
Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1430

Methods and Techniques for Recommender Systems

in Secure Software Engineering: A Literature Review

Astrit Desku
Faculty of Contemporary Sciences and Technologies

South East European University

Tetovo, North Macedonia

Abstract:- Recommender Systems are software tools

that can assist developers with a wide range of activities,

from reusing codes to suggest developers what to do

during development of these systems. All recommender

systems should exert one or three of future

functionalities: Gathering Data and Creating Dataset,

Static Analysis and Recommendation to user-by-user

interface. In this paper, we have presented a literature

review in the field of recommender systems. Papers are

aggregating by their context in three main groups:

Mechanism to Collect Data, Recommendation Engine to

Analyze Data and Generate Recommendations and

User Interface to Deliver Recommendations. In the

conclusion are presented number of reviewed paper for

each category.

Keywords:- Recommender Systems, Machine Learning,
Software Engineering, Data Mining Techniques, Control

Flow Graphs.

I. INTRODUCTION

Software developers have always used tools to

perform their work. In the earliest days of the discipline,

the tools provided basic compilation and assembly

functionality [1]. Then came tools and environments that

increasingly provided sophisticated data about the software
under development [1] [2]. Nowadays, the systematic and

large-scale accumulation of software engineering data

opened up new opportunities for the creation of tools or

APIs (Application Programming Interfaces), that infer

information estimated to be helpful to developers in a given

context.

One way for helping developers during daily

development activities is reusing code from previous

project that they have developed or reuse code from

projects developed from other developers. Today, there are

online platforms (like Stack Overflow. GitHub etc.), in

which developer posts their projects or snipped code from

projects, these codes therefore can be used by other

developers in their own projects. In most cases, these codes

are used in worst fashion possible, copying from source and
paste in their projects. This approach can be very risky

reusing code in this way, considering that from 1.3 million

Android applications that are analyzed 15.4 % contained

security-related code snippets from Stack Overflow. Out of

these 97.9 %, contain at least one insecure code snippet [1]

[3].

Recommender Systems for Software Engineering

(RSSEs) are software tools that can assist developers with a

wide range of activities, from reusing codes to suggest

developers what to do during development [5]. These tools

can be used also to guide and recommend a developer for

next activities, based on codes write from other developers.
Many studies have analyzed the usability of security. Clark

and Godspeed [4] and Whitten and Tygar [5] explore

misuses of cryptography components from the end-user’s

point of view. Others analyze misuses of security APIs by

application developers. It is worth noting that that over

83% of the vulnerabilities they analyzed from the CVE

database were due to misuses of cryptography libraries

while only 17% were caused by implementation bugs in the

cryptography libraries themselves [4].

The aim of this paper is therefore to study the existing

research in methods and techniques for recommender

systems in software engineering, in order to analyze the

state-of-art and to identify future directions. The method

consists of the application of a systematic mapping study to

extract as much literature as possible.

In order to identify related work, more than 150

papers selected have been classified by recommendation

task and theirs sub categories and present a brief

introduction to each paper or technique. At the end of each
section a summary is presented regarding the gap identified

in literature review, comparing with approach of using code

type through a control-flow graph which latter can be used

for generating a dataset for recommendation purposes.

II. RESULTS AND DISCUSSION

In modern software development, API are means to

encapsulate responsibilities and facilitate code reuse and
they are widely used in statically typed programming

languages. Typical RSSE approaches apply static analyses

to extract information about the usage of these APIs from

the source code of many projects. Some RSSE techniques

learn general patterns from source code by treating it as text

or just on the syntax level [6].

In order to identify related work, we consulted a

recent comprehensive survey and some recent publications

renowned software engineering conferences. In the next

sections, we will present paper recommenders grouped by

their recommendation task and present a brief introduction

to each paper or technique.

A. Mechanism to Collect Data

While for researchers in different field of studies, data is

very important part of their research, for researchers in

recommender systems finding reliable data or dataset is one

of the biggest challenges. Nowadays versioned source code

is available in many public repositories of open-source

projects, it is much harder to get access to more detailed
change information or to activities that describe the in-IDE

(Integrated Developer Environment) development process.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1431

Once the important properties of a target domain have

been identified, extensive datasets can be generated through

simulation [7]. Unfortunately, the in-IDE development

process is very complex and not yet fully understood to be

able to simulate it. As a result, it is required to create

appropriate datasets.

