
Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1562

Forward Shift Heuristic for Minimization of Number

of Early-Tardy Jobs in Just-In-Time Scheduling in a

Flow Shop with Distinct Due Windows

Idowu, A. Gbolahan 1*, Adamu, O. Muminu 2, Mustapha, A. Rilwan1, Sawyerr, A. Babatunde3, Rahman, O. Idris1
1. Department of Mathematics, Lagos State University, Ojo, Lagos.

2. Department of Mathematics, University of Lagos, Akoka, Yaba, Lagos.
3. Department of Computer Science, University of Lagos, Akoka, Yaba, Lagos.

Abstract:- This paper addresses the problem of

scheduling production to meet Just-in-Time requirement

in a Flow Shop where jobs are to be completed within given

due windows rather than single due dates. This problem

has been proven to be NP-Complete in the strong sense

and shown to be intractable as the number of jobs-and-

machines combination increase. Consequently, a Forward

Shift Search (FSS) algorithm is developed to solve large

problem instances. To assess the performance of FSS, a

benchmark of 1200 test problem were solved and

compared with solution obtained by an exiting algorithm

in the literature. FSS performs better in terms of quality

of solution and computational time. Also, FSS obtained a

relative deviation index of 4% when compared with a

optimal solution obtained by a commercial solver within

600 seconds of computational time. Therefore, FSS can be

deployed to obtain good approximation schedule for large

scale production where desired error tolerance is not

more than 0.004.

Keywords:- Early/Tardy, Forward-Shift,Flow Shop,

Heuristics, Just-In-Time.

I. INTRODUCTION

Just-In-Time (JIT) scheduling is very important in large

scale manufacturing where storage space in limited.

Fabrication of large equipment, aircraft and production

machinery does not encourage complete and store until

demands by customers, it is required that products are made

available as at when needed by clients. Therefore,

Minimization of Number of Early/Tardy (NET) jobs are

gaining attention recently.

Also, production strategies in large scale manufacturing

sectors have shifted from massive production for a single
client to JIT for many clients spread all around the world. To

remain competitive, producers find themselves planning their

daily productions according to customers’ orders. Their

objective is to satisfy target delivery date(s) of individual

customer notwithstanding the size of order or distance of

delivery destinations. Meeting delivery deadlines of

customers translates to maximizing the number of on-time

jobs among the orders, thereby minimizing the NET jobs.

At the commencement of research in JIT, the concept

takes into consideration Earliness/Tardiness (ET) penalties as

the objective to minimize. In JIT scheduling environment,

jobs that are completed early must be kept in inventory until

their due date(s), while jobs that are completed after their due
date(s) may be rejected by customers or erodes customer’s

confidence. Therefore, an ideal schedule is one in which all

jobs are completed exactly on their assigned due-date(s). This

concept of penalizing earliness and tardiness simultaneously

was introduced in Ohno (1988). JIT scheduling philosophy

has motivated an on-going and rapidly developing trend in

the field of scheduling. Since the use of combined ET

penalties gave rise to a non-regular criterion, this has resulted

in persistent methodological issues in the design of solution

procedures. The cost function adds the penalties due to

earliness or tardiness, and the resulting problem is usually

referred to as the Multi-objective Earliness-Tardiness
Scheduling Problem (METSP). Tardiness refers to the length

an order is belated while earliness is the length in which an

order remains in inventory before customer’s pickup or

delivery. However, Lann and Mosheiov (1996, 2003)

introduced a different type of cost function that is related to

the NET jobs rather than the ET values.

This research considered JIT problems of scheduling

jobs on Permutation Flow Shop Scheduling Problem (JIT-

PFSSP) with two distinct due dates (due windows) which are

an emerging area of JIT research due to its application in the
production of trendy, perishable and industrial products

where commodity’s shelf life is crucial. Cheng and Wang

(2000) and Adamu, Budlender, and Idowu (2014) before now

provided insights into the problem with due dates. The recent

results on JIT scheduling models with due dates can be found,

for instance, in Shabtay and Bensoussan (2012a), Shabtay and

Bensoussan (2012b), Rasti-Barzoki and Hajazi (2013).

Prevalent JIT scheduling models require that jobs are

completed on due dates as described in Rasti-Barzoki and

Hajazi (2013) and Prot, Bellenguez-Morineau, and Lahlou
(2002). However, in manufacturing industry, it is often

expected that jobs are finished at certain intervals (due

windows) rather than at single points in time (due dates).

Scheduling problems with distinct due windows extends and

generalizes that of the classical due dates. Numerous

researches have dealt with JIT scheduling problems with due

windows on single and parallel machines, providing various

polynomial time algorithms for the case where machines are

identical while that of problem on a set of unrelated machines

in parallel is strongly NP-hard. Some of these works can be

found in Arkin and Silverberg (1987), Bouzina and Emmons

(1996), Hiraishi, Levner, and Vlach (2002), Cepek and Sung

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1563

(2002), Sung and Vlach (2005), Adamu and Abass (2010),

Janiak, Janiak, and Januszkiewicz (2009) and Adamu et al.

(2014).

There is a dearth of literature on JIT-PFSSP

notwithstanding its importance in assembly and manufacturing

problems. Yeung, Oğuz, and Cheng (2009) and Mosheiov

and Sarig (2009) focused on models with window assignment
and jobs-dependence where complexity proofs and solution

algorithms were established. However, the problems with

distinct/multiple due windows which have significant impact

on future trend are yet to be widely explored, hence the

motivation for this work.

Many studies have been conducted theoretically and

experimentally on JIT scheduling by production engineers,

operation managers, applied mathematicians and researchers.

Study on minimization of NET jobs in JIT on a flow shop

with distinct due windows has not been reported, as recent

researches in this area stops at single due dates (to the best
of the author’s knowledge). Questions surrounding

minimizing NET jobs on a flow shop with distinct due

windows required answer in recent years. These questions

among others include providing polynomial time algorithms.

