
Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 857

Solving First Order Ordinary Differential Equations

using Least Square Method: A comparative study

Parth Singh Pawar, Dhananjay R. Mishra, Pankaj Dumka*

Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna-473226, India

Abstract:- In this research article an attempt has been

made to examine the performance of Finite difference

method (FDM) and Least square method (LSM) on the

solution of first order ordinary differential equations

(ODE). Both FDM and LSM are applied on the test

problem and the results thus obtained are compared with

the exact solution. It has been observed that for third

degree basis function the results of LSM very close to the

analytical result. On further increasing the degree the

improvement in the result is very meagre and N=3 can be

considered as the optimum solution for LSM. It has also

been observed that the FDM is very sensitive to the

number of grid points and deviates from the exact results

by a substantive amount for lower number of nodes.

Whereas the LSM is independent of the number of nodes.

Keywords:- Least Square Method; Finite Difference Method;

Ordinary Differential Equation; Python; Optimization.

Nomenclature:

𝑥 independent variable

𝑦 dependent variable

i degree of basis function

j Node index

D differential operator

𝑤𝑖 weight

R residue

N Number of weights

E squared residuals

𝑦𝑒𝑥𝑎𝑐𝑡 exact solution

�̃� approximate function

𝜙𝑖 basis function

Δ𝑥 spacing between nodes

LSM Least square Method

FDM Finite difference method

ADM Adomian Decomposition Method

HPM Homotopy Perturbation Method

I. INTRODUCTION

At the very core of every physical phenomenon lies

some sort of mathematical relation in the form of the

differential equation [1]. The behaviour of these equations

can be linear or non-linear [2]. So, several researchers have

devised many methods to solve these differential equations
[3]. Till very recent the solution of differential equations is

mostly dominated by numerical computations but, very

recently the analytical methods have gained popularity [4].

For solving differential equations semi-analytically

Adomian Decomposition Method (ADM) has been adopted

by researchers [5], [6]. For non-linear equations Homotopy

Perturbation Method (HPM) and Variational Iteration

Methods (VIM) are good methods [7]. Perturbation method

is another method but due to its drawback it is not that

frequently adopted for the solution of ODE’s [8]. The
problems associated with linear stability in solving

differential equations have been talked by Hajmohammadi

and Nourazar [9].

Weighted residual-based methods are the schemes

which are approximation techiniques which are also adopted

to solve differential equations. Ozisik first introduced Least

square method (LSM) and Galerkin techiniques which are

based on weighted residuals [10]. The solution of third order

differential equation based on collection method has been

introduced by Stern and Rasmussen [11].

Finite difference method (FDM) is a very old method to

solve differential equations [12]. This is based on Taylor

series expansion [13]. In this method domain is divided into

nodes and the differential equation is discretized at each node.

In this research article, LSM based solution of first order

linear differential equation has been reported. FDM has also

been applied on the problem and the results of both the

methods are compared with the exact analytical solution. This

will dictate the accuracy of the LSM over FDM.

II. PROBLEM STATEMENT

In in this research article, we will be focusing on

following one dimensional ordinary differential equation

(ODE):

𝑑𝑦

𝑑𝑥
− 𝑦 = 0 (1)

where, 0 ≤ 𝑥 ≤ 1.

As this is a first order ODE so this will have only one

boundary condition. Let say that when 𝑥 = 0 the value of 𝑦 =
1(viz. 𝑦(0) = 1). The exact solution of the Eq. 1 is 𝑒𝑥 which
will act as a benchmark to our optimization solution.

III. LEAST SQUARE METHOD (LSM)

Least square method is one of the methods which is

based on weighted residuals minimization. In this method a

trial function is introduced in the parent differential equation

and then the residue is minimized. Let us consider a boundary

value problem as follows:

𝐷(𝑦) − 𝑓(𝑥) = 0
 (2)

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 858

where, D is the differential operator.

