
Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 81

Padding Of LFSR Seeds with Low Transition Bits

for Reduced Input Test Data Volume

Aiswarya Vijayan P., Sajitha A S

Electronics and Communication Engineering Dept.

Nehru College of Engineering and Research Center Thrissur,

India

Abstract:- In testing there are two primary domains one

is reducing input test data volume and next is reducing

the test power consumption. Commonly used test

compression method is on-chip decompression logic

based on LFSR and compressed test consist of seeds for

LFSR. The padding of LFSR seeds is a method to

generate higher bits of LFSR by adding extra bits to an

existing seed and random test patterns can be

generated. Further using modified dual CLCG more

randomization is possible and it increases the fault

coverage. By using bit swapping LFSR it is possible to

reduce the number of transitions that occurs in a scan

chain. Bit swapping lfsr is used to produce seeds for

modified dual CLCG. Thus the overall switching

activities can be reduced which automatically reduce

the power consumption. The primary aim is to reduce

the test pattern and to increase the fault coverage with

low transition bits.

Keywords:- bit swapping linear feedback shift register,

modified dual CLCG.

I. INTRODUCTION

A famous person Gorden Moor, the cofounder of Intel

made an prediction in 1965 that the number of transistors in

an integrated circuit doubles in every two years. This

prediction is known as moor’s law. Form the close

observations on the advancements happening in the

industry shows his prediction or observation is true even in

2022. So as per the moor’s law the circuit is getting more
complex and the number of components in a chip is

increasing in a high rate. Therefore, to ensure the proper

functioning of the circuit, the test must be performed

correctly. The process of designing chips, testing occupies

70 to 80 percent of time. The well-structured testing

methods are required to ensure the proper working of

circuit and identify the faults. Thus testing plays an

important role in the field of VLSI.This paper primary goal

isuto reducerthe testpdatamvolume and to determine the

seeds that detect or cover more errors with low transitions

while also increasing the test data amount. Normally for a

complex circuit the test pattern will be more so the volume
of test data will be more. It will use a lot of memory. The

polynomial linearkfeedbackkshift register (LFSR) is

employed to generateotestppatterns. With LFSR's padding

will help to reduce the use of memory space. Along with

this another important factor to be considered is power

reduction. The seeds with a high rate of transitions cause an

increase in switching activity. Thus there is need to find out

the seed which have minimum number of transitions and

also it must give maximum fault coverage.

On a tester, the input test data is often saved in a

compressed format to store in a confined memory of tester.

The circuit's scan chains are loaded with the compressed

data via a decompression algorithm [1]and[2] on a chip that

yields all input test data based on their compressed state.

Once the identical test data compressed for input is utilised
for making use of numerous test datas, the size of input test

data is decreased to a greater extent. For an instance, in

[4],[5] and [7]when the test ti's compressedzinputltest data

can be usedtfor making use of ti in addition to extra testing

with chosen bits are complemented. In such a usually

employed testjdatalcompressionitechnique, theion-

chipidecompression logic is primarily developed onpa

LFSR and the LFSR seeds are included in the compressed

tests. A couple of techniques were defined[8] where the

seeds seem to be changed to offer several tests. The initial

technique emphasize on each seed’s bits. Whenever a seed
si is put into the LFSR after certainly considered one among

it’s the bit is complemented and it generates an alternative

test to the one that is exclusively produced via si. The 2nd

technique makes use of each seed si for numerous different

LFSRs which might have few bits as compared to si. so

using numerous LFSRs[9] and[10] is therefore encouraged

. With minimal additional hardware, LFSRs run on a single

programmable LFSR. Some of the bits of si are shortened

when si is used for an LFSR with a reduced bit range. With

each of those techniques, every seed is utilised to create the

use of numerous tests. Consequently, the range of seeds
stored is decreased. Rather than cutting off a seed si, LFSRs

seed with less bits are required, therefore this project

emphasizes that a seed's padding results in seeds for LFSR

with extra bits which is more efficient in identifying target

fault. Thus, padding with few numbers of seeds is certainly

needed. Additionally, padding is probable to allevate the

growth per test range that want to be carried out as every

seed is padded in numerous various ways.