Based on literature review for this work datasets for

recommender systems can be grouped in three main

categories. In the following of this section, we will present

these datasets and a short description for each of them

specifically.

a) Source Code

Several approaches make source code available for

research through in large and stable datasets. The

PROMISE repository presented in [8] was an early

advance to provide a platform to share datasets and
tools used in mining studies.

The QUALITASCORPUS [9] is a curated

collection of open-source JAVA source code for

empirical research. The corpus contains
dependencies for most contained projects and

describes how the missing dependencies can be

installed.

In [10] authors extract a dataset for usages of
API methods and annotations from a large number

of GitHub repositories. From all libraries that have

been referenced in the repositories, the authors

select the five most popular open-source projects

that are reasonably large and actively developed.

The BOA project, presented firstly in [11]

provides an infrastructure for writing analyses with

an ultra-large-scale repository. The project provides

curated data sets that contain source code from

many projects hosted on GitHub (about 7.8M

projects) and Source Forge (about 700K projects).

The source code is stored in a custom AST format

that supports most JAVA constructs.

b) Source Code under Development

Changes extracted from the commit history of

repositories are coarse-grained and not

representative for actual source code evolution [12].

Other means are required to capture

intermediate states of source code to be able to find

and analyze the problems programmers are facing

during development. Several tools exist that can

record source code that change during regular

coding activities to enable studies of the evolution of
source code [13].

In [14], the authors reports that 80% of these

snapshots can be compiled, these works usually

capture immediate states on save, loosing many
intermediate edit steps in between. A different form

of incomplete source-code that is still under

development can be found on question and answer

sites like Stack Overflow or REDDIT. These sites

have become an important data source for empirical

research on software engineering. In [15] it is

presented a solution with an island grammar that can

be used to parse Stack Overflow posts into

heterogeneous AST (H-AST). The grammar

supports JAVA, XML, JSON, stack traces, and text

fragments and can be used to transform released

Stack Overflow data dumps.

c) Meta Data

Another kind of dataset exists that does not focus on

source code, but on the meta data that describes

projects. In the context of this work, these datasets

are interesting as an additional data source that can

be integrated into analyses to enrich existing data.

In [16] was presented OSSMOLE, which was

one of the first advances to create a high-quality

database of FLOSS project information for research.

The authors achieve this through publishing

standard analyses that enable replication of results
and through facilitating reuse of analysis scripts by

others. GHTorrent presented in [17] is an effort to

make the vast amount of development activities on

GitHub available for research. The project stores the

development events of GitHub repositories, for

example,activities that include push, fork, or branch

operations.

While openHUB is a website that curates

metadata for a large number of open-source projects.

The provided data consists of general meta-data

such are repository URLs, main programming

language, and license, and of several metrics

regarding the source code, the activities of

contributors, and historical data regarding the

evolution of the project. The database can be

accessed through a REST-based API.

d) Interactions

One of the earliest and most extensive datasets of

developer interactions is the public dataset of the
ECLIPSE USAGE DATA COLLECTOR. The

intention of this project was to provide a means for

plugin developers to analyze which functionality of

ECLIPSE was actually being used by their users. To

this end, the dataset contains a log of executed

commands and activated windows, grouped by user

[18]. In [19] it was presented a recommender system

called RASCAL. It is a recommender agent that

tracks usage histories of a group of developers to

recommend to an individual developer components

that are expected to be needed by that developer.

Further they introduce a content-based filtering
technique for ordering the set of recommended

software components and present a comparative

analysis of applying this technique to a number of

collaborative filtering algorithms.

In [20] was presented the BLAZE tool that can

be installed in VISUAL STUDIO 2010 to track

which commands are invoked by the developer in

the IDE. In [21] authors declare that they deployed it

within ABB INC. and tracked activities of almost

200 developers, covering more than 30K hours of

active development time.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1432

In [22] was proposed DFLOW to capture

information about in-IDE activities. To this end,

they capture source-code changes on a structural

level (method rename), windows that are being

interacted with, and the layout space occupied by

open windows. Their dataset covers 750 hours of

development work of 17 developers.

e) Section Discussion

In the papers presented above, different aspects and

approaches to data collection mechanisms have been

highlighted, which are grouped into several

categories depending on the collection methods. The

problems with above mentioned approaches are that
many of them focus on collecting metadata about

codes from various repositories. In this aspect as a

gap that can be identified is lack of automatic

suggestion from the code structure itself comparing

with approach delve deeper in the code structure by

analyzing and representing the code type through a

control-flow graph which latter can be used for

generating a dataset for recommendation purposes.