Most of the reviews on minimizing NET jobs in JIT

scheduling have been limited to two-machine flow shop,

single and parallel machines. However, some recent

proposals to provide solution to minimizing NET jobs in JIT

on flow shop using the advantage of forward shift heuristic

have not been explored; among other areas include

algorithms with exponential computational time for large
problems; algorithm implementation and large deviation from

optimal.

In respect of the foregoing, a forward shift search

algorithm for minimizing NET jobs is proposed in this work

with benefit of being less expensive with respect to

computational time; effective in terms of deviation from

optimal and ease of implementation which will improve the

results obtained in Shabtay (2012c) and Adamu et al. (2014).

II. PROBLEM DESCRIPTION

For the problem of JIT-PFSSP of 𝑛 jobs (𝐽1, 𝐽2, … , 𝐽𝑛)

on 𝑚 (mainly ordered) machines (𝑀1, 𝑀2, … , 𝑀𝑚) to

minimize NET jobs objective, it is assumed that a machine

can process at most one job at a time and that all jobs are

ready for processing at time 𝑡 = 0. Each job 𝑗, 𝑗 = 1, … , 𝑛 is

characterized by a set of 𝑚 processing times 𝑝𝑖𝑗 , 𝑖 = 1, … , , 𝑚

(that is, there are different processing times on different
machines for a given job). For any given non - preemptive

feasible schedule, 𝜋 would be a sequence of permutation of 𝑛

jobs (𝜋 = 𝜋(1), 𝜋(2), … , 𝜋(𝑛)) representing an order in which

jobs are to be processed on all machines.

Let 𝐶𝑖𝑗 be the completion time of job 𝑗 on the 𝑖th machine, 𝑎𝑗

be the beginning of the due window (earliest due date), 𝑑𝑗 the

end of the due window (latest due date) of job 𝑗 and 𝐷𝑗 = 𝑑𝑗 −

𝑎𝑗 be the size of the due window. Job 𝑗 is said to be early if

𝐶𝑖𝑗 < 𝑎𝑗 , tardy if 𝐶𝑖𝑗 > 𝑑𝑗, and on time if 𝑎𝑗 ≤ 𝐶𝑖𝑗 ≤ 𝑑𝑗 . Let

𝜃𝑗 > 0 and 𝜗𝑗 > 0 be the weights/penalties for scheduling job

𝑗 early and late respectively.

Adopting the classification of Graham, Lawler, Lenstra,

and Rinnooy Kan (1979), the general JIT-PFSSP for

minimizing NET jobs can be denoted as:

𝐹𝑚|𝑎𝑗 , 𝑑𝑗| ∑ (𝜃𝑗𝑈𝑗 +𝑛
𝑗=1

𝜗𝑗𝑉𝑗) (2.1)

where 𝑈𝑗 and 𝑉𝑗 are defined as follows:

𝑈𝑗 =

{
1, if 𝐶𝑖𝑗 < 𝑎𝑗

0, otherwise.

(2.2)

𝑉𝑗 =

{
1, if 𝐶𝑖𝑗 > 𝑑𝑗

0, otherwise.

(2.3)

Considering a special case where unit penalties are

incurred on both early and tardy jobs (𝜃𝑗 = 𝜗𝑗 = 1). This

special case is also referred to as unweighted represented as

𝐹𝑚|𝑎𝑗 , 𝑑𝑗| ∑ (𝑈𝑗 + 𝑉𝑗)𝑛
𝑗=1 for minimizing NET jobs where the

objective function is: 𝑍 = ∑ (𝑈𝑗 + 𝑉𝑗)𝑛
𝑗=1 .

III. MATERIAL AND METHODS

A. Proposed Algorithms for JIT-PFSSP

For minimizing the number of early-tardy jobs in JIT-

PFSSP, this study recommends an incre- mentally built

iterative local search algorithm based on Forward Shift

Search (FS) of the solution space. This method is a non-

population base searching technique adopted from Pinedo

(2015) that improves a selected candidate solution until a
given stop criterion is reached. Un- like the population-based

which chooses the best solution among selected several

candidate solutions using a prescribed procedure. The

selection of a candidate solution(s) can either be through a

dispatching, probabilistic, systematic rule or the combination

of these rules.

Section 3.2 describes the representation of a candidate

solution for minimizing NET jobs in JIT-PFSSP. How the

initial candidate solution is chosen is presented in Section 3.3

while in Sections 3.5, the details of FSS algorithms is

presented.

B. Solution Representation

Generally, a solution for JIT-PFSSP with 𝑛 jobs is

represented by a sequence 𝜋𝑖 of length 𝑛. Each index 𝑖 =
1,2, … , 𝑛 depicts the job to be executed at position 𝑖 of 𝜋. For

instance, in the sequence 𝜋 = (3,5,6,7,1,4,2) of 7 jobs, job 3

is the first to be executed and job 2 is the last to be executed

on each of the machines.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1564

i

i

i

C. Initial Solution

In non-population based heuristics, selection technique

of the initial candidate solution is very important because it

can influence the effectiveness of an algorithm to reach the

best solution within a given stopping criterion, (see M’Hallah

(2016)).

The initial solution of the permutation π for JIT-PFSSP
is constructed by applying the Earliest Due Date dispatching

(EDD) or probabilistic (RND) rule. EDD and RND rules are

explained below:

EDD - This is a greedy constructive dispatching rule, often

applied to scheduling problems with distinct due dates, as

employed in Adamu et al. (2014); M’Hallah (2016); Rosa et

al. (2017). The proposed construction begins with an empty

sequence. The job with the least EDD is inserted first,

followed by the next job with the least EDD and so on, with

breaking ties broken arbitrarily. The construction procedure

stopped when no more jobs lie outside of the execution
sequence.

