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Abstract:- This paper estimates the single cut-point in the 

mean of a Burr III Sequence and its scale parameters 

before and after the cut point. We introduce a strong 

estimator of the parameters with the help of Bayesian 

inference approach, by persevering these estimators in the 

criteria used to estimate the cut-point under Linear 

Exponential Loss Function. The simulation technique is 

used compare the estimators. Open-source R software is 

used in the simulation section. We have taken real data to 

estimate the parameters of the sequence and then 

hypothetical observations of the sequence to prove their 

robustness of the estimators.   
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I. INTRODUCTION 

      

The decision theory is based on uncertainty involve in 

order to estimate the parameters of any sequence in Statistics. 

It provides the rational frame work for dealing with such 

situations of uncertainty. The Bayesian method of estimation 

is a robust way in formulating and dealing with statistical 
decision problems. The Bayesian approach offers the method 

of amalgamating the prior belief with random observations of 

the sequence and convert it to posterior expectation. When 

the parameters of the sequence are integrated with respect to 

posterior distribution, one may get the bayes estimate of the 

parameter parameters. So this method is special type of 

decision making process in order to maximize the posterior 

expected utility values or to minimize the posterior expected 

loss.  

 

II. LOSS FUNCTION 
 

When the magnitude of loss are equal on the basis of 

positive and negative errors then it is said to be symmetric 

loss. But this situation not always exist, sometimes over 

estimation is more serious than underestimation and 

sometimes underestimation is more serious than 

overestimation. In such a situation the canfield(1970) pointed 

out that the use of symmetric loss function is not appropriate 

in order to estimate the reliability function. Overestimation of 

Reliability function or average life is much more serious in 

comparison to the underestimation of Reliability function or 
average life. Varion(1975) introduced  an asymmetric loss 

function called as linear exponential loss function. Arnold 

Zellner & Geisel (1968) discussed many form of asymmetric 

loss functions. Aitchision & Dunsmore (1975) and Berger 

(1980) have considered the linear asymmetric loss function.  

 

Varian (1975) introduced the following convex loss function 

known as Linear Exponential Loss Function given below as; 

L(δ) =  beaδ −  cδ − b ; a, c ≠ 0, b > 0            (1.2.1) 

 

Where δ =  θ̂ − θ. It is clear that L(0) = 0 and the minimum 

occurs when ab=c, therefore , L(δ) can be written as  

L(δ) = b[eaδ −  aδ − 1 ], a ≠ 0, b > 0                                                                                                   

(1.2.2) 

 

Where a and b are the parameters of the loss function 
may be defined as shape and scale respectively. The loss 

function has been considered by Zellner (1986), Basu and 

Ebrahimi (1991) considered the L(δ) as  

 

L(δ) = b[eaδ −  aδ − 1 ], a ≠ 0, b > 0                                                                                                  

(1.2.3) 

Where,     δ =  
θ̂

θ
− 1 

 

III. CUT POINTS 

    

When a lifetime testing equipment is installed and start 

testing the life of items produced by the equipment, it often 

suffers with the random fluctuations, which gives at some 

point of time, the irregularity in the sequence of lifetimes of 

such items. Such irregularities are known as cut points or shift 

points. These cut points are very important in order to study 

the Statistical quality control process of the item produced by 

this system or equipment. These cut points can be single or 

multiple and can be estimated through classical technique of 

estimation or Bayesian technique of estimation. Broemeling 
and Tsurmi (1987) and  Zack (1981) are useful references for 

studying such irregularities. Bayesian approach may play an 

important role in the study of such Cut or Shift point problem.  

     

In this paper we estimate a single cut point in the 

sequence of Burr III distribution and the  cut point and 

parameters of the distribution have been studied through 

Bayesian technique. Many authors Zellner(1986), Calibria 

and Pulcini(1994), Jani and Pandya(1999), JB Shah, MN 

Patel(2007), JB Shah( 2011), Uma Srivastava(2012) and  

Uma Srivastava and Harish Kumar(2022)  have been often 

proposed as a valid alternative in classical estimation 
procedure.  
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IV. PRIOR DISTRIBUTION 

  

In frequentist framework, sufficient statistic plays an 

important role in Bayesian inference in constructing a family 

of prior distributions known as Natural Conjugate Prior 

(NCP). The family of prior distributions   g(θ), θ ϵ Ω , is 

called a natural conjugate family if the corresponding 

posterior distribution belongs to the same family as g(θ) . De 

Groot (1970) has outlined a simple and elegant method of 

constructing a conjugate prior for a family of distributions 

f (x|θ) which admits a sufficient statistic. De Groot (1970) 

and Raffia & Schlaifer (1961) provide proof that when 

sufficient statistics exist a family of conjugate prior 

distributions exists. 