Assume that, si = 00110011 is an 8-bit LFSR seed to

demonstrate the concept of padding. Let Pi = {_, 0, 11} be

the set of paddings for si, where is the empty padding. For

ani8-bitkLFSR, the empty padding yields alseed si0 =

00110011; forpa 9-bitiLFSR, the padding 0 yields aiseed si1

= 001100110; and foria 10-bitiLFSR, theipaddingI11 yields

a seed si2 = 0011001111. Two extra checks based on si may

be used by storing three padding bits. There will be a
storage savings if there are any 8-bitiseeds mayibe changed

withithe threeipaddingsiused forisi. It's possible that the

number of tests used will rise. But using LFSRs with

additional bits helps to reduce the spike, which permits for

the detection of more defects. The process in this work

describes adding of additional paddings in succession,

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 82

given several seeds S. It aims to increase the amount of

problems discovered by as many seeds as possible by using
each new padding. The idea is to get rid of seeds that are no

longer needed. Padding is acceptable if the test set's storage

requirements are decreased and the number of tests used is

limited. This technique takes a long time to reach its final

solution. It has the advantage of avoiding the use of

superfluous paddings. By enabling the storage of

compressed tests upon the tester and replicating these tests

with decompression logic on the chip, test data

compression technologies minimise volume of the input

test data. If every saved test is utilised to produce numerous

other tests, the volume of the input test data could be

effectively reduced further.

By enabling the storage of compressed tests upon the

tester and replicating these tests with decompression logic

on the chip, test data compression technologies minimise
volume of the input test data. If every saved test is utilised

to produce numerous other tests, the volume of the input

test data could be effectively reduced further. There are

methods for creating tests that are built-in. Three tests are

generated from each saved test: a broadsideitest anditwo

skewediload tests. This enables theinumberiof saved

testsitoibe decreasediwithout sacrificing faulticoverage.

Byishifting its scan-inistateifor a further one orimany

clockiycles, skewed load provides a special opportunity to

increase a stored test into numerous unique skewed load

tests. Neither the prior writings specifically in this field

discussed skewediloaditestsior highlighted thisipossibility
forireducing the volume ofitest data beyond compression.l

Thisiis significant because skewediload testspare routinely

utilised in typical scan circuits to discover delay issues. The

volume reducing approach for the new input test data’s core

concept is as follows.

Toitake benefit from a multiicycle test's capacity

iniorderito find moreidelayifaults thaniaitwoicycleitest, the

test's functional clockicycles must be run with a fast clock,

enabling the activation and detection of delay faults. This

makes test generation and fault simulation more difficult.

Sequentialifault modelling ofidelayifaultsiover numerous

clock cyclesiis required by the processes. In addition, they

necessitate more complex delay fault models in which the

increased delay caused by a fault is explicitly considered

[11]-[17]. This study tackles the problem by proposing a
novel method for doing multiicycleitests. This method

savesimultiicycleitests but only uses two cycle broadside

tests. This provides forpa similar

reductioniinitheinumberiof saveditests. This makes

itipossible toidecrease the amount of tests that are kept,

similar to when multi cycle tests are utilised, while yet

letting makes test generation and fault simulation

techniques for broadsideitestsitoibe employed.

Alternatively, storing multiicycle tests as proposed in this

study enables the implementation of additional two

cycleitests forithe same numberiof saved tests. These tests

can be used as diagnostic tests or to find additional target
defects. CompareditoIthe situation,

whereabroadsideatestsaareastored, the number of tests

applied is constantly increased. As a result, the approach

presented in this study, when utilised to minimise the

amount of stored tests, it decreases the

inputitestidataivolumeibutinotitheitestiapplication time. Itiis
anticipated thatioutput responses williemploy output

compaction.

By saving compressed output and tests,

andicombining output compaction andion-chip
decompressionilogic for test applications, test data

compression technique lower the need of storage the test set

[11]-[13]. The methodologies mentioned in [14]-[21]

employ the similar inputitestidata for many test

applications, which improves the capacity to decrease the

volume of test data input. The inputitest dataivolume

canobe loweredowithout compromising faultocoverage

sinceithe sameiinput testidata isiused inidifferentiwaysifor

applying multipleotests. The inputitestidata is divided in

[14] and [18], and an alternative arrangement of the data

stored is used to apply a greater number of tests. A stored
test si is generally applied to apply a single test ti, is utilised

in [15], [16], and [21] pertaining to multiple test

withocomplementedobits according tooti. The identical

inputotestodata are utilized in both the skewed load and

broadside tests in [17]. To acquire more test frompthe

sameoinputptest data, thepcircuits are clocked many times

in functional mode or scan shift in [19]-[20].