RND - The sequence with the least value of the objective

function ϕ(π) out of twenty randomly generated permutations

of the n jobs. This rule can only be applied to problems where

n ≥ 4 jobs. It is important to note that the least number of jobs

considered in this work is 10.

D. Evaluation of a Candidate Solution

For any feasible job sequence (𝜋), a solution to JIT-

PFSSP will be obtained by means of computation of Boolean

matrix 𝐵𝑇 = {𝑦𝑗 : 𝑐𝑚,𝜋𝑗
< 𝑎𝑗 𝑜𝑟 𝑐𝑚,𝜋𝑗

> 𝑑𝑗} and Integral

matrix 𝐷𝑇 = {𝑥𝑗 :max (0, 𝑐𝑚,𝜋𝑗
− 𝑑𝑗) + max (0, 𝑎𝑗 −

𝑐𝑚,𝜋𝑗
)}.

For matrices 𝐵𝑇 and 𝐷𝑇 , the completion times matrix (𝑐𝑖,𝜋𝑗
)

of the 𝑗 − 𝑡ℎ job in the sequence 𝜋 on the 𝑖𝑡ℎ machine can be

computed as follows:

𝑐𝑖,𝜋𝑗
(𝜋) = 𝑐𝑖,𝜋𝑗−1

(𝜋) + 𝑝𝑖,𝜋𝑗
 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛

Where

𝑐𝑖,𝜋0
(𝜋) = 0 ∀ 𝑖 = 1, … , 𝑚

The feasible solution to NET (𝜙1) objective is the

independent sum of the elements of matrix 𝐵𝑇. That is, 𝜙1 =
∑ 𝐵𝑇𝑛

𝑗=1 . For instance, 𝐵𝑇 = {1,0,0,0,1,0,1} for the sequence

𝜋 = (3,5,6,7,1,4,2) of 7 jobs; jobs 3, 1 and 2 finished early-

tardy then 𝜙1(𝜋) = ∑ 𝐵𝑇7
𝑗=1 = 3. Also, solution to ET (𝜙2)

objective is the sum of the values in matrix 𝐷𝑇 and 𝜙2 =
∑ 𝐷𝑇𝑛

𝑗=1 .

E. Proposed Local Search Algorithm to Minimize NET Jobs

In this Section, a near optimal algorithm based on

Forward Shift Search (FSS) is proposed to solve JIT-PFSSP

with minimization of NET jobs objective. This algorithm is

motivated by the assertion in Janiak, Janiak, Krysiak, and
Kwiatkowski (2015)) that there is no specific exact

optimization algorithm for solving JIT-PFSSP. The proposed

algorithm (FSS) for solving the problem of minimizing NET

in JIT-PFSP employed the breadth-first search technique of

the branch and bound algorithm proposed in Pinedo (2015).

However, at each breadth/level, iterative permutation of jobs

was evaluated for its contribution to the objective value rather

than phantom of decision variables. Then a sequence with the

lowest objective value (tie is broken arbitrarily) moves to the

next level for incremental build and further iteration.

In formulation of algorithm FSS shown in Algorithm 1,

let 𝑋 be the set of 𝑛 jobs to be scheduled. Let 𝑈𝐵 be a known
upper bound on the problem, which can be obtained by any

of the two initial solution method in Section 3.3 with an

associated sequence 𝐴. During the enumeration process,

sequences 𝑆𝑖
𝑘 (𝑘 = 1, … 𝑖) correspond to a structure that stores

pairwise shift permutation of a subsequence of 𝑖 jobs
(2 ≤ 𝑖 ≤ 𝑛), 𝑆 be Scheduled subsequence of 𝐴 and 𝑈 be a set

of 𝑛 − 𝑖 jobs that are outside of the subsequence. The

sequence (𝑆𝑖
𝑘) is evaluated by the function 𝜙1, as in section

3.4 at level of 𝑘 enumeration. The level of enumeration is

represented as the subscript 𝑖 while the superscript 𝑘 shows

the position of the last job in 𝑆𝑖
𝑘 after each forward-shift (that

is, pair wise interchange of the 𝑘th and 𝑘 − 1th jobs) of the

last job. For instance, the sequence 𝑆3 = {2,3,1} of three jobs

with job 1 being the last job, 𝑆3
1 = {1,2,3} indicates that job

1 is now shifted to the first position while in sequence 𝑆3
2 =

{2,1,3} job 1 was shifted to position 2. The FSS algorithm is

described as follows:

Algorithm 1: Details of Forward Shift Search - FSS(X)

Input: X

Output: ϕ1
1 An ← InitialSolution(X);

2 UB ← ϕ1(A);

3 if UB > 0 then

4 Goto Step 9;

5 else

6 ϕ1 ← 0;

7 Step 23;

8 end

9 S ← ∪{A1} ∪ {A2};

10 U ← An \ S;

11 i = 2;

12 while (U ̸= ∅) do

13 Sk ← Si;

14 for k = i to 1 do

15 Sk ← Swap(k, k − 1);

16 end

17 Si = min{ϕ1(S⋆,k)};

18 i ← i + 1;

19 Si ∪ {Ai};

20 U ← An \ {Ai};
21 ϕ1 ← Si;

22 end

23 return ϕ1;

24 End;

Algorithm 1 illustrates the FSS procedure applied to

minimize number of early-tardy jobs in JIT-PFSSP. In this

procedure, the initial UB corresponds to a known upper

bound for the problem. This value is updated using the FSS

procedure, so that the final value of UB is its best solution.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1565

 Numerical Example of FSS Algorithm

This section demonstrated with a numerical example,

how FSS performs when applied to JIT- PFSSP to minimize

NET jobs. A numerical problem solved in Adamu et al.

(2014) was considered, re-evaluated using FSS and solution

obtained compared with that obtained in the literature.