B. Recommendation Engine to Analyze Data and Generate

Recommendations

Recommendation engine and data analyses or in

literature can be found also as static analyses is the most

important part of recommender systems. There are a lot of

studies that treat this part, in the following will be some of

them based on literature reviewed.

In [23] it is built a call recommendation, which was

later extended in [18]. The underlying approach in both

cases identifies object instances in an intra-class analysis

and extracts all method invocations on each instance, as
well as a description of the surrounding source code. In

[24] was proposed a recommender system called Precise,

which focuses on parameter call sites. They extract several

features from the structural context that describe the

method invocation and its parameters: the called method,

the enclosing method, methods that are called on the

receiver, and methods that are called on the parameter. In

[25] mainly use identifiers to predict method calls. They

extract all identifiers used in the source code and split

names on camel-case humps. Even though control

structures are not part of their model, they consider control
structure keywords in the tokenization. They apply text-

mining techniques such as stemming or removing stop

words to unify the collected tokens.

In [26] it was implemented a tool that learns correct
API usage from interactions of developers in their IDE.

When code completion is triggered in the IDE, they extract

features from the structural context around the trigger point

that include the type, definition, enclosing statement,

expression type, enclosing method.

In [27] they solve the task of call recommendation by

mapping it to a text-mining problem. They model

sequences of methods calls as sentences. Their main idea is

to reduce the problem of code completion to a natural-

language processing problem of predicting probabilities of

sentences. They designed a simple and scalable static

analysis that extracts sequences of method calls from a

large codebase, and index these into a statistical language

model. We then employ the language model to find the

highest ranked sentences, and use them to synthesize a code

completion.

In [28] it was presented Context Sensitive Code

Completion - CSCC system that is built on a simple and

efficient algorithm. The approach tokenizes source code by

traversing an AST (Abstract Syntax Trees). Tokens will be

created for JAVA keywords, types, and, method names.

CSCC is context sensitive in that it uses new sources of

information as the context of a target method call. CSCC

indexes method calls in code examples by their contexts.

To recommend completion proposals, CSCC ranks

candidate methods by the similarities between their
contexts and the context of the target call.

In [29] is proposed CODEWEB, a tool that can be

used to identify “reuse relationships” in source code. The
developer can consult these tuples to learn about the correct

API usage. In [30] is present JAVA RULE FINDER, a tool

that infers rules about a correct usage of a framework

directly from its source code. The rules are prepared in a

textual format and serve as a browsable documentation for

developers. In [31] authors propose a system that

automatically generates the documentation of an API

method. Instead of analyzing the implemented behavior in

the method, they look at callers of the method and extract

descriptive information from there. In [32] is proposed

PROMPTER, a tool that proposes relevant postings on

STACKOVERFLOW to developers while they are working
in the IDE. It extracts the current programming context

from the source code under edit. The context contains fully

qualified names for types and methods, the source code of

the enclosing element at the edit location, and a list of all

types and methods used in the enclosing element that are

defined outside of the project. In the [33], authors have

presented a software product line called OpenCCE, which

in reality is an Eclipse plugin. This solution combines the

advantages of documentation and program analysis with

ease of use and availability. In fact, solution separates API

users from the domain knowledge required to understand
these APIs through an expert system.

Anomaly detection approaches learn characteristics of

a typical correct program. The underlying models are then

used to detect deviations from this established norm. Based
in literature review in the following are presented some

approach with defect and anomaly detection.