A circuit's number of routes can be enormous. As a

result, the path delay faults numbers that a circuit might

define is enormous. These are frequently the issues with the

longest path delays. Many path delay defects, particularly

those connected with the longest paths, are, however, often

unnoticed. When test data compression is utilised, a distinct

form of limitations onpthe capacity topdetect pathpdelay

issues takes place. The compresseditests are saved

onitheotester in this situation. On-chip decompression logic
expands a compressedltest intola test thatlis subsequently

appliedlto thelcircuit. The numberiof bitsiin a

compressedltest is limited. As a result, not all tests can

actually be compressed and used with decompression logic.

The path delay faults are chosen within the framework

ofitest datalcompression must take into account two

criteria. (1) A path delay problem on a specific path may be

unnoticed. (2) Even if it is detectable, one of its checks may

not be able to be applied through the decompression logic.

To substitute a test for a seed which can’t be compressed, a

straightforward technique is to generate a fresh test. Faults
are discovered through testslwith limited numberslof the

given valuesl(testlcubes), andlthe majority ofpthese

testlcubes are LFSR seeds. As a result, only few test cubes

will need change. Path delay fault tests require assigning

more different values than other fault modelling tests. As a

result Path delay tests are probably going toohavelmore

specific values, andkseedslfor additional testlcubes may be

unavailable.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 83

II. PADDING OF LFSR

Make S as a collection of seeds for a collection of

targettfaults F. Every seed in S is calculated using the

identical B0-bit LFSR for the sake of clarity. When the B0-

bittLFSR uncompresses aaseeddsiS, it produces a test ti. T

= {ti: si  S} is the test set obtained from S, and it discovers

all of the flaws in F. A seeddsiS is connected withaa

collectionoof paddings Pi=pi,0,.pi,1,...,.pi,mi-1 in the approach

proposed in this article. The paddinggpi,jj hassbi,jj bits for 0

≤j≤ mi. Pi,j+=.-, with bi,j = 0, indicating that that no padding

is used as a specific instance.

When the padding pij and the seed si are combined,

you get a seeddsi,j.=.si..pi,j with Bi,j = B0 + bi,j bits.

Theeresultinggtest is ti,jP when the Bi,j bit LFSR is used to

decompress si,j. The results of the tests performed with

various paddings varies greatly. Table I displays the results
of tests performed on benchmark1circuit1b04 with a128-

bit1seed1s0 and three1paddings. The1paddings are 00bytes,

2 bytes, and 4 bytes. The decompression LFSRs are

rudimentary LFSRs with 28,30, and 32 bits from [23].The

compressed1test1set1for1b04 contains 22xseeds and

paddings for1the128-bit1LFSR. Table 3.3 shows

the1first1seeds and paddings1(including1s0 from|Table I).

Table 1: Paddingssforrseedds0

LetiSicontaininiseeds and associated sets1of1paddings

in general. By employing paddings for some seeds and

eliminating others, the approach outlined decreases S's

storageerequirements. The total number1of paddings

issequal to applying a number of tests based1on1S. The

approach outlined allows for more tests_runs being

conducted in order to reduce storage requirements. A

reverse-order1fault1simulation approach1that removes

extraneous1paddings moderates the rise. Itkis additionally

mitigatedkby thekfact that tests produced by

LFSRspwith|morepbits discover more defects, adding to
test compaction. The process also includes a limit on the

number of tests that can be used.

The tester is supposed to employ the paddings to

generate seeds of the type si  pi,j. Accomputer

called1the1site1controller loads (compressed) tests into the

tester1memory in the test configuration described in [24],
which the tester subsequently applies1to1the circuit-under-

test. The site1controller;is anticipated to create

padded1seeds for1the1tester after receiving set S. in this

test environment. The test1application procedure is

identical to that for unpadded1seeds,

and1the1only1requirement for on-

chip1decompression1logic is1a programmed LFSR1with

minimal hardware!overhead [7].

