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Abstract:- In this research article an attempt has been 

made to examine the performance of Finite difference 

method (FDM) and Least square method (LSM) on the 

solution of first order ordinary differential equations 

(ODE). Both FDM and LSM are applied on the test 

problem and the results thus obtained are compared with 

the exact solution. It has been observed that for third 

degree basis function the results of LSM very close to the 

analytical result. On further increasing the degree the 

improvement in the result is very meagre and N=3 can be 

considered as the optimum solution for LSM. It has also 

been observed that the FDM is very sensitive to the 

number of grid points and deviates from the exact results 

by a substantive amount for lower number of nodes. 

Whereas the LSM is independent of the number of nodes. 
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Nomenclature: 

𝑥 independent variable 

𝑦 dependent variable 

i degree of basis function 

j  Node index 

D differential operator 

𝑤𝑖 weight  

R residue 

N Number of weights 

E squared residuals 

𝑦𝑒𝑥𝑎𝑐𝑡 exact solution 

�̃� approximate function 

𝜙𝑖 basis function 

Δ𝑥 spacing between nodes 

LSM Least square Method 

FDM Finite difference method 

ADM Adomian Decomposition Method 

HPM Homotopy Perturbation Method 

 

I. INTRODUCTION 

 

At the very core of every physical phenomenon lies 

some sort of mathematical relation in the form of the 

differential equation [1]. The behaviour of these equations 

can be linear or non-linear [2]. So, several researchers have 

devised many methods to solve these differential equations 
[3]. Till very recent the solution of differential equations is 

mostly dominated by numerical computations but, very 

recently the analytical methods have gained popularity [4].  

 

For solving differential equations semi-analytically 

Adomian Decomposition Method (ADM) has been adopted 

by researchers [5], [6]. For non-linear equations Homotopy 

Perturbation Method (HPM) and Variational Iteration 

Methods (VIM) are good methods [7]. Perturbation method 

is another method but due to its drawback it is not that 

frequently adopted for the solution of ODE’s [8]. The 
problems associated with linear stability in solving 

differential equations have been talked by Hajmohammadi 

and Nourazar [9].  

 

Weighted residual-based methods are the schemes 

which are approximation techiniques which are also adopted 

to solve differential equations. Ozisik first introduced Least 

square method (LSM) and Galerkin techiniques which are 

based on weighted residuals [10]. The solution of third order 

differential equation based on collection method has been 

introduced by Stern and Rasmussen [11]. 

 
Finite difference method (FDM) is a very old method to 

solve differential equations [12]. This is based on Taylor 

series expansion [13]. In this method domain is divided into 

nodes and the differential equation is discretized at each node. 

 

In this research article, LSM based solution of first order 

linear differential equation has been reported. FDM has also 

been applied on the problem and the results of both the 

methods are compared with the exact analytical solution. This 

will dictate the accuracy of the LSM over FDM. 

 

II. PROBLEM STATEMENT 

 

In in this research article, we will be focusing on 

following one dimensional ordinary differential equation 

(ODE): 

 
𝑑𝑦

𝑑𝑥
− 𝑦 = 0      (1) 

where, 0 ≤ 𝑥 ≤ 1. 

 

As this is a first order ODE so this will have only one 

boundary condition. Let say that when 𝑥 = 0 the value of 𝑦 =
1(viz. 𝑦(0) = 1). The exact solution of the Eq. 1 is 𝑒𝑥   which 
will act as a benchmark to our optimization solution. 

 

III. LEAST SQUARE METHOD (LSM) 

 

Least square method is one of the methods which is 

based on weighted residuals minimization. In this method a 

trial function is introduced in the parent differential equation 

and then the residue is minimized. Let us consider a boundary 

value problem as follows: 

 

𝐷(𝑦) − 𝑓(𝑥) = 0     
 (2) 
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where, D is the differential operator. 

 

To start the LSM, it is assumed that the dependent 

variable y is estimated by an approximation function �̃� which 

is composed of coefficients/weights (𝑤𝑖) and basis function 

(𝜙𝑖) [14]. The basis functions are picked from linearly 

independent set of functions in the projection space. The �̃� 

can be written as: 

 

�̃� = ∑ 𝑤𝑖𝜙𝑖
𝑁
𝑖=1       (3) 

 

Where i varies from 1 to n. Now the target is to obtain 𝑤𝑖 by 

least square mechanism as follows: 

 

Let 𝑦𝑒𝑥𝑎𝑐𝑡 be the exact solution of the differential Eq. 2 i.e., 

𝑦𝑒𝑥𝑎𝑐𝑡 once replaced in Eq. 2 will result in zero (as shown in 
Eq. 4). 