To start the LSM, it is assumed that the dependent

variable y is estimated by an approximation function �̃� which

is composed of coefficients/weights (𝑤𝑖) and basis function

(𝜙𝑖) [14]. The basis functions are picked from linearly

independent set of functions in the projection space. The �̃�

can be written as:

�̃� = ∑ 𝑤𝑖𝜙𝑖
𝑁
𝑖=1 (3)

Where i varies from 1 to n. Now the target is to obtain 𝑤𝑖 by

least square mechanism as follows:

Let 𝑦𝑒𝑥𝑎𝑐𝑡 be the exact solution of the differential Eq. 2 i.e.,

𝑦𝑒𝑥𝑎𝑐𝑡 once replaced in Eq. 2 will result in zero (as shown in
Eq. 4).

 𝐷(𝑦𝑒𝑥𝑎𝑐𝑡) − 𝑓(𝑥) = 0 (4)

Whereas if we replace �̃� in the Eq. 2 the result will not

be zero as this is not the exact solution. This non-zero value

which the Eq. 2 return when approximate solution is plugged-

in into it is what we call as Residue (R) which can be written

as:

𝑅(𝑥, �̃�) = 𝐷(�̃�) − 𝑓(𝑥) ≠ 0
 (5)

Now the concept of LSM is to make the residue tend to

zero by minimizing the error function in 𝐷2 norm, so that the

weight coefficients can be evaluated as follows:

𝐸 = ∫ 𝑅2(𝑥, �̃�)𝑑𝑥
𝑥

 (6)

The optimum solution is obtained once E is set to

minimum viz.:
𝜕𝐸

𝜕𝑤𝑖
=

𝜕

𝜕𝑤𝑖
∫ 𝑅2(𝑥, �̃�)𝑑𝑥

𝑥
= 0 (7)

As i varies from 1 to N, so Eq. 7 will result in N linear

equations which can be solved for N unknown i.e.,

𝑤1 , 𝑤2 … 𝑤𝑁 . Proper choosing of 𝜙𝑖 is very essential in LSM

so for the problem in hand we will go for a polynomial

function. The choice should be such that the approximate

solution should satisfy the boundary conditions.

 LSM applied to the problem

Applying the algorithm discussed in section 3 onto the

Eq. 1 will result into following 5 steps:

 As the problem is of first order so choosing a polynomial

basis function for guess solution.

�̃� = ∑ 𝑤𝑖𝑥
𝑖𝑁

𝑖=1 + 𝑦0 (8)

 As it was already mentioned that the approximate solution

should satisfy the boundary condition so the boundary

condition 𝑦(0) = 1 can only be satisfied if 𝑦0 = 1.

 Developing expression for residue by plugging �̃� from Eq.

8 into Eq. 1.

𝑅(𝑥, �̃�) =
𝑑

𝑑𝑥
(�̃�) − �̃� =

𝑑

𝑑𝑥
(∑ 𝑤𝑖𝑥

𝑖𝑁
𝑖=1 + 𝑦0) −

(∑ 𝑤𝑖𝑥
𝑖𝑁

𝑖=1 + 𝑦0) (9)

 Minimizing the square error
𝜕𝐸

𝜕𝑤𝑖
= 2 ∫ 𝑅(𝑥)

𝑥=1

𝑥=0

𝜕𝑅(𝑥)

𝜕𝑤𝑖
𝑑𝑥 = 0, 𝑖 = 1, … , 𝑁

 (10)

 Now solving linear equation for different values of N and

comparing it with the exact solution.

In this research article Python has been used to solve the

problem symbolically. N is varied from 1 to 5 to check the

results for different simulations. Appendix section shows the

Python code developed for the evaluation of different weights

and data plotting.

The approximate function thus obtained for different N’s are

enumerated in Table 1.

Table 1: Approximate solutions for different N.