A. Test Pattern Generator

The LFSR is based on test cubes required to detect
target defects. As more test cubes and defect models are

compacted, this gets increasingly difficult. The

XORinetwork covers the limits ofitheitest

dataodecompressionologic, allowing for testlgeneration

forlan extendedlcircuit. This enhanced circuit discovers

LFSR seeds without having to compute test cubes first.

Seeds that provide test cubes for diagnosis by changing

seed types that generate fault detection tests. The technique

involves two phases: one without diagnostic test cubes and

the other with diagnostic test cubes but without aiming to

replicate them completely. For defect detection, a similar

approach is used to compute a compact set of seeds. Rather
of compacting test cubes, calculating seeds, and testing

cubes, this method modifies initially random seeds to yield

tests that are similar to those in a small, precisely defined

test set. These techniques assume thatpa testkthat

differentiates or identifies target defects islnot unique,land

that a meaningful test does not have to fully comply with a

certain test or test cubes. Eventually, the algorithms tweak

until the test it generates, an initial seed meets the goal of

discovering or differentiating target flaws. The

modification of an initial seed for target fault detection has

extra benefits on path delay faults, according to this
method. As stated below, This benefit is connected to

choosing path delay faults when there are a lot of

undetectable path delay faults. Modifieslinitially

randomlseeds so thatothe testslthey develop are comparable

to those found in a small, fully described test set by

computing seeds and compacting test cubes.

B. Procedure for Padding

ThisIsection explains how to choose paddings to reduce

the amount of space needed to store a setoof seeds1S

for|a!set!of!faults!F. Sinit computes the initial!set1of seeds

for!a!B0-bit!LFSR. A*seed*si  Sinit is linked to

a*collection of paddings*Pi =*{-} that solely contains

the*empty*padding. Sinit requires ST(Sinit) = nB0 bits for

calculating its storage requirements. AP(Sinit) = |Sinit| is the

number of applied tests.

The process takes into account a predetermined set of

padding options. There are 2l potential paddings for a

length of l. As a result, as long as*l*is*small*enough, all

paddings of*length*l =*0, *1,... can be considered. Even

for tiny values of l, experimental data for benchmark

circuits show that not all paddings are helpful. Furthermore,
the effect of varied paddings on storage requirements is the

same. As a result of these findings, the following set was

chosen. Paddings with lengths of l = 0, 1, and 2 are all

included in ∏.

Include all 0 and 1 paddings, as well as

paddings*with*a single*0*or*a*single*1. For longer

durations, include all 0 and 1 paddings, as well as

paddings*with*a*single*0 or a*single*1. Paddings for*l =

4 are, for example, 0000, 1000, 0100, 0010, 0001, 1111,

0111, 1011, 1101, and 1110. 7*+ (L-2)(L+5) or O(L2) is the

amount of paddings in ∏. This means that the procedure's

runtime grows quadratically with L. Paddings*with*l

>*16*bits are1rarely1used, according to the test findings

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 84

with L = 20. Furthermore,if1the*greatest number1of

padding1bits used1in1 iteraton1I ≥ 1 is lmax,i,
iterations2i +1, 2i + 2,... rarely useepaddings

withhmoreethannlmax,ibbits in an iterative application of the

technique. Because the runtime is proportional to L2, a

cheoice of L that is too big increases the runtime

unnecessarily. As a result, for iteration 1, L = min{16,

B0=/2} is employed. L = lmax,i-1 for iteration I > 1. It's worth

noting that using a different set of paddings could result in

lower storage requirements. To take advantage of this

observation, the method can be resumed with a different set

of paddings after it has finished with one set.

Theetechniqueiserestartedewithetheefollowingesetsofe

paddings for the experiments in this article. All paddingssof

slength 0 ≤sl ≤s16 with nos0s, nos1s, assingle 0 oraassingle

1 are included in this set ∏=∏'. The set ∏m contains

allxthexpaddings ofxlength 0≤!l ≤!16 thatxhavexmx0s
orxmx1s forxm ≥2. All the potential paddings of length 0

≤l≤ 16 are included in the unionxofxallxthexsets ∏m with

l≤ m≤ 8. Allowing the padding to come before or after the

seed is another option.