Considering a scheduling problem of seven jobs to be
processed on three machines in series represented in Table 1,

this table shows the processing times (𝑝𝑖𝑗), early due date (𝑎𝑗)

and late due date (𝑑𝑗) of each job (𝑗 = {1,2, … ,7}) to be

processed on through all machines (𝑖 = {1,2,3}).

The algorithm F1 in Adamu et al. (2014) obtained an

objective value of NET = 2 when applied to JIT-PFSSP to

minimize NET jobs.

Table 1: Test problem of 7 jobs on 3 machines in

j

pij m

aj

dj 1 2 3

1 2 1 2 0 6

2 3 2 1 2 9

3 2 2 2 4 10

4 3 2 2 8 16

5 1 1 1 9 15

6 4 2 2 11 19

7 3 3 1 13 19

Let A be a sequence [𝐴 = {1,2,3,5,4,6,7}] obtained as

an initial solution when EDD rule on 𝑑𝑗 is applied to the

above problem. Given that all jobs are to start processing as

soon as possible, as depicted in Figure 3.2(a), thus 𝑈𝐵 = 3

and 𝑈 = {1,2,3,5,4,6,7} .

The second step evaluated the initial solution for

optimality, and if not optimal, it will proceed to the next step

where non optimal solution will be improved. In this

example, the initial solution is not optimal, as the first two

jobs in the sequence 𝐴 will be assigned to the subsequence 𝑆2

(i.e 𝑆2 = {1,2, }), then removed from 𝑈 (i.e 𝑈 = {3,5,4,6,7})

and set the enumeration level 𝑘 to 𝑘 = 2.

The improvement process began with permutation of

the sequence 𝑆2 by changing the 𝑘𝑡ℎ position of the last job

in sequence 𝑆2. This gave sequences 𝑆2
2 = {1,2} and 𝑆2

1 =
{2,1} evaluated as 𝜙1(𝑆2

2) = 0 and 𝜙1(𝑆2
1) = 1, respectively.

The next iteration level is set to 𝑘 = 3 with an associated

sequence 𝑆3 = {1,2,3} because {3} is the next job in sequence

𝐴 after jobs {1} and {2} were assigned to 𝑆, and job {3} is

also removed from U. This process was repeated until the

iteration level 𝑘 attained 𝑘 = 7 and sequence U is completely

emptied. The detail of the numerical example of FSS

procedure is as follows:

• Set 𝑘 = 3

𝑆3 = {1,2,3} 𝑈 = {5,4,6,7]
𝑆3

3 = {1,2,3}; 𝑆3
2 = {1,3,2}; 𝑆3

1 = {3,1,2};

min{𝜙1(𝑆3
3), 𝜙1(𝑆3

2), 𝜙1(𝑆3
1)} = 𝜙1(𝑆3

2) = 0

• Therefore, 𝑆3
2 is selected for the next iteration.

• Set 𝑘 = 4

𝑆4 = {1,3,2,5} 𝑈 = {4,6,7]
𝑆4

4 = {1,3,2,5} 𝑆4
3 = {1,3,5,2}; 𝑆4

2 = {1,5,3,2}; 𝑆3
1 =

{5,1,3,2};
min{𝜙1(𝑆4

4), 𝜙1(𝑆4
3), 𝜙1(𝑆4

2), 𝜙1(𝑆4
1)} = 𝜙1(𝑆4

3) = 1

Therefore, 𝑆4
3 is advanced to the next iteration.

• Set 𝑘 = 5

𝑆5 = {1,3,5,2,4} 𝑈 = {6,7}

𝑆5
5 = {1,3,5,2,4} 𝑆5

4 = {1,3,5,4,2} 𝑆5
3 = {1,3,4,5,2};

𝑆5
2 = {1,4,3,5,2}; 𝑆3

1 = {4,1,3,5,2};
min{𝜙1(𝑆5

5), 𝜙1(𝑆5
4), 𝜙1(𝑆5

3), 𝜙1(𝑆5
2), 𝜙1(𝑆5

1)} = 𝜙1(𝑆5
4)

= 1

Therefore, 𝑆5
4 is selected for the next iteration.

• Set 𝑘 = 6

𝑆6 = {1,3,5,4,2,6} 𝑈 = {7}

𝑆6
6 = {1,3,5,4,2,6} 𝑆6

5 = {1,3,5,4,6,2}𝑆6
4 = {1,3,5,6,4,2}

𝑆6
3 = {1,3,6,5,4,2} 𝑆6

2 = {1,6,3,5,4,2} 𝑆6
1 = {6,1,3,5,4,2}

min{𝜙1(𝑆6
6), 𝜙1(𝑆6

5), 𝜙1(𝑆6
4), 𝜙1(𝑆6

3), 𝜙1(𝑆6
2), 𝜙1(𝑆6

1)}
= 𝜙1(𝑆6

5) = 1

Therefore, 𝑆6
5 is selected for the next iteration.

• Set 𝑘 = 7

𝑆7 = {1,3,5,4,6,2,7} 𝑈 = {∅}

𝑆7
7 = {1,3,5,4,6,2,7} 𝑆7

6 = {1,3,5,4,6,7,2} 𝑆7
5 =

{1,3,5,4,7,6,2, }𝑆7
4 = {1,3,5,7,4,6,2} 𝑆7

3 = {1,3,7,5,4,6,2}
𝑆7

2 = {1,7,3,5,4,6,2} 𝑆7
1 = {7,1,3,5,4,6,2}

min{𝜙1(𝑆7
7), 𝜙1(𝑆7

6), 𝜙1(𝑆7
5), 𝜙1(𝑆7

4), 𝜙1(𝑆7
3), 𝜙1(𝑆7

2), 𝜙1(𝑆7
1)}

= 𝜙1(𝑆7
5) = 1

Since 𝑈 = {∅}, then 𝑆7
5 is taken as the final sequence

which returned 𝑈𝐵 = 1 as the value of the objective function

such that the best solution obtained with FSS is 𝜙1(𝜋) = 1.