N Approximate solution

1
�̃� =

3

2
𝑥+ 1

2
�̃� =

70

83
𝑥2+

72

83
𝑥 + 1

3
�̃� =

2485

8884
𝑥3 +

945

2221
𝑥2 +

2250

2221
𝑥 + 1

4
�̃� =

126126

1810709
𝑥4 +

254240

1810709
𝑥3 +

921942

1810709
𝑥2

+
1809000

1810709
𝑥 + 1

5
�̃� =

4178559

300698723
𝑥5 +

10498950

300698723
𝑥4

+
51177210

300698723
𝑥3

+
150115840

300698723
𝑥2

+
601429185

601397446
𝑥 + 1

IV. FINITE DIFFERENCE METHOD (FDM) AND

ITS APPLICATION

In case of finite difference, the domain is divided into n

number of discrete points. The governing equation is

discretised, and the discretised equation is evaluated at each

grid point. In case of FDM the Taylor series expansion is used
to evaluate the derivatives. As the problem in hand is first

order ODE so backward difference is used to discretize the

governing equation.

Let 𝑓(𝑥) be the function whose derivative is to be

evaluated at some 𝑗𝑡ℎ location then the Taylor series can be

written as:

𝑓(𝑥 − Δ𝑥) = 𝑓(𝑥) −
𝑑𝑓

𝑑𝑥
Δ𝑥 +

𝑑2𝑓

𝑑𝑥2

Δ𝑥2

2!
−

𝑑3𝑓

𝑑𝑥3

Δ𝑥3

3!
+ ⋯

 (11)

where, Δ𝑥 is the distance between 2 grid points. Now

the first derivative can be written as:

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 859

𝑑𝑓

𝑑𝑥
=

𝑓(𝑥)−𝑓(𝑥−Δ𝑥)

Δ𝑥
+ 𝑂(Δ𝑥)

 (12)

Above equation is the backward difference
approximation of first order. Also, this approximation is first

order accurate.

 FDM applied to the problem

Applying the above-mentioned method to the Eq. 1 we

will get:
𝑑𝑦

𝑑𝑥
− 𝑦 =

𝑦(𝑥)−𝑦(𝑥−Δ𝑥)

Δ𝑥
− 𝑦(𝑥) = 0 (13)

When it comes to computation the x will correspond to

the 𝑗𝑡ℎ node and (𝑥 − Δ𝑥) corresponds to the node just before

it viz. (𝑗 − 1). Now Eq. 13 then becomes:

𝑦𝑗−𝑦𝑗−1

Δ𝑥
− 𝑦𝑗 = 0 (14)

On further simplification Eq. 14 becomes:

𝑦𝑗 = 𝑦𝑗−1/(1 − Δ𝑥)

 (15)

Now Eq. 15 is the finite difference discretization of Eq.

1 which is be solved for each node in the domain.

V. RESULTS AND DISCUSSION

The objective of this study is to evaluate the

performance of LSM to evaluate the solution of first order

ODE and its comparison with the Euler’s method. Figure 1(a)

shows the variation of LSM output, exact solution, and error

as a function of domain length for different values of N. For

N=1 the LSM returns a liner relation between x and y which

is not what the exact solution tells hence, large deviation and

error. For N=2 (Figure 1(b)) the LSM results are close to

exact and still there is a little bit of error. When N is increased

to 3 (Figure 1(c)), one can see that the error has reduced a lot
in comparison to N=1 and 2. And for N=4 and 5 (Figure 1(d)

and 1(e)) the error has almost reached zero.

(a) N=1

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 860

(b) N=2

(c) N=3

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 861

(d) N=4

(e) N=5

Fig 1: Variation of y and error as a function of x for different N

One more thing to observe from Figure 1 is that as the order of basis function increases the lobes in the error function also

increase. The error presented is the exact error hence once can se its variation both in positive and negative direction. The number

of lobes in the error plot is representative of the degree of polynomial. For N=1 the polynomial is one so there is only one lobe and

at last for N=5 as the polynomial is of 5th order so the number of lobes in error plot is five, likewise for other values of N.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 862

Fig 2:- Error variation for N varying from 1 to 5 as a function of x

Figure 2 depicts the error for all N’s in one figure. As the N goes from 1 to 3 the error the error reduces drastically to a very

small value. In fact, N=3 can be considered as the optimum solution of the problem as beyond it the degree of approximating

function output improves to a higher value with only a meagre change in the function output and error. To further investigate into

the problem Figure 3 show the variation of N from 3 to 5. Here one can see that for N=4 and 5 the error is almost zero but with extra

cost of computation time. Hence, N=3 is the optimum degree of approximating function as after it the error reduces at diminishing

rate.