 𝐷(𝑦𝑒𝑥𝑎𝑐𝑡) − 𝑓(𝑥) = 0     (4) 

 

Whereas if we replace �̃� in the Eq. 2 the result will not 

be zero as this is not the exact solution. This non-zero value 

which the Eq. 2 return when approximate solution is plugged-

in into it is what we call as Residue (R) which can be written 

as: 

𝑅(𝑥, �̃�) = 𝐷(�̃�) − 𝑓(𝑥) ≠ 0    
 (5) 

 

Now the concept of LSM is to make the residue tend to 

zero by minimizing the error function in 𝐷2 norm, so that the 

weight coefficients can be evaluated as follows: 

𝐸 = ∫ 𝑅2(𝑥, �̃�)𝑑𝑥
𝑥

     (6) 

 

The optimum solution is obtained once E is set to 

minimum viz.: 
𝜕𝐸

𝜕𝑤𝑖
=

𝜕

𝜕𝑤𝑖
∫ 𝑅2(𝑥, �̃�)𝑑𝑥

𝑥
= 0          (7) 

 

As i varies from 1 to N, so Eq. 7 will result in N linear 

equations which can be solved for N unknown i.e., 

𝑤1 , 𝑤2 … 𝑤𝑁 . Proper choosing of 𝜙𝑖 is very essential in LSM 

so for the problem in hand we will go for a polynomial 

function. The choice should be such that the approximate 

solution should satisfy the boundary conditions. 

 

 LSM applied to the problem 

Applying the algorithm discussed in section 3 onto the 

Eq. 1 will result into following 5 steps: 
 

 As the problem is of first order so choosing a polynomial 

basis function for guess solution. 

�̃� = ∑ 𝑤𝑖𝑥
𝑖𝑁

𝑖=1 + 𝑦0     (8) 

 

 As it was already mentioned that the approximate solution 

should satisfy the boundary condition so the boundary 

condition 𝑦(0) = 1 can only be satisfied if 𝑦0 = 1. 

 

 Developing expression for residue by plugging �̃� from Eq. 

8 into Eq. 1. 

𝑅(𝑥, �̃�) =
𝑑

𝑑𝑥
(�̃�) − �̃� =

𝑑

𝑑𝑥
(∑ 𝑤𝑖𝑥

𝑖𝑁
𝑖=1 + 𝑦0) −

(∑ 𝑤𝑖𝑥
𝑖𝑁

𝑖=1 + 𝑦0)  (9) 

 Minimizing the square error 
𝜕𝐸

𝜕𝑤𝑖
= 2 ∫ 𝑅(𝑥)

𝑥=1

𝑥=0
 

𝜕𝑅(𝑥)

𝜕𝑤𝑖
𝑑𝑥 = 0, 𝑖 = 1, … , 𝑁  

 (10) 

 

 Now solving linear equation for different values of N and 

comparing it with the exact solution. 

 

In this research article Python has been used to solve the 

problem symbolically. N is varied from 1 to 5 to check the 

results for different simulations. Appendix section shows the 

Python code developed for the evaluation of different weights 

and  data plotting. 

The approximate function thus obtained for different N’s are 

enumerated in Table 1. 

 
Table 1: Approximate solutions for different N. 

N Approximate solution 

1 
�̃� =

3

2
𝑥+ 1 

2 
�̃� =

70

83
𝑥2+

72

83
𝑥 + 1 

3 
�̃� =

2485

8884
𝑥3 +

945

2221
𝑥2 +

2250

2221
𝑥 + 1 

4 
�̃� =

126126

1810709
𝑥4 +

254240

1810709
𝑥3 +

921942

1810709
𝑥2

+
1809000

1810709
𝑥 + 1 

5 
�̃� =

4178559

300698723
𝑥5 +

10498950

300698723
𝑥4

+
51177210

300698723
𝑥3

+
150115840

300698723
𝑥2

+
601429185

601397446
𝑥 + 1 

 

IV. FINITE DIFFERENCE METHOD (FDM) AND 

ITS APPLICATION 

 

In case of finite difference, the domain is divided into n 

number of discrete points. The governing equation is 

discretised, and the discretised equation is evaluated at each 

grid point. In case of FDM the Taylor series expansion is used 
to evaluate the derivatives. As the problem in hand is first 

order ODE so backward difference is used to discretize the 

governing equation. 