The Gantt chart shown in Figure 3.2(b), depicts the

objective solution obtained by FSS after improving the initial

value derived with EDD. It is observed that algorithms

presented in obtained the value of the objective function

𝜙1(𝜋) = 2; therefore; algorithm FSS showed an improved

result.

The above numerical example demonstrated that the

algorithm FSS detailed in Section (3.5) can be easily followed

at each computation stage. The maximum number of partial

solutions evaluated were
𝑛(𝑛−1)−2

2
 and such that 𝑛 candidate

solutions are evaluated at the 𝑘 = 𝑛 levels. The worst case

computational complexity of algorithm FSS is of order

𝑂(𝑛2).

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1566

IV. IMPLEMENTATION AND COMPUTATIONAL

EXPERIMENTATION

The algorithms FSS is presented in Sections 3.5,

Shabtay (2012c) and Adamu et al. (2014) were implemented

using java programing language with Netbeans 8.2© as

Integrated Development Environment (IDE). Also, a

mathematical model (MBILP-1) in Idowu, Adamu, Sawyerr,

Mustapha, and Rahman (2022) was implemented using

XPRESS − MP ©, a commercial solver with IV E8.1©

interface provided by FICO© optimization. Therefore, the

solutions obtained when (MBILP-1) is applied to any instance

is referred to as FICO in the rest of this work.

These simulations were performed on the same

computer with Intel© CoreT M 2 Duo CPU P8800 running at

2.66Ghz of processor speed, 4GB of RAM, and the Windows®

10pro 64-bit operating system. This low grade computer was

adopted to observe the worst-case experimental

characteristics of these methods.

 Gantt chart of sequence obtained using EDD

 Gantt chart obtained 7after initial sequence is improved

by FSS

The test-data used to assess FSS, Adamu et al. (2014),

Shabtay (2012c) and MBILP-1 are described in Section 4.1.

Section 6.1 explains how the initialization method employed
affects the efficiency of FSS. In Section 4.2, statistical test

employed to compare implemented algorithms are presented.

A. Instance/Test-Data Generation

In order to evaluate the algorithm FSS, test-data were

generated using the methodology of Idowu et al. (2022)

Bulfin and M’Hallah (2003) and Adamu et al. (2014). This

methodology is shown in Table 2 and described below.

For each job 𝑗, the processing time 𝑝𝑖,𝑗 on machine 𝑖 is

randomly generated integers from the uniform distribution

within the interval [1,99]. The time windows of job 𝑗, that is,

the earliest due date 𝑎𝑗 and latest due dates 𝑑𝑗 are also random

integer numbers from the same distribution within the

interval [(1 − 𝜃 −
𝜗

2
) ∑ 𝑝𝑖,𝑗𝑖 , (1 − 𝜃 +

𝜗

2
) ∑ 𝑝𝑖,𝑗𝑖], where: ∑𝑖

𝑝𝑖,𝑗 is the total processing time of each job 𝑗 on machine 𝑖; 𝜃

is the tardiness factor and 𝜗 is the relative range of the time

windows. Sets of instance are generated for small and large

problems with their parameters as shown in Table 3 using

𝜃 = {0.2,0.4,0.6,0.8} and 𝜗 = {0.4,0.6,0.8,1.0}, where 𝜃 <
𝜗.

Table 2: Proposed instance/data generation scheme

Parameter

Distribution

function

Indices

(independent)

Processing

time
𝑝𝑖,𝑗 ≈ 𝑈[1,99] 𝑖 = 1,2, … 𝑚

 𝑗 = 1,2, … 𝑛

Due dates 𝑎𝑗

≈ 𝑈 (1 − 𝜃

−
𝜗

2
) ∑ 𝑝𝑖,𝑗

𝑖

𝑗 = 1,2, … 𝑛

 𝑑𝑗

≈ 𝑈 (1 − 𝜃

+
𝜗

2
) ∑ 𝑝𝑖,𝑗

𝑖

𝑗 = 1,2, … 𝑛

For each problem combination 50 independent test-data

were generated, thus, a total of 17,250 problem instances

were solved.

Table 3: Parameters of test problems

Parameter Problem type

Number of Small Large

Machines 3, 5, 7, 9, 10 3, 5, 7, 9, 10, 15, 20, 25,

30, 40, 50,

 60, 70, 80, 100

Jobs 10, 20, 30, 40,

50

90, 100, 200, 300, 500,

900, 1000,

 1500, 2000, 2500

Replications 50 50

Total replication
in each

45 × 50 = 2250 300 × 50 = 15000

Total replications 2250 + 15000

= 17250

B. Statistical Analysis

For each instance, the result obtained by the algorithms

in this study is compared with existing algorithms in the

literature. These comparisons are performed by using one-

way hypothesis test for three independent samples with

significant level of α = 0.05. In order to determine an

appropriate statistical test for the results obtained, a

Kolmogorov-Smirnov (KS) test was performed to examine

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1567

the normality of the data set. The KS test of the results set is

shown in Table 4. It was observed that the data set for FSS,

SHAB6 and F1 are not normally distributed at 5% level of

significance. Also a general observation of the result

indicates that they are ordered prior to analysis. Consequently,

a well-known non-parametric Jonckhere-Terpstra (JT) test is

more appropriate procedure for this result.

For each set of three algorithms (FSS, SHAB6, F1), the

following hypotheses are formulated to compare the means

of their solutions/CPU run-times on a given instance:

Null Hypothesis (H0): The mean of the solutions

obtained using algorithms are equal. Alternative Hypothesis

(H1): The mean of the solutions obtained using algorithms

are not equal.