The process for lowering S's storage requirements is

shown in Fig.1 S = Sinit at first. The technique iteratively

considers the paddings one by one. After an iteration in

which S's storage requirements do not decrease, the

procedure ends. During an iteration, the method performs

the steps below for each padding . It constructs a fresh set

of seeds Snew using[.  is utilised

asiaipaddingiforieachiseediiniSnew, which increasesefault

coverage. If aeseedesi witheitsecurrent seteofepaddingsePi

doesenoteincrease theefault coverageeaftereis addedeto

theesubset ofepaddings forenumerous seeds,|si (along

withePi) is excluded from Snew.

The technique uses forward-lookingereverse-order

faultesimulationato eliminate unneeded paddingsafrom Snew

once it is built. This procedure may also reveal that Snew has

more seeds that can be eliminated. The approach uses two

conditions to assess whether Snew is better than S when

considering the final set of seeds, Snew. The first criterion
stipulates that Snew's storage requirements be smaller than

S's. The second requirement is that Snew's number of applied

tests does not surpass Sinit's by more than a constant

percentage. As a result, if ST(Snew) < ST(S) and AP(Snew)

≤|Sinit|(1 + /100), the procedure accepts Snew. It assigns S =

Snew in this scenario andaconsidersaadditional paddingsain

relation toatheanewasetaS. Snew isadiscarded if this is not

the case.

The experiments demonstrate that even when =∞ is

used, the approach keeps AP(Snew) within 10% of AP(Sinit)

= |Sinit|. A bigger number of applicable tests is only attained

in a small number of circumstances. The process is run with

 = 20% to address these scenarios.

Fig. 1: Procedureeforrselectinggpaddings

Snew = F is the starting point for the building of Snew,

and F contains all the target defects. The process takes each

seed from S into account individually. LetaPi ={|pi,0,|pi,1,..,

pi,mi -1|} when si  S is taken into account. The process

computes si,j|=|si  pi,j|for}0|≤j < mi and the relatedptest ti,j,

after which faulttsimulationtwithtfault dumping of F

isscarriedsout underiti,j. The technique tosses out si and Pi if

no defect from F is found. As a result, Snew contains fewer

seeds than S. In any other case, the process goes assfollows.

Theeprocedureeassignsepi,mi = , computes si,mi and

ti,mi, then simulates faults with F fault dropping under ti,mi.

The technique discards pi,mi if none of the errors from F are

found. Otherwise, pi,mi innPi is included. SiiwithiPi is also

included tooSnew. Onlywfault simulationnwith F

faultjdropping isjnecessary forpSnew building. The
maximum numberrof simulateditests is constrained

byiAP(S) + |S|, where |S| denotes the contribution of  and

AP(S) isitheinumberiof testsiappliedibasedion S. As shown,

the quantity ofiapplieditests basedioniS is frequently very

similar to the quantity of seeds in Sinit.

When Snew is taken into account, paddings could no

longer be required. The approach employs forward-

lookingireverse-order faultisimulation as follows toiremove

extrabpaddings. The algorithm that builds Snew saves the

indexiof theifirstiseed i andithe firstipadding jisuch thatithe

testiti, jidetects fifor everyifault f  F. The procedure

executes fault simulation with fault dropping of F while

taking into account the seedsiandipaddings

initheireverseIorder. The following factors are taken into

account for each seed i and padding j during this operation.

The problem won't be discovered lateriin theireverse-order

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 85

faultisimulation procedure if ti,jlisithe firstitest to find

anyifaults when f  F. As a result, ti,j needs to be simulated.

The process simulates faults by dropping F beneath ti,j and

indicates this instance, the process signals that pi,j can be
eliminated and skips the simulation of ti,j. Afteritheireverse-

orderifault simulationipass is finished, all marked paddings

are eliminated. Ifia seedisi stays withiPi, it is also

eliminated fromISnew.

C. Bit Swapping LFSR

Bit swapping LFSR[25] is a simple test pattern

generator using*a standard LFSR*and a 2:1 multiplexer,

the bit-swapping*linear feedback*shift register*(BS-LFSR)

was created shown in fig.2. It is based on a*simple

bit*swapping technique applied*to the output*sequence of

a conventional*LFSR. By reducing the total*of

transitions*in the*scan input*of the*CUT, BS-LFSR

lowers the*average and*instantaneous weighted*switching

activity*(WSA) during*test operation.