Fig 3: Error variation for N varying from 3 to 5

Fig 4: Variation of output variable from FDM solution, LSM solution, and exact solutions as a function of x

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 863

Figure 4 show a comparison between solution obtained

from LSM & FDM and their comparison with the exact

solution. The domain is divided into 10 equal parts and one

can see that there is a substantive variation between the result

predicted from FDM and LSM. The accuracy of FDM is

dependent on how division of the domain is done, more the

divisions more will be the accuracy. Whereas the LSM is

independent of the number of nodes and it gives more
accurate result even for fewer number of nodes.

VI. CONCLUSIONS

Based on the LSM and FDM results following

conclusions can be drawn:

 Computation wise LSM is faster than FDM.

 Polynomial can be used as a basis funciton for first order

ODE’s.

 With increase in the order of polynomial the accuracy of

the solution is improved.

 After N=3 the solution improves at diminishing rate

hence, at N=3 one can get the optimum solution of first

order ODE at low cost of computation.

 FDM is very sensitive to the number of nodes. Higher the

number of nodes more the accuracy of FDM. Increasing

the number of nodes will result in more computation time

and cost.

 LSM is independent of the number of nodes and hence can

give better accuracy in comparison to FDM.

REFERENCES

[1] R. W. Easton, Ordinary Differential Equations: An

Introduction to Nonlinear Analysis (Herbert Amann),

vol. 33, no. 4. Walter de gruyter, 1991.

[2] S. Wang, H. Wang, and P. Perdikaris, “Learning the

solution operator of parametric partial differential

equations with physics-informed DeepONets,” Sci.

Adv., vol. 7, no. 40, 2021.

[3] G. E. Latta and G. M. Murphy, Ordinary Differential

Equations and Their Solutions., vol. 68, no. 4. Courier

Corporation, 1961.

[4] P. Kunkel and V. Mehrmann, Differential-algebraic
equations: analysis and numerical solution. European

Mathematical Society, 2006.

[5] D. J. Evans and K. R. Raslan, “The Adomian

decomposition method for solving delay differential

equation,” Int. J. Comput. Math., vol. 82, no. 1, pp. 49–

54, 2005.

[6] J. Biazar, E. Babolian, and R. Islam, “Solution of the

system of ordinary differential equations by Adomian

decomposition method,” Appl. Math. Comput., vol. 147,

no. 3, pp. 713–719, 2004.

[7] J. H. He, “Variational iteration method for autonomous
ordinary differential systems,” Appl. Math. Comput.,

vol. 114, no. 2–3, pp. 115–123, 2000.

[8] A. A. Hemeda, “Homotopy perturbation method for

solving partial differential equations of fractional

order,” Int. J. Math. Anal., vol. 6, no. 49–52, pp. 2431–

2448, 2012.

[9] M. R. Hajmohammadi and S. S. Nourazar, “On the

solution of characteristic value problems arising in

linear stability analysis; semi analytical approach,”

Appl. Math. Comput., vol. 239, pp. 126–132, 2014.

[10] M. N. Ozisik, Boundary Value Problems of Heat

Conduction (Dover Phoenix Editions) (Dover Phoneix

Editions). courier Corporation, 2002.

[11] R. H. Stern and H. Rasmussen, “Left ventricular
ejection: Model solution by collocation, an approximate

analytical method,” Comput. Biol. Med., vol. 26, no. 3,

pp. 255–261, 1996.

[12] M. Necati Özişik, H. R. B. Orlande, M. J. Colaço, and

R. M. Cotta, Finite difference methods in heat transfer:

Second Edition. CRC press, 2017.

[13] Y. Ren, B. Zhang, and H. Qiao, “A simple Taylor-series

expansion method for a class of second kind integral

equations,” J. Comput. Appl. Math., vol. 110, no. 1, pp.

15–24, 1999.