In [34] authors propose DMMC to detect missing

method calls. They extract object usages that describe how
an object instance is used. They encode the type of the

object, the enclosing method, and all calls on it. In [35]

authors present PR-MINER, another detector for missing

method calls. The tool extracts facts from a method such as

the type of variable declarations, variable names,

assignments, and calls and uses a prefixing strategy to

prevent name collisions in different scoping levels. In [36]

authors present an approach to build finite-state-automatons

that describe valid protocols for using a specific type. The

approach is based on their own framework that can be used

to mine method sequences [37]. In [38] authors present a
data-driven approach to vulnerability detection using

machine learning, specifically applied to C and C++

programs. During the build process, they extract features at

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1433

two levels of granularity. At the function level, they extract

the Control Fow Graph (CFG) of the function. Within the

control flow graph, they extract features about the

operations happening in each basic block and the definition

and use of variables.

a) Section Discussion

Many of the overhead analyzed papers focus their

attempts on building recommendation from

simplistic code analysis. The focus is given either to

the perspective of method invocations used in the

codes subject of the analysis, either they imply a

direct natural language processing techniques in

order to gain insights from the code and latter
perform some machine learning technique for

generating recommendations or they extract limited

features from the code, such as functions to generate

the control-flow-graph (CFG) from the code for

recommendation purposes. The above-mentioned

papers analyzed failed to address the wholistic

approach towards code analysis, i.e. the

programming codes are often too complex to be

analyzed from a single aspect alone. The goal of our

approach is to use a more holistic methods towards

code analysis by using Control Flow Graph
techniques for code pattern analysis. In this way, a

system will recommend a more effective and

appropriate action for software developers to

automatically ensure that their software is more

secure.

C. User Interface to Deliver Recommendations

User interface is the part by which users interact with

recommender systems. Interaction can be implemented in

different ways, some solution are implemented via API or

plug-in, which are integrated in existing development tools

like Eclipse or Visual Studio, otherwise some solutions are

integrated solutions which includes gathering data, static

analyses and delivering recommendations to users.

In the following will be presents some solutions that

are grouped in two groups based on solution approach.

a) Guiding Software Changes

In many web sites that we use for buying a book or

smoothening else, in time when we chose to, we can

encounter recommendations of the form,

“Customers who bought this also bought….” Such

suggestions stem from purchase history. Buying two

or more things together establishes a relationship

between them, which web sites uses to create
recommendations. In [39], they present the eRose

plug-in for the Eclipse integrated development

environment (IDE) that realizes a similar feature for

software development by mining past changes from

version archives. This feature tracks changed

elements and updates recommendations in a view

after every save operation. For example, if a

developer wants to add a new preference to the

Eclipse IDE and so changes fKeys[] and

initDefaults(), eRose would recommend “Change

plugin.properties” because all developers who
changed the Eclipse code did so in the past. In [40],

a system called GROUMINER was developed to

find patterns in API usages from source code

repositories. Their approach is based on the syntax

tree; they do not consider resolved types. The

patterns, called Groums, contain ordered

information about method calls, object declarations,

and control points. In their follow-up work, in [41]

they propose the GRAPACC snippet recommender

that uses these patterns. PROSPECTOR presented

in [42] and PARSEWEB presented in [43] are two

recommenders that propose ordered sequences that
involve different API types. Both recommenders

suggest call sequences that show the developer how

to get from one API type to another.

b) Code Search
Code search is quite similar to snippet

recommendations. The difference is that proposals

point to existing examples that were observed in

repositories or the local workspace, instead of

making probabilistic recommendations. The

proposals cannot be directly integrated into the

current editor, but it will point to source code that

can be used by the developer to understand a correct

usage of the API in question.

In [44] the authors present MAPO, a code

search tool that mines method sequences from API

usage examples. Methods calls include constructor

calls, static and non-static calls, as well as casts. In

[45] the authors present the code search tool

STRATHCONA for the ECLIPSE IDE. The tool
retrieves relevant source code examples to help

developers use frameworks effectively. When a

developer wants to find how to do any specific code

can highlight the par¬tially complete code, the

context and ask Strathcona for similar examples. In

[46], system called MUSE was proposed. It

represent a tool that provides developers with

examples of how to use a particular method. The

tool requires the source code of the target API as

well as a list of its clients. Whenever a call to one of

the target API public methods is observed in the
client code, an intra-procedural backward slice is

created that shows how to get to this call. In [47]

present CODECONJURER that supports developers

by searching for working code that follows a

specified UML-like syntax. The involved static

analysis is based on the structural context only.