 

The most widely used prior distribution of θ is the 

inverted Gamma distribution with the parameters ‘a’ and ‘b’ 

(> 0) with p.d.f. given by  

 

g(θ)  =  {
ba

Γa
θ−(α+1)e−b

θ⁄  ;   θ > 0 , (𝑎, 𝑏) > 0

0                  , otherwise
                                                                                   

(1.4.1) 

  

The main reason for general acceptability is the 
mathematical tractability resulting from the fact that the 

inverted Gamma distribution is conjugate prior of θ Raffia & 

Schlaifer (1961), Bhattacharya (1967) and others have found 

that the inverted Gamma can also be used for practical 

reliability applications.  

 

V. BURR III SEQUENCE 

 

Burr III Sequence model was first introduced by Burr(1942), in  the modelling of lifetime data named as Burr III distribution. 

The probability density function, cumulative density function, reliability function and hazard rate function of Burr III sequence is 

given below respectively. 

 

𝑓(𝑥;  𝜃, 𝛽) =  𝜃 𝛽 𝑥−(𝛽+1)(1 + 𝑥−𝛽)
−(𝜃+1)

;  𝑥 > 0, 𝜃, 𝛽 > 0                                            (1.5.1)  

 

And the Cumulative distribution function  

 𝐹(𝑥;  𝜃, 𝛽) =  (1 + 𝑥−𝛽)
−𝜃

          ; 𝑥 > 0, 𝜃 > 0, 𝛽 > 0                                                   (1.5.2)  

 
Reliability function is      

𝑅(𝑡;  𝜃, 𝛽) =  1 − (1 + 𝑡−𝛽)
−𝜃

;  𝑡 > 0, 𝜃 > 0, 𝛽 > 0                                                     (1.5.3) 

 

Hazard Rate Function is 

 𝐻(𝑡;  𝜃, 𝛽) =  
𝜃 𝛽 𝑥−(𝛽+1)(1+𝑥−𝛽)

−(𝜃+1)

1−(1+𝑡−𝛽)
−𝜃 ;  𝑡 > 0, 𝜃 > 0, 𝛽 > 0                                           (1.5.4)                     

 

Note that Burr XII sequence can be derived from Burr III sequence by replacing  X with  . The usefulness and properties of 

Burr sequence are discussed by Burr and Cislak (1968). Abd-Elfattah and Alharbey (2012) considered a Bayesian estimation for 

Burr III sequence based on double censoring. 

 

In this paper the Bayesian estimation of cut point ‘m’ and scale parameter ‘𝜃’ of  Burr III distribution is obtained by using 

Linear Exponential Loss Function(L.L.F.) and Natural conjugate Prior distribution as Inverted Gamma prior. The comparison of 

Bayes estimators are done by R-programming. 

 

VI. BAYESIAN ESTIMATION OF CUT POINT IN BURR III SEQUENCE UNDER LINEAR EXPONENTIAL LOSS 

FUNCTION (LLF) 

 

An independent observation set of life times of n observations are recorded for 𝑛 ≥ 3  from  Burr III Distribution with 

parameter 𝜃, 𝛽 .  But it was found that there was a cut  in the sequence at some point of time ‘m’ and it is reflected in the sequence 

after  mth observation which results cut in a sequence as well as parameter value 𝜃. The Bayes estimate of 𝜃 and ‘m’ are obtained 

for Linear Exponential loss function under inverted Gamma prior. 

