𝑇13
𝑥 ).  

 

We now look at a linear combination of 𝑋11  and 𝑋12 of 

the form  𝑋 = 𝑋11 + 𝑐𝑋12  (c is an arbitrary constant).  
 

That is  

  X = 
𝜕

𝜕𝑡
+ c

𝜕

𝜕𝑥
 .                    (41)

    

Foremost, we investigate the association between X and 

𝑇 = (𝑇13
𝑡 , 𝑇13

𝑥 )by putting the important information into 

the association matrix in Theorem 1  

 

𝑇13
∗𝑡

𝑇13
∗𝑥 = 𝑋

[3] (
𝑇13
𝑡

𝑇13
𝑥 ) + (𝐷𝑡 (1) + 𝐷𝑥 (𝐶)) (

𝑇13
𝑡

𝑇13
𝑥 )  

 

  −(
𝐷𝑡 (1) 𝐷𝑥 (1)

𝐷𝑡 (𝐶) 𝐷𝑥 (𝐶)
) (
𝑇13
𝑡

𝑇13
𝑥 ) = (

𝑈1
𝑈2
)(42)

   

 

𝑋[3] (
𝑇13
𝑡

𝑇13
𝑥 ) +(0 + 0) (

𝑇13
𝑡

𝑇13
𝑥 ) − (

0 0
0 0

) (
𝑇13
𝑡

𝑇13
𝑥 ) = (

𝑈1
𝑈2
)                                                                                                                      

(43) 
 

𝑈1 = (
𝜕

𝜕𝑡
+ 𝐶

𝜕

𝜕𝑥
) 𝑢𝑡 = 0  

  

𝑈2 = (
𝜕

𝜕𝑡
+ 𝐶

𝜕

𝜕𝑥
) (−𝛾𝑢𝑥

𝑛 + 𝛼𝑢𝑥𝑥𝑥) = 0  

 

Therefore, X is associated with 𝑇 = (𝑇13
𝑡 , 𝑇13

𝑥 ).  
 

Since there is an association, double reduction method 

can be used to obtain a solution. Next, we transform X to a 
new canonical form in (r, s w). 

 

  Y=
𝜕

𝜕𝑠
.                 (44)

    

 The generator is of the form 
 

 Y= 0
𝜕

𝜕𝑟
+

𝜕

𝜕𝑠
 +  0

𝜕

𝜕𝑤
.         (45)

    

We select X(r) =0, X(s) = 1, X(w) = 0,without any loss 

of generality. For which we obtain the invariance condition 
 

  
𝑑𝑥

𝑐
=
𝑑𝑡

1
= 

𝑑𝑢

0
=  

𝑑𝑠

1
        (46)

  

Solving the above characteristic equation (46) we find 
new canonical coordinates  

𝑠 = 𝑡 
𝑟 = 𝑥 − 𝑐𝑡                  (47) 
  
𝑤(𝑟) = 𝑢.   
  

The inverse canonical coordinates from (47) are given 
by  

𝑡 = 𝑠 
𝑥 = 𝑟 + 𝑐𝑠               (48) 

𝑢 = 𝑤(𝑟). 
 

The computation of 𝐴 and (𝐴−1)𝑇from (16), (17) and 

(48) is given by  
 

       A =(
𝐷𝑟𝑡 𝐷𝑟𝑥
𝐷𝑠𝑡 𝐷𝑠𝑥

) =(

𝑑𝑡

𝑑𝑟

𝑑𝑥

𝑑𝑟
𝑑𝑡

𝑑𝑠

𝑑𝑥

𝑑𝑠

) = (
0 1
1 𝑐

) 

          (49)
    

𝐴−1 = (
𝐷𝑡𝑟 𝐷𝑥𝑟
𝐷𝑡𝑠 𝐷𝑥𝑠

) =(

𝑑𝑟

𝑑𝑡

𝑑𝑟

𝑑𝑥
𝑑𝑠

𝑑𝑡

𝑑𝑠

𝑑𝑥

) = (
−𝑐 1
1 0

) = (𝐴−1)𝑇 

(50) 
 

and  
 

𝐽 = det(𝐴) = −1.                                               (51)
    

The terms of the new dependent variable w(r) in 

equation (47) which are first and second derivatives of u are 

 

𝑈𝑡 = 
𝜕𝑢

𝜕𝑡
 =
𝜕𝑤

𝜕𝑡
=
𝜕𝑤

𝜕𝑟

𝜕𝑟

𝜕𝑡
= 𝑤𝑟  (−𝑐) 
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                           =−𝑐𝑤𝑟     
  

𝑈𝑡𝑡 = 
𝜕𝑈𝑡

𝜕𝑡
 =

𝜕(−𝑐𝑤𝑟  )

𝜕𝑡
 = 𝑐2𝑤𝑟𝑟(52) 

 

𝑈𝑥 = 
𝜕𝑢

𝜕𝑥
 =

𝜕𝑤

𝜕𝑥
=
𝜕𝑤

𝜕𝑟

𝜕𝑟

𝜕𝑥
 = 𝑤𝑟   

 

𝑈𝑥𝑥 = 
𝜕𝑈𝑥

𝜕𝑥
 =

𝜕(𝑤𝑟  )

𝜕𝑡
 = 𝑤𝑟𝑟       (53)  

 

Applying Theorem 2 for 𝑖 =  1, 2, which is given by

    