Fig. 2: BitrswappinggLFSR

If the first two cells (c1 and c2) have been selected for

swapping and cell has a selection line, then O2 (the output
of MUX2) will produce a total transition savings of 2n-2

compared to the number of transitions produced by each

LFSR cell, while o1 has no savings. This is true for an

external n-bit maximal-length LFSR that implements the

prime polynomial xn + x + 1. (i.e., the savings in transitions

is concentrated in one multiplexer output, which means that

O2 will save 50 percent of the original transitions produced

by each LFSR cell).

D. Modified Dual CLCG

LFSR and linearicongruentialigenerator (LCG)
areitheimost frequentiand lowicomplexity PRBGs.

However,itheseiPRBGs significantly failirandomntests

andiare insecureidue tokits linearityystructure [12], [13]. In

the literature, there are many reports of investigations on

PRBGibased onpLFSR [14], chaoticimap

anddcongruentlmodulo. Due to its significant prime

factorization challenge, the Blum-Blum-

Shubogenerator|(BBS) is among the tested

polynomialitimeiunpredictable and

cryptographicallyisafeikey generators [15][16]. The

hardwareiimplementation for executing the

largeoprimeointegeromodulus andocomputing thelhuge
specialprimeiinteger is rather difficult, despite being secure.

There are several BBS PRBG architectures, which are

covered in [17] and [18]. Ailow hardwarepcomplexity

coupledkLCGk(CLCG) hasobeen suggested inl[17] and

[18] to reduce it because the majority of them either use a

lot of hardware space or have excessive clock latency. The

CLCG approach, which couples two LCGs to create the

pseudorandom bit at each clock cycle, is more secure than

chaotic-based PRBGs and single LCGs [19]. The

discreteffourierttransform (DFT)itest andifiveiother

important NISTistatisticalitests show that the CLCG
approach fails, despite an increase in security [20]. DFT

analysis uncovers periodic patterns in CLCG, revealing it to

be a weak generator. To fix this,[20] presented

anotheriPRBG approach, i.e. dual-CLCG thatiinvolvesitwo

inequalitylcomparisons andifour LCGspto generate

pseudorandomobitosequence. Only when inequality

equations are held does the dual-CLCG approach produce

one-bit random output. As a result, it is impossible to

produce pseudorandom bits throughout each iteration. To

produce random bits in constant clock time, it is therefore

extremely difficult to create an efficient architecture.

Fig. 3: ArchitectureIofIdualiclcg

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 86

Fig. 4: Architectureiof theilinear congruentialigenerator

A novel PRBGomethod[26] and itsoarchitecture are

offered inothis study to address the aforementioned issues

with the current dual-CLCGomethodnandoitsodesign
shown in fig.3 and fig.4. The "Modifiedpdual-CLCG"

approach isothe modified version of the PRBG method that

has been proposed. The suggested improved dual-CLCG

approach, which is defined mathematically as follows,

produces pseudorandom bits by congruentially adding the

outputs of two coupled linear congruential generators

(CLCGs) by modulo 2.

xi+1= a1 × xi + b1 mod2n (1)

yi+1 = a2 × yi + b2 mod2n (2)

pi+1 = a3 × pi + b3 mod2n (3)

qi+1 = a4 × qi + b4 mod2n (4)

Theicongruentialpmodulo-2equation[25]*isousedkto

generate the pseudorandomibit sequence Zi (5)

Zi =(Bi + Ci)mod2 =Bi xor Ci (5)

Bi =

And

Ci=

Here, the initial seeds are x0, y0, p0, and q0 generated

using bit swapping LFSR while the constant parameters are

a1,lb1, a2,nb2,aa3,ab3,ba4 andpb4. The prerequisites for

obtaining the maximumplengthpperiod are theosame as

those for thepdual-CLCGpapproach currently in use.

Equation is used to specify the congruential modulo-

2madditionpofptwo separate connected LCGpoutputskin

the proposed modifiedudual-CLCGuapproach (5). As a
result, the congruential modulo-2 addition generates one-bit

randomooutput after eachiiteration without skipping any

random bits. Sinceithe connected LCGvoutputsvhas a

maximumolengthmperiod of 2n for an n-bit

moduluskoperand. Tooperform thecmodulo-2

additionqoperation, itatakesponlyysingle XORulogic.