c) Section Discussion

In almost all of the above-mentioned papers, there is

a lack of attention given to Control Flow Graphs

(CFG) for code pattern extraction. CFGs are a well

founded and described in software testing. However,

as the literature review conducted by the authors

suggest that a very little attention has given to CFGs

for code pattern analysis that can be used for

generating datasets which furthermore can be utilized

in Machine Learning for code recommendation. As a
result, this research path is worth exploring.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1434

III. CONCLUSION

Based on the most literature consulted during this

work, the recommendation systems for software

engineering (RSSEs) are defined as a software tools

introduced specifically to help software development teams

and stakeholders to deal with information seeking and

decision-making.

They comprise three main components, which are [2]:

 Mechanism to collect data,

 Recommendation engine to analyze data and generate

recommendations,

 User interface to deliver recommendations.

In this work we have presented past work from

different researchers in the field of recommender systems,

different approaches to the use of data mining algorithms

for static analysis and different tools that are developed as

outcome of these research and which now are using by

developers during coding processes.

Based in literature review, in the table below are

presented publication grouped by recommendation task and

theirs sub categories.

Recommenda

tionTask

Categories Publication

Mechanism to

Collect Data

Source Code [8],[9], [10], [11]

Source Code

Under
Developmen

t

[12], [13], [14], [15]

Meta Data [16], [17]

Interactions [18], [19], [20], [21],

[22]

Recommendat

ion Engine to

Analyze Data

and Generate

Recommendat

ions

 [23], [18], [25], [26],

[27], [28], [29], [30],

[31], [32], [33], [34],

[35], [36], [37], [38],

[48]

User Interface

to Deliver

Recommendat

ions

Guiding

Software

Changes

[39], [40],[41], [42], [43]

Code Search [44], [45],[2], [46], [47]

Table 1: Publication grouped by recommendation task

REFERENCES

[1.] M. P. Robillard, W. Maalej, R. J. Walker and T.

Zimmermann, Recommendation Systems in Software

Engineering, Heidelberg New York Dordrecht

London: Springer-Verlag, 2014.

[2.] M. P. Robillard, R. J. Walker and T. Zimmermann,

"Development tools: Recommendation Systems for

Software Engineering," I E E E S O F T WA R E

www. c omp u t e r . o r g / s o f tw a r e.

[3.] F. Fischer, K. B¨ottinger, H. Xiao, C. Stransky, Y.

Acar, M. Backe and S. Fahl, "Stack Overflow

Considered Harmful? The Impact of Copy&Paste on

Android Application Security," IEEE Symposium on
Security and Privacy, 2017.

[4.] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman,

K. Xu and M. Blaze , "Why (special agent) Johnny

(still) can't encrypt: a security analysis of the APCO

project 25 two-way radio system," in Proceedings of

the 20th USENIX conference on Security , Berkeley,

2011.

[5.] Whitten and J. D. Tygar, "Why Johnny can't encrypt:

a usability evaluation of PGP 5.0," in Proceedings of

the 8th conference on USENIX Security Symposium -

Volume 8 , Washington, 1999.
[6.] R. Holmes and G. C. Murphy, "Using Structural

Context to Recommend Source Code Examples," in

International Conference on Software Engineering

(ICSE), 2005.

[7.] L. Pickard, B. Kitchenham and a. S. Linkman, "An

investigation of analysis techniques for software

datasets," in nternational Software Metrics

Symposium, 1999.

[8.] S. Shirabad and T. Menzies, "The PROMISE

Repository of Software Engineering Databases.

School of Information Technology and Engineering,"

http://promise.site.uottawa.ca/SERepository,
University of Ottawa, Canada, 2005.

[9.] Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M.

Lumpe, H. Melton and J. Noble, "Qualitas corpus: A

curated collection of java code for empirical studies,"

in Asia Pacific Software Engineering Conference,

2010.

[10.] A. Sawant and A. Bacchelli, "A dataset for API

usage," in International Conference on Mining

Software Repositories, 2015.

[11.] R. Dyer, H. A. Nguyen, H. Rajan and T. N. Nguyen,

"BOA: Ultra-Large-Scale Software Repository and
Source-Code Mining.," Transactions on Software

Engineering and Methodology, 2015.