Table 4: Kolmogorov-Smirnov (Normality) Test of Solution Quality and CPU Run-time

Algorithm

Statistic

Objective Runtime

Mean S.D. Min. Max. Sig. Mean S.D. Min. Max. Sig.

SHAB6 66.78 85.83 0.79 364.02 .000 32.93 60.92 0.04 370.68 .000

F1 61.87 79.58 0.72 340.18 .000 20.94 39.05 0.03 253.15 .000

FSS 46.68 59.94 0.55 252.38 .000 4.49 8.37 0.01 52.89 .000

Also, similar hypothesis are followed for the

comparison of the average CPU times for the algorithms.

Consequently, the null hypothesis implies that there is

no statistical significance that the mean of the solutions

obtained by using algorithm FSS is lower than the mean of

the solution obtained by using the other two algorithms.

However, accepting the alternative hypothesis and rejecting

the null hypothesis suggests that at the level of significance

adopted, there is statistically significant proof that the

solution obtained by using a particular method is better on the

average than others.

V. RESULTS AND DISCUSSION

In this section, the results obtained from the

computational experiment performed in this study are

discussed. Section 6 discusses the performance of a heuristic

FSS in Section 6.1, when compared with known heuristics in

the literature (that is, F1 in Adamu et al. (2014) and Algorithm

6 in Shabtay (2012c)). Also, Section 6.3 discusses the

effectiveness of applying FSS and FICO on generated

instances of JIT-PFSSP that are not more than 10 machines

and 100 jobs.

VI. PERFORMANCE OF FSS TO MINIMIZE NET

JOBS

A. Effect of Initial Solution on FSS

This section studies the sensitivity of FSS to its starting

solution. FSS is initiated with sequence π of the n jobs

obtained by the EDD sequence and the least ϕ(π) sequence

among 20 randomly generated ones (RND). For each of the

50 instances of small and large problems, the CPU time in

seconds obtained by applying each of the two sequences to

FSS as initial solution was recorded in Table 5. An
appropriate Wilcoxon (W) tests showed that the mean CPU

time of the EDD is on average less than that of the RND, and is

statistically different at 5% significant level.

Also, Figure 2 displays the difference in average CPU

runtimes of 10 to 2500 jobs across all machines. The result
shows that there is no obvious difference when the number of

job is less than 100 with significant differences thereafter. In

order words, the figure shows clearly that RND performs

poorly relatively to EDD when the problem size is large. This

effect could be due to the time taken to generate 20 random

permutation of candidate solutions and evaluation of each

solution to obtain the result with the least ϕ(π). As the

diagrams above clearly shows, EDD provides a better initial

solution.

B. Comparison of Performance of FSS with Other

Algorithms
This section examines the effectiveness and efficiency

associated with the use of FSS for minimizing the NET jobs

in JIT-PFSSP over two known algorithms in the literature.

The first is a greedy choice algorithm proposed and

implemented in Adamu et al. (2014) while the second is a

constructive algorithm proposed by Shabtay (2012c).

Shabtay’s Algorithm 6 (SHAB6) and Adamu (F1) are

two-phased algorithms which has similar characteristic with

FSS. They start with an initial solution (sequence) at the first

phase then the solution is improved on at the second phase.
In order to have a fair comparison of FSS with Shabtay6 and

F1, the three algorithms were implemented using the same

experimental environment.

In Sections 6.2.1 and 6.2.2, the quality of solutions and

CPU run-time obtained by these algorithms are compared

respectively. Furthermore, Section 6.3 discusses the Relative

Deviation Index (RDI) of FSS from known optimal results.

C. Comparison of quality of Solution of FSS with SHAB6 and

F1
Each problem of the 50 replications of all instances

described in Table 3 is solved using FSS, SHAB6 and F1.

Table 6, depicts the average quality of solutions returned by

each algorithm when applied to all set of instances. The first

column shows number of machine, the second column is the

number of jobs while the rest of the columns represent the

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1568

results obtained by SHAB6, F1 and FSS, respectively.

A JT statistical analysis confirms that for a fixed level

of m and n the three algorithms are statistically significant at

5% level which explains why the null hypothesis is rejected as

shown in Table 4. Also, Figure 3 shows that there is evidence

to assert that the mean solution of FSS is less than that of

SHAB6 and F1 in many of the instances while F1 is, in turn,
less than that of SHAB6.

D. Comparison of Computational Times of FSS with SHAB6

and F1

This section discusses the comparison of CPU running

time in seconds of FSS with SHAB6 and F1 algorithms when

applied to solve test beds of JIT-PFSSP to minimize the

number of early- tardy jobs. Table 7, shows the mean running

time obtained when 50 instances of machines- Jobs

combination were solved with the three named algorithms.

The first and second column represent the number of

machines and jobs respectively while other columns depict

running time of SHAB6 followed by F1 and FSS.

Figure 4 illustrates the mean runtime of SHAB6, F1 and
FSS at m = 3, 10, 80, 100 as a function of n. It shows that FSS

algorithm is efficient than both F1 and SHAB6 in all of the

stacked diagrams. The mean runtime of both SHAB6 and F1

infers a rapid growth than FSS as the number of job increases.

A JT analysis shows that the runtimes are significant at α =

0.05%.

(a) CPU Running Times in Seconds when m=3 (b) CPU Running Times in Seconds when m=10

(c) CPU Running Times in Seconds when m=70 (d) CPU Running Times in Seconds when m=100

Fig 2: Effect of initial solutions on FSS

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1569

(a) Average NET of Jobs m=3 (b) Average NET of Jobs m=10

(c) Average NET of Jobs m=70 (d) Average NET of Jobs m=100

Fig 3: Comparison of Average NET values FSS with SHAB6 and F1 Algorithms

E. Analysis of Relative Deviation Index

This section studies the quality of solution obtained by an heuristic with respect to known op- tima solutions. To determine if

an algorithm provides good solutions, analysis of Relative De- viation Index (RDI) was adopted as a standard performance indicator

for measuring quality of approximate solutions in scheduling problems. Also, RDI was used extensively in scheduling problems

where due dates are involved. (see for example; Adamu and Idowu (2017), Rosa et al. (2017), Framinan, Perez-Gonzalez, and

Fernandez-Viagas (2019) and Idowu et al. (2022)).