Therefore, withpequation (5), themproposed

PRBGdmethod canpreducerthe largeomemory areajused

inJthe existing dual-CLCGcmethod and
alsohcandachieveJthe full-lengthpperioduofe2n.

III. RESULT AND DISCUSSION

Fig. 5: Existing method

Fig. 6: Proposed method

For padding of LFSR, an eight bit LFSR is taken. The

seed for 8 bit LFSR is 00110011. For making 9 bit LFSR

one bit is padded to existing seed. Here 0 is padded with 8

bit seed and 9 bit seed is generated as 001100110. Similarly

two bits 10 is added to generate 10 bit LFSR. S27 bench

mark circuit is used testing and obtain fault coverage. For

getting fault coverage stuck at 0 fault is inserted in one of

the gate in S27 benchmark circuit.

Fig.5 shows the existing method and fig.6 is the

proposed method in which lfsr_test_data/clk indicates the

clock for the circuit and lfsr_test_data/rst is the common

reset. lfsr_test_data/seed is the input 8 bit seed value.

lfsr_test_data/fault is 0 indicate no fault and 1 indicated

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 87

presence of fault. lfsr_test_data/tf shows the total number

of faults. lfsr_test_data/op_ff is the output of S27
benchmark circuit and lfsr_test_data/op_ff1 is S27

benckmark circuit with a stuck at 1 fault. When op_ff is not

equal to op_ff1 a fault is detected thus lfsr_test_data/fault

value changes to 1 and a number is added to

lfsr_test_data/tf. By comparing fig 5.1 and 5.2 it is visible

that fault coverage in existing method is 16 and fault

coverage in proposed method is 22. The use of bit

swapping LFSR in modified dual CLCG reduces the

number of transitions which leads to reduced switching

activities.

IV. CONCLUSION

The padding of LFSR seeds helps to generate the

higher bit lfsr by padding extra bits to existing seeds this

method also helps to reduce the test data volume. In VLSI

testing most algorithms focuses on either reduction of test

data volume or reduction in average power consumption.

Hence by using bit swapping LFSR with padding technique

reduces the number of transitions thus the switching

activities are reduced gradually results in low power
consumption with reduced test data volume. Also using

modified dual CLCG method randomization is possible and

it will improve the fault coverage as compared to existing

padding method. From the analysis of experiments fault

coverage obtained from the existing method is 16 and the

fault coverage of proposed method 22. Here the main focus

is given to reduce the test data volume along with reduced

number of transitions.

REFERENCES

[1.] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth,

B. Keller, and B. Koenemann, “OPMISR: The

foundation for compressed ATPG vectors,” in Proc.

Int. Test Conf., 2001, pp. 748–757.

[2.] N. A. Touba, “Survey of test vector compression

techniques,” IEEE Des. Test. Comput., vol. 23, no. 4,

pp. 294–303, Apr. 2006.

[3.] Pomeranz and S. M. Reddy, “A storage based built-in

test pattern generation method for scan circuits based

on partitioning and reduc�tion of a precomputed test
set,” IEEE Trans Comput., vol. 51, no. 11, pp. 1282–

1993, Nov. 2002.

[4.] Pomeranz and S. M. Reddy, “Static test data volume

reduction using complementation or modulo-M

addition,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 6, pp. 1108–1112, Jun.

2011.

[5.] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P.

Szczerbicki, and J. Tyszer, “Deterministic clustering

of incompatible test cubes for higher power-aware

EDT compression,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 30, no. 8, pp. 1225–
1238, Aug. 2011.

[6.] Pomeranz, “On the computation of common test data

for broadside and skewed-load tests,” IEEE Trans.

Comput., vol. 61, no. 4, pp. 578–583, Apr. 2012.

[7.] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy, and J.

Tyszer, “Deterministic stellar BIST for in-system

automotive test,” in Proc. Int. Test Conf., pp. 1–9,

2018.
[8.] Pomeranz, “Input test data volume reduction using

seed comple�mentation and multiple LFSRs,” in

Proc. VLSI Test Symp., 2020, pp. 1–6.

[9.] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois,

“Generation of vector patterns through reseeding of

multiple-polynomial linear feedback shift register,” in

Proc. Int. Test Conf., 1992, pp. 120–129.