[12.] S. Negara, M. Vakilian, N. Chen, R. E. Johnson and

D. Dig, "Is it dangerous to use version control

histories to study source code evolution?," in

European Conference on Object-Oriented

Programming, Springer, 2012.

[13.] R. Robbes and M. Lanza, "SpyWare: A Change-aware

Development Toolset," in International Conference on

Software Engineering, ICSE, NY, 2008.

[14.] J. Spacco, J. Strecker, D. Hovemeyer and W. Pugh,
"Software Repository Mining with Marmoset: An

Automated Programming Project Snapshot and

Testing System," in International Workshop on

Mining Software Repositories, 2005.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1435

[15.] L. Ponzanelli, A. Mocci and M. Lanza, "StORMeD:

Stack Overflow Ready Made Data," in International

Conference on Mining Software Repositories, 2015.

[16.] M. Conklin, J. Howison and K. Crowston,

"Collaboration Using OSSmole: A Repository of

FLOSS Data and Analyses," in International

Workshop on Mining Software Repositories, AMC,

2005.

[17.] G. Gousios, "The ghtorrent dataset and tool suite," in
Working Conference on Mining Software

Repositories, NY, 2013.

[18.] S. Proksch, L. Johanes and M. Mezini, "Intelligent

Code Completion with Bayesian Networks," ACM

Transactions on Software Engineering and

Methodology (TOSEM), p. Article No. 3 , 2015.

[19.] Mccarey, M. Ó. Cinnéide and a. N. K. Rascal, "A

Recommender Agent for Agile Reuse," Artificial

Intelligence Review, p. 253–276, 2005.

[20.] W. Snipes, A. R. Nair and E. Murphy-Hill,

"Experiences Gamifying Developer Adoption of
Practices and Tools," in International Conference on

Software Engineering, 2014.

[21.] Singh, L. L. Pollock, W. Snipes and N. A. Kraft, "A

case study of program comprehension effort and

technical debt estimations," in International

Conference on Program Comprehension, 2016.

[22.] R. Minelli, A. Mocci, R. Robbes and M. Lanza,

"Taming the ide with fine-grained interaction data," in

International Conference on Program Comprehension,

2016.

[23.] M. Bruch, M. Monperrus and M. Mezini, "Learning

from Examples to Improve Code Completion
Systems," in International Symposium on the

Foundations of Software, 2009.

[24.] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J.

Zhao and P. Ou, "Automatic Parameter

Recommendation for Practical API Usage," in

International Conference on Software Engineering,

IEEE, 2012.

[25.] L. Heinemann, V. Bauer, M. Herrmannsdoerfer and B.

Hummel, "Identifier-based Context-dependent API

Method Recommendation," in European Conference

on Software Maintenance and Reengineering, IEEE,
2012.

[26.] S. Amann, S. Proksch and M. Mezini, "Method-call

Recommendations from Implicit Developer

Feedback," in International Workshop on

CrowdSourcing in Software Engineering, 2014.

[27.] Raychev, M. Vechev and E. Yahav, "Code

Completion with Statistical Language Models," in

Conference on Programming Language Design and

Implementation, 2014.

[28.] M. Asaduzzaman, C. K. Roy, K. A. Schneider and D.

Hou, "CSCC: Simple, Efficient, Context Sensitive

Code Completion," in ICSME, 2014.
[29.] Michail, "Data Mining Library Reuse Patterns in

User-selected Applications," International Conference

on Automated Software Engineering. IEEE, 1999.

[30.] H. Zhong, L. Zhang and H. Mei, "Inferring

Specifications of Object-oriented APIs from API

Source Code," Asia-Pacific Software Engineering

Conference, 2008.

[31.] P. W. McBurney and C. McMillan, "Automatic

Documentation Generation via Source Code

Summarization of Method Context," International

Conference on Program Comprehension., 2014.

[32.] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto and

M. Lanza, "Mining StackOverflow to Turn the IDE

Into a Self-Confident Programming Prompter,"

International Conference on Mining Software

Repositories, 2014.

[33.] S. Arzt, K. Ali, S. Nadi, E. Bodden, S. Erdweg and M.