 

1.6.1 Likelihood, Posterior and Marginal  

Let 𝑥1,𝑥2, … … , 𝑥𝑛, (𝑛 ≥ 3) be a sequence of observed  discrete life times. First let observations 𝑥1,𝑥2, … . . , 𝑥𝑛   have come 

from Burr III sequence with probability density function as          

                                                          

𝑓(𝑥, 𝜃, 𝛽) = 𝜃 𝛽𝑥−(𝛽+1)(1 + 𝑥−𝛽)
−(𝜃+1)

      (𝑥, 𝜃, 𝛽 > 0)                                      (1.6.1.1)                        

Let ‘m’ is change point in the observation which breaks the distribution in two sequences as  (𝑥1, 𝑥2, … … … . . 𝑥𝑚)   & 

𝑥(𝑚+1),𝑥(𝑚+2), … … . 𝑥𝑛  
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The probability density functions of the above sequences are 

𝑓1(𝑥) = 𝜃1 𝛽1 𝑥−(𝛽1+1)(1 + 𝑥−𝛽1)
−(𝜃1+1)

;                                                              (1.6.1.2)   

                                                        where  𝑥1 , … , 𝑥𝑚 > 0; 𝜃1,𝛽1, > 0 

𝑓2(𝑥) = 𝜃2 𝛽2 𝑥−(𝛽2+1)(1 + 𝑥−𝛽2)
−(𝜃2+1)

    ;                                                         (1.6.1.3) 

                                                where 𝑥(𝑚+1), 𝑥(𝑚+2), … , 𝑥𝑛; 𝜃2, 𝛽2 > 0           

 

The likelihood functions of probability density function of the sequence are  

𝐿1(𝑥|𝜃1, 𝛽1) = ∏ 𝑓(𝑥𝑗|𝜃1, 𝛽1)

𝑚

𝑗=1

 

𝐿1(𝑥|𝜃1, 𝛽1) = 𝜃1
𝑚𝛽1

𝑚 ∏
𝑥𝑗

−(𝛽1+1)

(1+𝑥𝑗
−𝛽1)

 𝑚
𝑗=1    𝑒−𝜃1 ∑ log(1 + 𝑥𝑗

−𝛽1)𝑚
𝑗=1   

𝐿1(𝑥|𝜃1, 𝛽1, ) = (𝜃1𝛽1)𝑚𝑈1𝑒−𝜃1𝑇3𝑚                                                                              (1.6.1.4) 

 

 

 

Where  

 𝑈1 = ∏
𝑥𝑗

−(𝛽1+1)

(1 + 𝑥𝑗
−𝛽1)

𝑚

𝑗=1

  

 
  𝑇3𝑚 = ∑ log(1 + 𝑥𝑗

−𝛽1)𝑚
𝑗=1                  

   

 𝐿2(𝑥|𝜃2, 𝛽2) = ∏ 𝑓(𝑥𝑗|𝜃2, 𝛽2)𝑛
𝑗=(𝑚+1)      

              

𝐿2(𝑥|𝜃2, 𝛽2) = 𝜃2
(𝑛−𝑚)

𝛽2
(𝑛−𝑚) ∏  

𝑥𝑗
−(𝛽2+1)

(1+𝑥𝑗
−𝛽2)

 𝑒−𝜃2 ∑ log(1 + 𝑥𝑗
−𝛽2)𝑚

𝑗=1  𝑛 
𝑗=(𝑚+1)     

                                                                                                                                                               

𝐿2(𝑥|𝜃2, 𝛽2) = (𝜃2𝛽2)(𝑛−𝑚)𝑈2𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚  )                                                              (1.6.1.5)     

        

where                                                                                                        

𝑈2 = ∏
𝑥𝑗

−(𝛽2+1)

(1+𝑥𝑗
−𝛽2)

𝑛
𝑗=𝑚+1      

 and           𝑇3𝑛 − 𝑇3𝑚 = ∑ log(1 + 𝑥𝑗
−𝛽2)𝑛

𝑗=(𝑚+1)                       

 

 
The joint likelihood function is given by 

𝐿(𝜃1 ,𝜃2|x)  ∝ (𝜃1𝛽1)𝑚𝑈1 𝑒
−𝜃1𝑇3𝑚(𝜃2𝛽2)𝑛−𝑚𝑈2 𝑒

−𝜃2(𝑇3𝑛−𝑇3𝑚  )                                (1.6.1.6)  

 

1.6.2 Prior         

Suppose the marginal prior distribution of 𝜃1 and 𝜃2are natural conjugate prior  

𝜋1(𝜃1, x) =
𝑏1

𝑎1

Γ𝑎1
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1 ;             𝑎1, 𝑏1 > 0, 𝜃1 > 0                                          (1.6.2.1)          

𝜋2(𝜃2, x) =
𝑏1

𝑎2

Γ𝑎2
𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2 ;           𝑎2, 𝑏2 > 0, 𝜃2 > 0                                          (1.6.2.2) 