(
𝑇13
𝑟

𝑇13
𝑠 ) = 𝐽(𝐴

−1)𝑇  (
𝑇13
𝑡

𝑇13
𝑥 )       (54) 

 

and substituting equation (50 -53) into (54) we have 

 

(
𝑇13
𝑟

𝑇13
𝑠 ) =   (−1) (

−𝑐 1
1 0

) (
𝑢𝑡

−𝛾𝑢𝑥
𝑛 + 𝛼𝑢𝑥𝑥𝑥

) 

    

(
𝑇13
𝑟

𝑇13
𝑠 ) = (

𝑐𝑢𝑡 − (−𝛾𝑢𝑥
𝑛 + 𝛼𝑢𝑥𝑥𝑥)
𝑢𝑡

)  

    

(
𝑇13
𝑟

𝑇13
𝑠 ) = (

𝑐(−𝑐𝑤𝑟) + 𝛾𝑤𝑟
𝑛 − 𝛼𝑤𝑟𝑟𝑟)

−𝑐𝑤𝑟
)                     (55) 

 

The new reduced conserved form is given by 
 

   𝐷𝑟𝑇13
𝑟  = 0.        (56) 

 

This implies that 
 

   𝑇13
𝑟 = 𝐾                                   (57) 

 

which is given as 
 

 −𝑐2𝑤𝑟 + 𝛾𝑤𝑟
𝑛 − 𝛼𝑤𝑟𝑟 = 𝐾                                 (58) 

 

where 𝐾 𝜖 ℝ is a constant. 
 

Setting the constant K=0 in equation (58) and solving 

we obtain the solution in terms of a special power function 

called Hyper geometric function given as  

 

𝒘 = 𝑲𝟐 −
𝜶

𝒄𝟐
[𝜸 + 𝒆

−𝒄𝟐(𝒏−𝟏)(𝑲𝟏−
𝒓

𝜶
)
]

𝟏

𝟏−𝒏
 

 

𝟐𝑭𝟏 [𝟏,
𝟏

𝒏−𝟏
,
𝒏

𝒏−𝟏
,
𝜸

𝒄𝟐
(𝜸 + 𝒆−𝒄

𝟐(𝒏−𝟏)(𝑲𝟏−
𝒓

𝜶
)
𝒏−𝟏

)

𝟏

𝟏−𝒏

]   (59) 

 

𝐾1, 𝐾2 are constants of integration. 
 

In terms of the variables𝑢, 𝑥, 𝑡, we derive the solution of 

(1) as  

 

𝒖(𝒙, 𝒕) = 𝑲𝟐 −
𝜶

𝒄𝟐
[𝜸 + 𝒆

−𝒄𝟐(𝒏−𝟏)(𝑲𝟏−
𝒙−𝒄𝒕

𝜶
)]

𝟏

𝟏−𝒏
 

 

𝟐𝑭𝟏 [𝟏,
𝟏

𝒏−𝟏
,
𝒏

𝒏−𝟏
,
𝜸

𝒄𝟐
(𝜸 + 𝒆

−𝒄𝟐(𝒏−𝟏)(𝑲𝟏−
𝒙−𝒄𝒕

𝜶
)
𝒏−𝟏

)

𝟏

𝟏−𝒏

] 

(60) 

 

 
Fig. 1: 3D graph for Dynamical behaviour of Kink type wave 

solutions given by Eq. (60), for 𝑛 = 𝜶 = 𝒄 = 𝜸 = 𝑲𝟐 =
𝑲𝟏 = 𝟐,−𝟕 ≤ 𝒙 ≤ 𝟕,−𝟕 ≤ 𝒕 ≤ 𝟕. 

Fig. 2: 2D graph for Dynamical behaviour of Kink type wave 

solutions given by Eq. (60), with 𝑛 = 𝜶 = 𝒄 = 𝜸 = 𝑲𝟐 =
𝑲𝟏 = 𝟐, −𝟏𝟎 ≤ 𝒙 ≤ 𝟏𝟎. 
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Fig. 3: Density plot for Dynamical behavior of Kink type 

wave solutions given by Eq. (60), with𝑛 = 𝜶 = 𝒄 = 𝜸 =
𝑲𝟐 = 𝑲𝟏 = 𝟐, −𝟕 ≤ 𝒙 ≤ 𝟕,−𝟕 ≤ 𝒕 ≤ 𝟕. 

 

IV. CONCLUSION 
 

In this paper, we investigated a reputed nonlinear partial 

differential equation (NLPDE) known as Kuramoto 

Sivanshinky (KS) equation. We implemented a renowned 

unified Double reduction method for PDEs to extract 

solutions of the KS equation. Interestingly, important Soliton 

like wave solutions were obtained. To comprehend the 
dynamical character of these solutions, we constructed the 

graphs of the solution surfaces for some special parameter 

values. The graphs of the wave solutions regarding (KS) 

equation, by us are quite novel and latest findings (Figures 1–

3). 
 

V. RECOMMENDATION 
 

The results of this work will be of great importance in 
mathematical physics, engineering sciences and other 

scientific real-time application fields. It can be seen by the 

results of this work that the Double reduction method is a 

very powerful technique and is worthy of being studied 

further. In future, there are other methods like extended tanh 

function methods that will be implemented to obtain several 

other forms of solutions. The KS equation with perturbation 

terms will also be studied. The results of those researches 

will give an edge over the current and former results. 
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