Mezini, "Towards Secure Integration of
Cryptographic Software," ACM International

Symposium on New Ideas , pp. 1-13, 2015.

[34.] M. Monperrus, M. Bruch and M. Mezini, "Detecting

Missing Method Calls in Object Oriented Software,"

in European Conference on Object-oriented

Programming, 2010.

[35.] Z. Li and Y. Zhou, "PR-Miner: Automatically

Extracting Implicit Programming Rules and Detecting

Violations in Large Software Code," in International

Symposium on Foundations of Software Engineering,

2005.
[36.] M. Pradel, C. Jaspan, J. Aldrich and T. R. Gross,

"Statically Checking API Protocol Conformance with

Mined Multi-object Specifications," in International

Conference on Software Engineering, 2012.

[37.] M. Pradel, P. Bichsel and a. T. Gross, "A Framework

for the Evaluation of Specification Miners Based on

Finite State Machines," in International Conference on

Software Maintenance, 2010.

[38.] J. A. Harer, L. Kim, R. L. Russell, O. Ozdemir, O.

Ozdemir, E. Antelman and S. Chin, "Automated

software vulnerability detection with machine

learning," in ResearchGate, 2018.
[39.] T. Zimmermann, A. Zeller, P. Weissgerber and S.

Diehl, "Mining version histories to guide software

changes," IEEE Transactions on Software

Engineering, vol. 31, no. 6, pp. 429 - 445, 2005.

[40.] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-

Kofahi and T. N. Nguyen, "Graph-based Mining of

Multiple Object Usage Patterns," in International

Symposium on Foundations of Software Engineering,

2009.

[41.] T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi,

H. V. Nguyen, J. A. Kofahi and T. N. Nguyen,
"Graph-based Pattern-oriented, Context-sensitive

Source Code Completion," in International

Conference on Software Engineering, 2012.

[42.] D. Mandelin, L. Xu, R. Bodík and D. Kimelman,

"Jungloid Mining: Helping to Navigate the API

Jungle," in Programming Language Design and

Implementation, 2005.

[43.] S. Thummalapenta and T. Xie, "Parseweb: A

Programmer Assistant for Reusing Open Source Code

on the Web," in International Conference on

Automated Software Engineering, 2007.

[44.] H. Zhong, T. Xie, L. Zhang, J. Pei and H. Mei,
"MAPO: Mining and Recommending API Usage

Patterns," in European Conference on Object-oriented

Programming, 2009.

[45.] R. Holmes, R. J. Walker and G. C. Murphy,

"Approximate Structural Context Matching: An

Approach to Recommend Relevant Examples.," in

Transactions on Software Engineering, 2006.

[46.] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto and A.

Marcus, "How Can I Use This Method?," in

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR048 www.ijisrt.com 1436

nternational Conference on Software Engineering,

2015.

[47.] O. Hummel, W. Janjic and C. Atkinson, "Code

Conjurer: Pulling Reusable Software out of Thin Air,"

IEEE, 2008.

[48.] V. Phan, M. L. Nguyen and L. T. B, "Convolutional

Neural Networks over Control Flow Graphs for

Software Defect Prediction," 2018.

[49.] M. Robillard, R. Walker and T. Zimmermann,
"“Foreword,” Proc. Int’l Workshop on

Recommendation Systems for Software Engineering,"

in ACM Press, 2008.

[50.] M. Robillard, R. Walker and T. Zimmermann,

"Recommendation Systems for Software

Engineering," IEEE Software, pp. 80-86, 2010.

[51.] H.-J. Happel and W. Maalej, "Potentials and

Challenges of Recommendation Systems for Software

Development," in ACM, 2008.

[52.] Spillner, T. Linz and H. Schaefer, Software Testing

Foundations: A Study Guide for the Certified Tester
Exam, Rocky Nook, 2007.

[53.] Hambling, P. Morgan, A. Samaroo, G. Thompson and

P. Williams, SOFTWARE TESTING, British

Informatics Society Limited, 2010.

[54.] J. B. Schafer, "The Application of Data-Mining to

Recommender Systems," in U n i v e r s i t y o f N o r

t h e r n I o w a.

[55.] S. Proksch, S. Amann, S. Nadi and M. Mezini,

"Identifying Requirements of Static Analyses for

Recommendation Systems in Software Engineering".