The joint prior distribution of 𝜃1 ,𝜃2 and change point ‘m’ is                                  

 𝜋(𝜃1, 𝜃2, 𝑚) ∝
𝑏1

𝑎1

Γ𝑎1
 
𝑏2

𝑎2

Γ𝑎2
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1 𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2                                                (1.6.2.3)   

 

Where  𝜃1, 𝜃2 > 0  &  𝑚 = 1,2, … … (𝑛 − 1)       

 

 1.6.3 Posterior        

The joint posterior density of 𝜃1, 𝜃2 and m say 𝜌(𝜃1, 𝜃2, 𝑚/𝑥) is obtained by using equations (1.6.1.6)  & (1.6.1.9)    

𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
L(𝜃1  ,𝜃2 𝑥 ⁄ )π(𝜃1 ,𝜃2 ,𝑚) 

∑ ∬ L(𝜃1 ,𝜃2 𝑥 ⁄ )π(𝜃1 ,𝜃2 ,𝑚)𝑑𝜃1𝑑𝜃2𝜃1𝜃2𝑚

                                                (1.6.3.1)  

 

   𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃1(𝑇3𝑚+𝑏1)  𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2)

∑ ∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1)∞
0𝑚  𝜃1

(𝑚+𝑎1−1)
 𝑑𝜃1  ∫ 𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝑑𝜃2

∞
0
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Assuming    𝜃1(𝑇3𝑚 + 𝑏1) = 𝑥   &                𝜃2(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2) = 𝑦             

   

     

𝜃1 =
𝑥

(𝑇3𝑚+𝑏1)
             &                                               𝜃2 =

𝑦

𝑇3𝑛−𝑇3𝑚+𝑏2
                                      

 

 

𝑑𝜃1 =
𝑑𝑥

(𝑇3𝑚+𝑏1)
                                  &         d𝜃2 =

𝑑𝑦

𝑇3𝑛−𝑇3𝑚+𝑏2
                                    

 

 

       𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃1(𝑇3𝑚+𝑏1)  𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2)

∑ ∫ 𝑒−𝑥∞
0𝑚  

𝑥(𝑚+𝑎1−1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑥

(𝑇3𝑚+𝑏1)
  ∫ e−y∞

0   
y(𝑛−𝑚+𝑎2−1)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)   
𝑑𝑦

(𝑇3𝑛−𝑇3𝑚+𝑏2)
                    

  

 

 

 

     𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)

∑
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)

  

 

 

𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                       (1.6.3.2) 

 

 

Where  𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛) =  ∑ [
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)𝑚+𝑎1
 

Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)]
𝑛−1
𝑚=1       

 

1.6.4 Marginal posterior      

The Marginal posterior distribution of change point ‘m’ using the equations (1.6.1.6), (1.6.2.1) & (1.6.2.2)      

 

𝜌(𝑚|𝑥) =  
L(𝜃1  ,𝜃2 𝑥 ⁄ ) π(θ1) π(θ2)

∑ L(𝜃1  ,𝜃2 𝑥 ⁄ ) π(θ1) π(θ2)𝑚
                                                                          (1.6.4.1)                 

                     

On solving which gives     

 

  𝜌(𝑚|𝑥) =
∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑑𝜃1  ∫  𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)
 𝑑𝜃2

∞
0   

∞
0

∑ ∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1)

 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

 𝑑𝜃2
∞

0   
∞

0𝑚
  

 

Assuming    𝜃1(𝑇3𝑚 + 𝑏1) = 𝑦       &               𝜃2(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2) = 𝑧                    

𝜃1 =
𝑦

(𝑇3𝑚+𝑏1)
                     &                                       𝜃2 =

𝑧

𝑇3𝑛−𝑇3𝑚+𝑏2
                         

 
 

𝑑𝜃1 =
𝑑𝑦

(𝑇3𝑚+𝑏1)
                    &                                    𝑑𝜃2 =

𝑧

𝑇3𝑛−𝑇3𝑚+𝑏2
                      

 
 

  𝜌(𝑚|𝑥) =
∫ 𝑒−𝑦 

𝑦(𝑚+𝑎1−1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇3𝑚+𝑏1)
 ∫ e−z∞

0   
z(𝑛−𝑚+𝑎2−1)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)   
𝑑𝑧

(𝑇3𝑛−𝑇3𝑚+𝑏2)
 