Testing a set of algorithm (Heuristics / Meta-heuristics) H, the RDI obtained by an algorithm 𝑠 ∈ 𝐻 when applied to an instance

𝑡 is defined as follows:

𝑅𝐷𝐼 = {

0, if min
𝑠∈𝐻

{𝜙𝑠𝑡 } = max
𝑠∈𝐻

{𝜙𝑠𝑡}

𝜙𝑠𝑡 − min
𝑠∈𝐻

{𝜙𝑠𝑡 }

max
𝑠∈𝐻

{𝜙𝑠𝑡} − min
𝑠∈𝐻

{𝜙𝑠𝑡 }
× 100 otherwise

where 𝜙𝑠𝑡 is the objective value obtained by algorithm FSS on any of the instances described earlier in section 2. In this work,

min
𝑠∈𝐻

{𝜙𝑠𝑡} is the optimal value obtained if MILBPNW model is able to find optimal solution within an assigned computational time.

(a) CPU Running Times when m=3 (b) CPU Running Times when m=10

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1570

(c) CPU Running Times when m=70 (d) CPU Running Times when m=100

Fig 4: Comparison of Average CPU Running Times FSS with SHAB6 and F1 Algorithms

Table 8: Average Relative Deviation of FSS from optimal

m

n

OBJECTIVE

RDI

m

n

OBJECTIVE

RDI

m

n

OBJECTIVE

RDI MBILP-1 FSS MBILP-1 FSS MBILP-1 FSS

3

10 0.54 0.55 2.00

7

10 0.64 0.65 2.00

10

10 0.71 0.72 2.00

20 1.06 1.09 2.86 20 1.11 1.14 2.86 20 1.22 1.25 2.86

30 1.82 1.84 1.23 30 2.01 2.03 1.23 30 2.29 2.32 1.23

40 2.16 2.22 2.60 40 2.59 2.66 2.60 40 2.79 2.86 2.60

50 3.00 3.09 3.06 50 3.44 3.55 3.06 50 3.72 3.83 3.06

90 5.00 5.08 1.53 90 5.16 5.24 1.53 90 * 5.44 *

100 5.13 5.24 2.15 100 5.54 5.66 2.15 100 * 7.23 *

15

10 0.72 0.74 2.42

20

10 0.73 0.75 2.16

25

10 0.75 0.76 1.51

20 1.27 1.29 1.65 20 1.28 1.31 2.03 20 1.32 1.36 2.91

30 2.32 2.39 2.95 30 * 2.40 * 30 * 2.43 *

40 * 2.87 * 40 * 2.87 * 40 * 2.97 *

50 * 3.90 * 50 * 3.96 * 50 * 4.00 *

90 * 5.46 * 90 * 5.66 * 90 * 5.70 *

100 * 7.82 * 100 * 8.13 * 100 * 8.62 *

* Problem instances where XPRESS-MP did not return optimal values after 600seconds

Table 8 shows the RDI computed for FSS with MILBP-

1 using test instances described in Section 2 where optimal

solutions were obtained within 600 seconds CPU time. As

shown Table 8, FSS attained an overall average of 3%

deviation from the optimum. This implies that a solution

obtained with FSS can be a substitute for an optima schedule

if the desired error tolerance is not more than 0.03. Also, it

was observed that the maximum RDI occurred when the

number of machines is at levels 3, 7 and 10 as well as when

the number of Jobs is at 50; while it was at the lowest when
the number of machines is at 3 and jobs at 30. Therefore,

the number of solutions nearly optimal (that is 99% close to

optimal) was obtained when the number of jobs is 30.

VII. CONCLUSION

This work addressed the problems of minimizing NET

jobs on flow shop. A two-stage optimal solution seeking

procedure is proposed for minimizing NET jobs on

permutation flow shop problem where a near optimal solution

obtained at first stage is improved by a FSS at the second

stage. The proposed algorithm is shown to be superior in

execution time as well as in quality of solutions to existing

methods. In addition, the FSS algorithm was compared using

small problem instances with an optimal solver. The mean

optimal gap between the two of them did not exceed 4% in

all cases considered.

REFERENCES

[1]. Adamu, M. O., & Abass, O. (2010). Parallel machine
scheduling to maximize the weighted number of just-in-

time jobs. Journal of Applied Science and Technology,

15(1 and 2), 27-34.

[2]. Adamu, M. O., Budlender, N., & Idowu, G. A. (2014).

A note on just in time scheduling on flow shop

machines. Journal of the Nigerian Mathematical

Society, 33, 321-331.

[3]. Adamu, M. O., & Idowu, G. A. (2017). Meta-heuristics

for unrelated machine scheduling problems. Nigerian

Journal of Scientific Research, 16(1), 8-17.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1571

[4]. Arkin, E., & Silverberg, E. (1987). Scheduling jobs with

fixed start and finish times. Discrete Applied

Mathematics, 18, 1-8.

[5]. Bouzina, K. I., & Emmons, H. (1996). Interval

scheduling on identical machines. Journal of Global

Optimization, 9(3-4), 379-393.

[6]. Bulfin, R. L., & M’Hallah, R. (2003). Minimizing the

weighted number of tardy jobs on a two-machine flow
shop. Computers and Operations Research, 30(12),

1887–1900.

[7]. Cepek, O., & Sung, S. C. (2002). A quadratic time

algorithm to maximize the number of just- in-time jobs

on identical parallel machine. Computers and

operations research, 32(12), 3265-3271.