[56.] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini

and T. Ratchford, "Automated API Property Inference
Techniques," IEEE Transactions on Software

Engineering, vol. 39, no. 5, pp. 613-637, 2013.

[57.] M. K. N. Mahrin, A. H. Mohamed and M. Naz’ri, "A

survey on data mining techniques in recommender

systems," in Springer-Verlag part of Springer Nature,

Germany, 2017.

[58.] D. Nembhard, M. M. Carvalho and T. C. Eskridge,

"Towards the application of recommender systems to

secure coding," in EURASIP Journal on Information

Security, 2019.

[59.] Adomavicius and A. Tuzhilin, "Toward the next
generation of recommender systems: a survey of the

state-of-the-art and possible extensions," IEEE

Transactions on Knowledge and Data Engineering,

vol. 17 , no. 6, pp. 734 - 749, June 2005.

[60.] M. Bruch, T. Schafer and M. Mezini, "FrUiT : IDE

support for framework understanding," in Proceedings

of the 2006 OOPSLA Workshop on Eclipse

Technology eXchange, New York, 2006.

[61.] M. Bruch and M. Mezini, "Improving code

recommender systems using Boolean factor analysis

and graphical models," in Proceedings of the

International Workshop on Recommendation Systems
for Software Engineering (RSSE'08), New York,

2008.

[62.] M. Bruch, M. Monperrus and M. Mezini, "Learning

from examples to improve code completion systems,"

in In Proceedings of the the 7th joint meeting of the

European software engineering conference and the

ACM SIGSOFT symposium on The foundations of

software engineering, New York, 2009.

[63.] T. Gvero, V. Kuncak, I. Kuraj and R. Piskac,

"Complete Completion Using Types and Weights," in

Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and

Implementation, New York, 2013.
[64.] Hindle , E. T. Barr, Z. Su, M. Gabe and P. Devanbu,

"On the Naturalness of Software," in Proceedings of

the 2012 International Conference on Software

Engineering, NJ, 2012.

[65.] D. Jackson, Software Abstractions: logic, language,

and analysis, Cambridge: MIT Press, 2012.

[66.] Kaur, G. Singh and J. Minhas, "A Review of Machine

Learning based Anomaly," International Journal of

Computer Applications Technology and Research, pp.

185 - 187, 2013.

[67.] D. Lazar, H. Chen, X. Wang and N. Zeldovich, "Why
does cryptographic software fail?: a case study and

open problems," in Proceedings of 5th Asia-Pacific

Workshop on Systems, New York, 2014.

[68.] K. Lewin, "Action research and minority problems,"

Journal of social issues , pp. 34-46, 1946.

[69.] Z. Li and Y. Zhou, "Automatically Extracting Implicit

Programming Rules and Detecting Violations in Large

Software Code," in Proceedings of the 10th European

Software Engineering Conference Held Jointly with

13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, New York,

2005.
[70.] Michail, "Data mining library reuse patterns using

generalized association rules," in Proceedings of the

22Nd International Conference on Software

Engineering, New York, 2000.

[71.] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini

and T. Ratchford, "Automated API Property Inference

Techniques," IEEE Transactions on Software

Engineering, pp. 613-637, 2013.

[72.] M. Robillard and R. DeLine, "A field study of API

learning obstacles," Empirical Software Engineering,

pp. 703-732, 2011.
[73.] S. Rose, N. Spinks and A. I. Canhoto, Management

Research, Abingdon, New York: Routledge, 2015.

[74.] Jyothsna, V. V. R. Prasad and K. M. Prasad, "A

review of anomaly based intrusion detection systems,"

International Journal of Computer Applications, pp.

26-35, 2011.

[75.] Eckhardt, "Various aspects of user preference learning

and recommender systems," 2013.

[76.] X. Amatriain, A. Jaimes, N. Oliver and J. M. Pujol,

"Data Mining Methods for Recommender Systems,"

Recommender Systems Handbook, no. Springer,

Boston, MA, pp. 39-71, 2011.
[77.] R. Agrawal and R. Srikant, "Fast algorithms for

mining association rules in large databases," in 20th

International Conference on Very Large Data Bases,

1994.

http://www.ijisrt.com/