∞
0

∑ ∫ 𝑒−𝑦∞
0𝑚  

𝑦(𝑚+𝑎1−1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇3𝑚+𝑏1)
  ∫ e−z∞

0   
z(𝑛−𝑚+𝑎2−1)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)   
𝑑𝑧

(𝑇3𝑛−𝑇3𝑚+𝑏2)

 

 

 

𝜌(𝑚|𝑥) =  

Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                                           (1.6.4.2)          

                                                            

 

The marginal posterior distribution of  𝜃1, using equations (1.6.1.6) and (1.6.2.1)   

𝜌(𝜃1|𝑥)            =  
L(𝜃1 ,𝜃2  x⁄ ) π(θ1)

∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ1)dθ1
∞

0
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On solving which gives  

  𝜌(𝜃1|𝑥) =
∑ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 ∫    𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)
 𝑑𝜃2

∞
0𝑚

∑ ∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1)

 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

 𝑑𝜃2
∞

0   
∞

0𝑚
 

 

 

  Assuming    𝜃1(𝑇3𝑚 + 𝑏1) = 𝑦           &         𝜃2(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2) = 𝑧           

          

 

𝜃1 =
𝑦

(𝑇3𝑚+𝑏1)
              &                                  𝜃2 =

𝑧

𝑇3𝑛−𝑇3𝑚+𝑏2
                   

 

                         

𝑑𝜃1 =
𝑑𝑦

(𝑇3𝑚+𝑏1)
           &                          d𝜃2 =

𝑑𝑧

𝑇3𝑛−𝑇3𝑚+𝑏2
                

                       

 

 𝜌(𝜃1|𝑥) =
∑ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 

Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

∑
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)

  

 

 

𝜌(𝜃1|𝑥) =  
∑ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 

Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                         (1.6.4.3)                                              

 

The marginal posterior distribution of  𝜃2, using the equation (1.6.1.6) & (1.6.2.2) is 

 

  𝜌(𝜃2|𝑥) =  
L(𝜃1 ,𝜃2  x⁄ ) π(θ2)

∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ2) dθ2
∞

0

     

 
 

𝜌(𝜃2|𝑥) =  
∑ 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2)  𝜃2

(𝑛−𝑚+𝑎2−1)
∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑑𝜃1

∞

0𝑚

∑ ∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1) 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2 ) 𝜃2

(𝑛−𝑚+𝑎2−1) 𝑑𝜃2
∞

0
  

∞

0𝑚

 

 

 

Assuming  𝜃1(𝑇3𝑚 + 𝑏1) = 𝑦         &    𝜃1 =
𝑦

(𝑇3𝑚+𝑏1)
  

 

 

𝜌(𝜃2|𝑥) =  

∑
Γ(𝑚 + 𝑎1)

(𝑇3𝑚 + 𝑏1)(𝑚+𝑎1)𝑚 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

∑
Γ(𝑚 + 𝑎1)

(𝑇3𝑚 + 𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛 − 𝑚 + 𝑎2)

(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2)(𝑛−𝑚+𝑎2)

 

 

 

𝜌(𝜃2|𝑥) =
∑

Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1)𝑚 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                       (1.6.4.4)         

 

1.6.2 Bayes Estimators under Linear Exponential Loss Function (LLF)            

The Bayes estimate �̂�𝐵𝐿 of m under Linear Exponential Loss Function using marginal posterior of equation (1.6.4.2), is given 
as  

  

�̂�𝐵𝐿 = −
1

𝑘1
log [

∑ 𝑒−𝑘1𝑚 Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]                                   (1.6.2.1)       

 

The Bayes estimate of 𝜃1𝐵𝐿  of 𝜃1 using marginal posterior of equation (1.6.4.3) under Linear Exponential Loss Function is 

given by  

𝜃1𝐵𝐿 =  −
1

𝑘1

 log 𝐸𝜌[exp(−𝑘1𝜃1)] 
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  𝜃1𝐵𝐿 = −
1

𝑘1

log [

∑
Γ(𝑛 − 𝑚 + 𝑎2)

(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2)(𝑛−𝑚+𝑎2) ∫ 𝑒−𝜃1(𝑇3𝑚+𝑏1+𝑘1) 𝜃1
(𝑚+𝑎1−1)  𝑑𝜃1