[8]. Cheng, J., T.C.E.and Gupta, & Wang, G. (2000). A

review of flow shop scheduling research with setup

times. Production and Operations Management, 9, 262-

282.

[9]. Framinan, J. M., Perez-Gonzalez, P., & Fernandez-

Viagas, V. (2019). Deterministic assembly scheduling
problems: A review and classification of concurrent-

type scheduling models and solution procedures.

European Journal of Operation Research, 373(2), 401-

417.

[10]. Graham, R., Lawler, E., Lenstra, T., & Rinnooy Kan, A.

(1979). Optimization and approximation in

deterministic sequencing and scheduling: a survey.

Annals of Discrete Mathe- matics, 5, 287-326.

[11]. Hiraishi, K., Levner, E., & Vlach, M. (2002). Scheduling

of parallel identical machines to max- imize the weighted

number of just-in-time jobs. Computers and Operations
Research, 29(7), 841-848.

[12]. Idowu, G. A., Adamu, O. M., Sawyerr, A. B., Mustapha,

A. R., & Rahman, O. I. (2022). Complexity and

mathematical programming models for minimization of

number of early- tardy jobs in just-in-time scheduling in

flow shop. Journal of Engineering, Science and

Technology, XX(XX), In Press.

[13]. Janiak, A., Janiak, W., & Januszkiewicz, R. (2009).

Algorithms for parallel processor scheduling with

distinct due windows and unit-time jobs. Bulletin of the

Polish Academy of Sciences Technical Sciences, 57(3),

209-215.
[14]. Janiak, A., Janiak, W. A., Krysiak, T., & Kwiatkowski,

T. (2015). A survey on scheduling problems with due

windows. European Journal of Operational Research,

242(2), 347– 357.

[15]. Lann, A., & Mosheiov, G. (1996). A single machine

scheduling to minimize the number of early and tardy

jobs. Computers and Operations Research, 23, 765-

781.

[16]. Lann, A., & Mosheiov, G. (2003). A note on the

maximum number of on-time jobs on parallel identical

machines. Computers and Operations Research, 30,

1745-1749.

[17]. M’Hallah, R. (2016). Minimizing total earliness and

tardiness on permutation flow shop using vns and mip.

Computers and Industrial Engineering, 75, 142-156.
[18]. Mosheiov, G., & Sarig, A. (2009). Minmax scheduling

problems with a common due-window.

[19]. Computers and Operations Research, 36(6), 1886–1892.

[20]. Ohno, T. (1988). Toyota production system: beyond

large-scale production. crc Press.

[21]. Pinedo, M. (2015). Scheduling. Springer.

[22]. Prot, D., Bellenguez-Morineau, O., & Lahlou, C.

(2002). New complexity results for parallel identical

machines scheduling problems with preemption, release

dates and regular criterion. European Journal of

operational Research, 231, 282-287.

[23]. Rasti-Barzoki, M., & Hajazi, S. (2013). Minimizing the
weighted number of tardy jobs with due date assignment

and capacity deliveries for multiple custormers in

supply chains. European Journal of operational

Research, 228, 345-357.

[24]. Rosa, B. F., Souza, M. J. F., De Souza, S. R., Filho, M.

F., Ales, Z., & Michelon, P. Y. P. (2017). Algorithms

for job scheduling problems with distinct time windows

and general earliness/tardiness penaltiese. Computers

and Operations Research, 81, 203–215.

[25]. Shabtay, D., & Bensoussan, Y. (2012a). Maximizing the

weighted number of just-in-time jobs in several two
machine scheduling systems. Journal of Scheduling,

15(1), 39–47.

[26]. Shabtay, D., & Bensoussan, Y. (2012b). Maximizing the

weighted number of just-in-time jobs in several two-

machine scheduling systems. Journal of Scheduling,

15(1), 39–47.

[27]. Shabtay, D. (2012c). The just-in-time scheduling

problem in a flow shop scheduling system.

[28]. European Journal of Operational Research, 216, 521–

532.

[29]. Sung, S., & Vlach, M. (2005). Maximizing weighted

number of just-in-time jobs on unrelated parallel
machines. Journal of Scheduling, 8(5), 453-460.

[30]. Yeung, W. K., Oğuz, C., & Cheng, T. C. E. (2009).

Two-machine flow shop scheduling with common due

window to minimize weighted number of early and tardy

jobs. Naval Research Logistics, 5, 593-599.

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1572

Table 5: Comparison of average CPU runtimes of initializing FSS with EDD and RND in seconds

Table 6: Average Number of Early-Tardy jobs of SHAB6, F1 and FSS

http://www.ijisrt.com/

Volume 7, Issue 3, March – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAR021 www.ijisrt.com 1573

Table 7: Average CPU runtimes in seconds of FSS, SHAB6 and F1

http://www.ijisrt.com/

	I. INTRODUCTION
	II. PROBLEM DESCRIPTION
	III. MATERIAL AND METHODS
	A. Proposed Algorithms for JIT-PFSSP
	B. Solution Representation
	C. Initial Solution
	D. Evaluation of a Candidate Solution
	E. Proposed Local Search Algorithm to Minimize NET Jobs
	Input: X
	 Numerical Example of FSS Algorithm

	IV. IMPLEMENTATION AND COMPUTATIONAL EXPERIMENTATION
	A. Instance/Test-Data Generation
	B. Statistical Analysis

	V. RESULTS AND DISCUSSION
	VI. PERFORMANCE OF FSS TO MINIMIZE NET JOBS
	A. Effect of Initial Solution on FSS
	B. Comparison of Performance of FSS with Other Algorithms
	C. Comparison of quality of Solution of FSS with SHAB6 and F1
	D. Comparison of Computational Times of FSS with SHAB6 and F1

	E. Analysis of Relative Deviation Index

	VII. CONCLUSION
	REFERENCES