 

Let 𝑓(𝑥) be the function whose derivative is to be 

evaluated at some 𝑗𝑡ℎ location then the Taylor series can be 

written as: 

𝑓(𝑥 − Δ𝑥) = 𝑓(𝑥) −
𝑑𝑓

𝑑𝑥
Δ𝑥 +

𝑑2𝑓

𝑑𝑥2

Δ𝑥2

2!
−

𝑑3𝑓

𝑑𝑥3

Δ𝑥3

3!
+ ⋯   

 (11) 

 

where, Δ𝑥 is the distance between 2 grid points. Now 

the first derivative can be written as: 
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𝑑𝑓

𝑑𝑥
=

𝑓(𝑥)−𝑓(𝑥−Δ𝑥)

Δ𝑥
+ 𝑂(Δ𝑥)    

 (12) 

 

Above equation is the backward difference 
approximation of first order. Also, this approximation is first 

order accurate. 

 

 FDM applied to the problem 

Applying the above-mentioned method to the Eq. 1 we 

will get: 
𝑑𝑦

𝑑𝑥
− 𝑦 =

𝑦(𝑥)−𝑦(𝑥−Δ𝑥)

Δ𝑥
− 𝑦(𝑥) = 0    (13) 

 
When it comes to computation the x will correspond to 

the 𝑗𝑡ℎ node and (𝑥 − Δ𝑥) corresponds to the node just before 

it viz. (𝑗 − 1). Now Eq. 13 then becomes: 

  
𝑦𝑗−𝑦𝑗−1

Δ𝑥
− 𝑦𝑗 = 0      (14) 

 

On further simplification Eq. 14 becomes: 

𝑦𝑗 = 𝑦𝑗−1/(1 − Δ𝑥)     

 (15) 

 

Now Eq. 15 is the finite difference discretization of Eq. 

1 which is be solved for each node in the domain. 

 

V. RESULTS AND DISCUSSION 

 

The objective of this study is to evaluate the 

performance of LSM to evaluate the solution of first order 

ODE and its comparison with the Euler’s method. Figure 1(a) 

shows the variation of LSM output, exact solution, and error 

as a function of domain length for different values of N. For 

N=1 the LSM returns a liner relation between x and y which 

is not what the exact solution tells hence, large deviation and 

error. For N=2 (Figure 1(b)) the LSM results are close to 

exact and still there is a little bit of error. When N is increased 

to 3 (Figure 1(c)), one can see that the error has reduced a lot 
in comparison to N=1 and 2. And for N=4 and 5 (Figure 1(d) 

and 1(e)) the error has almost reached zero. 

 

 
(a) N=1 
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(b) N=2 

 

 
(c) N=3 
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(d) N=4 

 

 
(e) N=5 

Fig 1: Variation of y and error as a function of x for different N 

 

One more thing to observe from Figure 1 is that as the order of basis function increases the lobes in the error function also 

increase. The error presented is the exact error hence once can se its variation both in positive and negative direction. The number 

of lobes in the error plot is representative of the degree of polynomial. For N=1 the polynomial is one so there is only one lobe and 

at last for N=5 as the polynomial is of 5th order so the number of lobes in error plot is five, likewise for other values of N. 
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Fig 2:- Error variation for N varying from 1 to 5 as a function of x 

 

Figure 2 depicts the error for all N’s in one figure. As the N goes from 1 to 3 the error the error reduces drastically to a very 

small value. In fact, N=3 can be considered as the optimum solution of the problem as beyond it the degree of approximating 

function output improves to a higher value with only a meagre change in the function output and error. To further investigate into 

the problem Figure 3 show the variation of N from 3 to 5. Here one can see that for N=4 and 5 the error is almost zero but with extra 

cost of computation time. Hence, N=3 is the optimum degree of approximating function as after it the error reduces at diminishing 

rate. 
 

 
Fig 3: Error variation for N varying from 3 to 5 

 

 
Fig 4: Variation of output variable from FDM solution, LSM solution, and exact solutions as a function of x 
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Figure 4 show a comparison between solution obtained 

from LSM & FDM and their comparison with the exact 

solution. The domain is divided into 10 equal parts and one 

can see that there is a substantive variation between the result 

predicted from FDM and LSM. The accuracy of FDM is 

dependent on how division of the domain is done, more the 

divisions more will be the accuracy. Whereas the LSM is 

independent of the number of nodes and it gives more 
accurate result even for fewer number of nodes. 

 

VI. CONCLUSIONS 

 

Based on the LSM and FDM results following 

conclusions can be drawn: 

 Computation wise LSM is faster than FDM. 

 Polynomial can be used as a basis funciton for first order 

ODE’s. 

 With increase in the order of polynomial the accuracy of 

the solution is improved. 