∞

0𝑚

𝜉(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑚, 𝑛)
] 

 

Assuming  𝜃1(𝑇3𝑚 + 𝑏1 + 𝑘1) = 𝑦       &         𝜃1 =
𝑦

(𝑇3𝑚+𝑏1+𝑘1)
   

 

 𝜃1𝐵𝐿 = −
1

𝑘1
log [

∑
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2)(𝑛−𝑚+𝑎2)
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1+𝑘1)(𝑚+𝑎1)𝑚

𝜉(𝑎1,𝑎2 ,𝑏1,𝑏2 ,𝑚,𝑛)
] 

 

 

 𝜃1𝐵𝐿 = −
1

𝑘1
log [

𝜉[𝑎1,𝑎2 ,(𝑏1+𝑘1),𝑏2 ,𝑚,𝑛]

𝜉(𝑎1,𝑎2,𝑏1 ,𝑏2 ,𝑚,𝑛)
]                                                                   (1.6.2.2) 

 

       

 

The Bayes estimate of 𝜃2𝐵𝐿  of 𝜃2 using marginal posterior of equation (1.6.4.4) under Linear Exponential Loss Function is 

given by  

𝜃2𝐵𝐿 =  −
1

𝑘2

 log 𝐸𝜌[exp(−𝑘2𝜃2)] 

 

 

 𝜃2𝐵𝐿 = −
1

𝑘2
log [

∑
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1) ∫ 𝑒−𝜃2(𝑇3𝑛−𝑇3𝑚+𝑏2+𝑘2) 𝜃2
(𝑛−𝑚+𝑎2−1)

𝑑𝜃2
∞

0  𝑚

𝜉(𝑎1 ,𝑎2,𝑏1,𝑏2 ,𝑚,𝑛)
] 

 

 

Assuming  𝜃2(𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 + 𝑘2) = 𝑦    &   𝜃2 =
𝑦

(𝑇3𝑛−𝑇3𝑚+𝑏2+𝑘2)
  

 

 

Then 

 𝜃2𝐵𝐿 = −
1

𝑘2
log [

∑
Γ(𝑚+𝑎1)

(𝑇3𝑚+𝑏1)(𝑚+𝑎1)
Γ(𝑛−𝑚+𝑎2)

(𝑇3𝑛−𝑇3𝑚+𝑏2+𝑘2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1 ,𝑏2 ,𝑚,𝑛)
] 

 

 

  𝜃2𝐵𝐿 = −
1

𝑘2
log [

𝜉[𝑎1 ,𝑎2,𝑏1,(𝑏2+𝑘2),𝑚,𝑛]

𝜉(𝑎1,𝑎2 ,𝑏1,𝑏2 ,𝑚,𝑛)
]                                                                     (1.6.2.3) 

 

 Numerical Comparison for Burr III Sequences 

Twenty observations are generated from Burr III 

sequence taking the parameters values as 𝜃 = 2 and 𝛽 = 0.5. 

If the target value of 𝜃1 is unknown, its estimating (𝜃1. ) is 
given by the mean of first m sample observation given m=11, 

𝜃 =  0.827.The observed sequence mean of Burr III 

sequence is 1.8829 and the observed sequence of Burr III 

sequence variance is 23.8886. If there is a cut in sequence on 

11th observation, then the means and variances of both 

sequences (x1,x2,…,xm) and (x(m+1), x(m+2),…, xn)  are 𝜃1 = 

0.8277, 𝜃2 = 3.2668 and 𝜎1
2 = 0.7281and 𝜎2

2 = 51.8509  .     

 

 Numerical Comparison of Bayes Estimates 

The numerical comparison of Bayes estimates before 

and after cut point and the parameters of prior distribution 

𝑎1, 𝑏1, 𝑎2 and 𝑏2 is done by using R- programming. The 

calculated means and variances of the prior distribution are 

used as prior information in calculating these parameters. 

Then with these parameter values we have computed the 

Bayes estimates of m, 𝜃1 and 𝜃2 under Linear Exponential 
Loss Function (LLF) with considering different set of values 

of (𝑎1, 𝑏1) and (𝑎2, 𝑏2).We have taken different sample sizes 

from n=10(10)30. The Bayes estimates of the change point 

‘m’ and the parameters 𝜃1 and 𝜃2 are calculated and discussed 

above under Linear Exponential Loss Function. Their 

respective mean squared errors(M.S.E’s) are calculated by 

repeating this process 1000  times and presented in same table 
in small parenthesis under the estimated values of parameters. 