[14] B. Hashemi and Y. Nakatsukasa, “Least-squares
spectral methods for ODE eigenvalue problems,” 2021.

APPENDIX

A. Python code for the evaluation of weights

from sympy import *

c,s,n,x,c1,c2,c3,c4,c5,y_g=symbols('c,s,n,x,c1,c2,c3,c4,c5,y

_g')

c=[c1,c2,c3,c4,c5]

n=int(input('Enter the value of N upto which you want to

solve'))

#Creating Basis function

s=1

for i in range(1,n+1):

 s=s+c[i-1]*x**i

y_g=s

#Residue creation
symbols('R')

R=diff(y_g,x)-y_g

Minimizing the square error

E=integrate(R**2,(x,0,1))

EE=[]

for i in range(1,n+1):

 EE.append(diff(E,c[i-1]))

Eqns=(EE)

a=solve(Eqns,c)

y_g.subs(a)

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR1022 www.ijisrt.com 864

B. Python code for data plotting

 y vs x and error vs x for different cases

from matplotlib.pylab import *

font = {'family' : 'Times New Roman',

 'size' : 16}

matplotlib.rc('font', **font)

x=linspace(0,1,40)
y_exact=exp(x)

#N=1

#y=3*x/2+1

#N=2

#y=70*𝑥**2/83+72*𝑥/83+1

#N=3

#y=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1

#N=4

#y=126126*𝑥**4/1810709+254240*𝑥**3/1810709+921942

*𝑥**2/1810709+\

1809000*𝑥/1810709+1

#N=5

y=4178559*𝑥**5/300698723+10498950*𝑥**4/300698723+
\

51177210*𝑥**3/300698723+150115840*𝑥**2/300698723+

\

601429185*𝑥/601397446+1

Error evaluation

error=(y-y_exact)

figure(1,dpi=300)

tight_layout()
plot 1:

plt.subplot(2, 1, 1)

plot(x,y_exact,'ro',label='Exact solution')

plot(x,y,'b-',label='LSM solution')

xlabel('x')

ylabel('y')

legend()

plot 2:

plt.subplot(2, 1, 2)

plot(x,error,'k-o')

xlabel('x')
ylabel('Error')

savefig('N=5.jpg')

show()

 Single error plot for all the cases

from matplotlib.pylab import *

font = {'family' : 'Times New Roman',

 'size' : 16}

matplotlib.rc('font', **font)

x=linspace(0,1,40)

y_exact=exp(x)

y1=3*x/2+1

y2=70*𝑥**2/83+72*𝑥/83+1

y3=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1

y4=126126*𝑥**4/1810709+254240*𝑥**3/1810709+921942

*𝑥**2/1810709+\

1809000*𝑥/1810709+1

y5=4178559*𝑥**5/300698723+10498950*𝑥**4/300698723

+\

51177210*𝑥**3/300698723+150115840*𝑥**2/300698723+

\

601429185*𝑥/601397446+1

y=[y1,y2,y3,y4,y5]

Error evaluation

error=(y-y_exact)

figure(1,dpi=300)

for i in range(2,len(error)):

 plot(x,error[i],'-o',label=f'N={i+1}',markersize=3)

xlabel('x')

ylabel('Error')

legend()

savefig('Error for 3 to 5.jpg')

show()

C. FDM code and comparison plot

from pylab import *

font = {'family' : 'Times New Roman',

 'size' : 16}
matplotlib.rc('font', **font)

n=10

x=linspace(0,1,n)

Δx=1/(n-1)

y=zeros(n)

y[0]=1

for i in range(1,n):

 y[i]=y[i-1]/(1-Δx)

figure(1,dpi=300)
plot(x,y,'r-o',label='FDM')

plot(x,exp(x),'g-',label='Exact')

y_LSM=2485*𝑥**3/8884+945*𝑥**2/2221+2250*𝑥/2221+1

plot(x,y_LSM,'bo',label='LSM')

xlabel('x')

ylabel('y')

legend()

savefig('FDM_LSM.jpg')

show()

http://www.ijisrt.com/