 After N=3 the solution improves at diminishing rate 

hence, at N=3 one can get the optimum solution of first 

order ODE at low cost of computation. 

 FDM is very sensitive to the number of nodes. Higher the 

number of nodes more the accuracy of FDM. Increasing 

the number of nodes will result in more computation time 

and cost. 

 LSM is independent of the number of nodes and hence can 

give better accuracy in comparison to FDM. 
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APPENDIX 

 

A. Python code for the evaluation of weights 

 

from sympy import * 

c,s,n,x,c1,c2,c3,c4,c5,y_g=symbols('c,s,n,x,c1,c2,c3,c4,c5,y

_g') 

 

c=[c1,c2,c3,c4,c5] 
 

n=int(input('Enter the value of N upto which you want to 

solve')) 

 

#Creating Basis function 

s=1 

for i in range(1,n+1): 

    s=s+c[i-1]*x**i 

y_g=s 

 

#Residue creation 
symbols('R') 

R=diff(y_g,x)-y_g 

 

# Minimizing the square error 

E=integrate(R**2,(x,0,1)) 

EE=[] 

 

for i in range(1,n+1): 

    EE.append(diff(E,c[i-1])) 

 

Eqns=(EE) 

a=solve(Eqns,c) 
 

y_g.subs(a) 
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B. Python code for data plotting 

 

 y vs x and error vs x for different cases 

from matplotlib.pylab import * 

font = {'family' : 'Times New Roman', 

        'size'   : 16} 

matplotlib.rc('font', **font) 

x=linspace(0,1,40) 
y_exact=exp(x) 

 

#N=1 

#y=3*x/2+1 

 

#N=2 

#y=70*𝑥**2/83+72*𝑥/83+1 

 

#N=3 

#y=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1 
 

#N=4 

#y=126126*𝑥**4/1810709+254240*𝑥**3/1810709+921942

*𝑥**2/1810709+\ 

1809000*𝑥/1810709+1 

 

#N=5 

y=4178559*𝑥**5/300698723+10498950*𝑥**4/300698723+
\ 

51177210*𝑥**3/300698723+150115840*𝑥**2/300698723+

\ 

601429185*𝑥/601397446+1 

 

# Error evaluation 

error=(y-y_exact) 

 

figure(1,dpi=300) 

tight_layout() 
# plot 1: 

plt.subplot(2, 1, 1) 

plot(x,y_exact,'ro',label='Exact solution') 

plot(x,y,'b-',label='LSM solution') 

xlabel('x') 

ylabel('y') 

legend() 

 

# plot 2: 

plt.subplot(2, 1, 2) 

plot(x,error,'k-o') 

xlabel('x') 
ylabel('Error') 

savefig('N=5.jpg') 

show() 

 

 Single error plot for all the cases 

from matplotlib.pylab import * 

font = {'family' : 'Times New Roman', 

        'size'   : 16} 

matplotlib.rc('font', **font) 

x=linspace(0,1,40) 

y_exact=exp(x) 
 

y1=3*x/2+1 

 

y2=70*𝑥**2/83+72*𝑥/83+1 

 

y3=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1 

 

y4=126126*𝑥**4/1810709+254240*𝑥**3/1810709+921942

*𝑥**2/1810709+\ 

1809000*𝑥/1810709+1 

 

y5=4178559*𝑥**5/300698723+10498950*𝑥**4/300698723

+\ 

51177210*𝑥**3/300698723+150115840*𝑥**2/300698723+

\ 

601429185*𝑥/601397446+1 
 

y=[y1,y2,y3,y4,y5] 

 

# Error evaluation 

error=(y-y_exact) 

 

 

figure(1,dpi=300) 

for i in range(2,len(error)): 

    plot(x,error[i],'-o',label=f'N={i+1}',markersize=3) 

 
 

xlabel('x') 

ylabel('Error') 

legend() 

savefig('Error for 3 to 5.jpg') 

show()  

 

C. FDM code and comparison plot 

from pylab import * 

font = {'family' : 'Times New Roman', 

        'size'   : 16} 
matplotlib.rc('font', **font) 

n=10 

x=linspace(0,1,n) 

Δx=1/(n-1) 

y=zeros(n) 

 

y[0]=1 

 

for i in range(1,n): 

    y[i]=y[i-1]/(1-Δx) 

 

figure(1,dpi=300) 
plot(x,y,'r-o',label='FDM') 

      

plot(x,exp(x),'g-',label='Exact') 

 

y_LSM=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1 

plot(x,y_LSM,'bo',label='LSM') 

xlabel('x') 

ylabel('y') 

legend() 

savefig('FDM_LSM.jpg') 

show() 
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