The greater values appear to be robust with respect to correct 

choice of prior parameter values and appropriate sample size.  

All the estimators perform better with sample size 

n=20.Similarly the Bayes estimates of Linear Exponential 

Loss Function are presented in table 1. appears to be sensitive 

with wrong choice of prior parameters and sample size. All 

the calculations are done by R- programming.  

 

VII. CONCLUSION 

            

The values of the estimates of Bayes estimators of the 

parameters 𝜃1 and 𝜃2 of Burr III sequence obtained under 

Linear Exponential Loss Function are different for different  

numerical values and exhibits its robustness as the sample 
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size increases for increasing values of parameters. The 

respective M.S.E’s shows that the Bayes estimates uniformly 

smaller for 𝜃1𝐵𝐿  and  𝜃2𝐵𝐿 under Linear Exponential Loss 

Function except of  �̂�𝐵𝐿. The Bayes estimates of the 

parameters are dominated uniformly for increasing values of 

prior parameters and increasing values of sample size. From 

the Table below we see that when parameter values for 

(a1, b1)= (1.25,1.50) and (a2, b2)= (1.50,1.60) for sample 

size n=10 the bayes estimate of cut point is nearly accurate 

and it has lower MSE than with large sample size, While the 

Bayes estimates before the cut  θ̂1BL and after the cut  θ̂2BL 

are nearly accurate with lower MSE’s for large sample sizes. 

This position is similar for (a1, b1) = (2.50,2.75)  and (a2, b2) 

= (2.50,2.60). It means for the whole interval of values of 

parameters a and b taken are appropriate choices of values of 

the parameters. In this interval with large sample sizes the 

Bayes estimates before the cut  θ̂1BL and after the cut  θ̂2BL 

show their dominance. 

 

(𝐚𝟏, 𝐛𝟏) (𝐚𝟐, 𝐛𝟐) n �̂�𝐁𝐋 �̂�𝟏𝐁𝐋 �̂�𝟐𝐁𝐋 

(1.25,1.50) (1.50,1.60) 10 7.8948 (36.5171) 0.6413 (5.9861) 0.6152 (1.1503) 

  20 17.3097 (250.3565) 0.5312 (0.8248) 0.8262 (0.5866) 

  30 27.1469 (646.4207) 0.9763 (0.4552) 0.5862 (2.3298) 

(1.50,1.75) (1.70,1.80) 10 7.8690 (36.4594) 0.7627 (0.9434) 0.6014 (0.0222) 

  20 17.6967 (247.5144) 1.3161 (1.9984) 0.7794 (0.9327) 

  30 27.1218 (660.2824) 2.2996 (1.0895) 0.6672 (0.2426) 

(1.75,2.0) (1.90,2.0) 10 7.8521 (35.0195) 0.7155 (0.0042) 0.7345 (0.3444) 

  20 17.3708 (251.8746) 1.4007 (1.5429) 0.5886 (0.0015) 

  30 27.0210 (647.0855) 0.5083 (0.0059) 0.7076 (0.2569) 

(2.0,2.25) (2.10,2.20) 10 7.9550 (33.8673) 0.8548 (0.1671) 0.7306 (0.5313) 

  20 17.5939 (247.5098) 1.1723 (1.3645) 1.3232 (0.0133) 

  30 27.6032 (682.7767) 0.7353 (0.5945) 1.4175 (0.2827) 

(2.25,2.50) (2.30,2.40) 10 7.8909 (35.3837) 1.7819 (0.0316) 1.0418 (0.1047) 

  20 17.6132 (247.8102) 0.7043 (0.1263) 0.7419 (1.2762) 

  30 27.3636 (665.9606) 0.9789 (0.0913) 0.6826 (0.0061) 

(2.50,2.75) (2.50,2.60) 10 7.9322 (36.6559) 0.8778 (0.2733) 0.9283 (0.0524) 

  20 17.5239 (244.2804) 0.7173 (0.0502) 0.5908 (0.0163) 

  30 27.3548 (642.6078) 0.6623 (0.0058) 0.5610 (0.9069) 

Table 1:- Bayes Estimates of m, 𝜃1& 𝜃2for Burr III  and their respective M.S.E.'s Under  Linear Exponential Loss 
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