[10.] O. Acevedo and D. Kagaris, “Using the Berlekamp–

Massey algorithm to obtain LFSR characteristic

polynomials for TPG,” in Proc. Int. Symp. Defect

Fault Tolerance VLSI Nanotechnol. Syst., 2012, pp.

233–238
[11.] M. Frustaci, P. Pace, G. Aloi, and G. Fortino,

“Evaluating critical security issues of the IoT world:

Present and future challenges,” IEEE Internet Things

J., vol. 5, no. 4, pp. 2483–2495, Aug. 2018.

[12.] E. Zenner, “Cryptanalysis of LFSR-based

pseudorandom generators— A survey,” Univ.

Mannheim, Mannheim, Germany, 2004.

[13.] J. Stern, “Secret linear congruential generators are not

cryptographically secure,” in Proc. 28th Annu. Symp.

Found. Comput. Sci., Oct. 1987, pp. 421–426.

[14.] D. Xiang, M. Chen, and H. Fujiwara, “Using weighted
scan enable signals to improve test effectiveness of

scan-based BIST,” IEEE Trans. Comput., vol. 56, no.

12, pp. 1619–1628, Dec. 2007.

[15.] L. Blum, M. Blum, and M. Shub, “A simple

unpredictable pseudo�random number generator,”

SIAM J. Comput., vol. 15, no. 2, pp. 364–383, 1986.

[16.] Sidorenko and B. Schoenmakers, “Concrete security

of the Blum�Blum-Shub pseudorandom generator,”

in Cryptography and Coding (Lecture Notes in

Computer Science), vol. 3796. Berlin, Germany:

Springer, Nov. 2005, pp. 355–375.

[17.] K. Panda and C. K. Ray, “FPGA prototype of low
latency BBS PRNG,” In Proc. IEEE Int. Symp.

Nanoelectron. Inf. Syst. (INIS), Indore, India, Dec.

2015, pp. 118–123.

[18.] P. P. Lopez and E. S. Millan, “Cryptographically

secure pseudorandom bit generator for RFID tags,” in

Proc. Int. Conf. Internet Technol. Secured Trans.,

London, U.K., vol. 11, Nov. 2010, pp. 1–6.

[19.] R. S. Katti and R. G. Kavasseri, “Secure pseudo-

random bit sequence generation using coupled linear

congruential generators,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), Seattle, WA, USA, May 2008,
pp. 2929–2932.

[20.] R. S. Katti, R. G. Kavasseri, and V. Sai,

“Pseudorandom bit generation using coupled

congruential generators,” IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 57, no. 3, pp. 203–207, Mar. 2010.

[21.] Sidorenko and B. Schoenmakers, “Concrete security

of the BlumBlum-Shub pseudorandom generator,” in

Cryptography and Coding (Lecture Notes in

Computer Science), vol. 3796. Berlin, Germany:

Springer, Nov. 2005, pp. 355–375.

[22.] K. Panda and C. K. Ray, “FPGA prototype of low
latency BBS PRNG,” In Proc. IEEE Int. Symp.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL113 www.ijisrt.com 88

Nanoelectron. Inf. Syst. (INIS), Indore, India, Dec.

2015, pp. 118–123.
[23.] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In

Test for VLSI Pseudorandom Techniques. New York,

NY, USA: Wiley Intersci., 1987.

[24.] S. Bodhe, M. E. Amyeen, C. Galendez, H. Mooers, I.

Pomeranz, and S. Venkataraman, “Reduction of

diagnostic fail data volume and tester time using a

dynamic N-cover algorithm,” in Proc. VLSI Test

Symp., 2016, pp. 1–6.

[25.] S. Abu-Issa and S. F. Quigley, "Bit-Swapping LFSR

and Scan-Chain Ordering: A Novel Technique for

Peak- and Average-Power Reduction in Scan-Based

BIST," in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28,

no. 5, pp. 755-759, May 2009, doi:

10.1109/TCAD.2009.2015736.

[26.] K. Panda and K. C. Ray, "Modified Dual-CLCG

Method and its VLSI Architecture for Pseudorandom

Bit Generation," in IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 66, no. 3, pp. 989-

1002, March 2019, doi: 10.1109/TCSI.2018.2876787.

http://www.ijisrt.com/

