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Abstract:- The main objective of this manuscript is to 

offer an optimization approach for the common thin-

walled I, Z and channel-section beams subjected to direct 

torsion. The displacement limitations for the incident 

angle of twist are only considered: Using the Lagrange 

multiplier method, the mass of the supposed element is 

assumed to be the objective function, the deduced 

equations have solutions can represent the optimal values 

of the ratios between dimensions of the formed parts of 

the considered sections with respect to the global length of 

element. 
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I. INTRODUCTION 
 

Many reports have been carried out for the optimization 

purposes treating the situations where geometrical 

configurations of structures are specified and only the 

formulated dimensions of parts, such as masses in order to 

attain the minimum structural weight or cost[1], [2].Many 

approaches have been followed for the localized of the most 

minimum point for the optimization issues[3]Common cross-

sections, especially in steel industries are the I, Z and channel 

sections. A series of exertions appear where the optimization 

parameters of various common cross-sections, such as I-

section [4], channel-section [5]or Z-section beams [6]have 

been determined by Lagrange’s multipliers technique. The 

preliminary concern through the formulation of the basic 

mathematical relations are the assumptions of the thin-walled 

beam theory, on one side [7]and the rudimentary assumptions 

of the optimum design on the other. Thin-walled steel 

sections in particular with the open nature, are commonly 

susceptible to large warping stresses and excessive twist 

when applying torque. Therefore, a familiar practice was 

presented to vanish twisting moments in steel assemblies 

involving steel open sections whenever it is possible. 

However, in a number of practical applications, twisting 

cannot be avoided and the designer is compelled to count on 

the torsional resistance of these members. The classical 

formulation for open thin-walled sections subjected to torsion 

was developed by Vlasov [7], the Vlasov formulation is based 

on two fundamental kinematic assumptions: (a) In-plane 

deformations of the section are negligible, and (b) shear 

strains along the section mid-surface are negligible. 
 

 

A. Major Hypotheses 

The formulation is limited to be involved when analysis 
of open section thin-walled beams under the effect of 

torsional moment.  
 

In the considered case, cantilever beam has a length L 

under the effect of direct torque at its warpless end. The 

studied cross-sectional profile is indicated below inFig. 1). It 

is assumed to be formed from identical flanges` widths with 

considering unchanged thickness for all parts. 

 

 

Fig. 1: Considered section in the optimization process 
 

B. Lagrange principle 

The most popular method to implement the required 

objective to find out the optimal dimensions of cross-sections. 

Lagrange method need an objective function, which can be 
supposed the total mass of the studied prismatic element 

(mass = massmin , A = Amin). On the other hand, a 

constraint that govern our design process, would be the 

limitation of the incident angle of twist that causing the 

permitted deflectionф ≤ ф(δmax)
. 

 

C. Deflection constraint: 

The deflection is limited for cantilever beams and set in 

most design codes of practice by L/180 for live load and L/90 

for the combination of dead &live load. These values can be 
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connected to the incident twisting angle corresponding to the 

applying torque as follows: 

 

Fig. 2: Relation between the incident twisting  angle and 

the corresponding deflection

. 

δ = b ∗ sin(ф) − ∆y 
∆y = 0.5h(1 − cos(ф)) 

δ = b ∗ sin(ф) − 0.5h(1− cos(ф)) .................................. (1) 

This relation can be written in the following form with 

considering a small value for ф(sin(ф) ≅ ф, cos(ф) ≅ 1): 
Therefore, the constraint for twisting angle can be noticed 

for ф
all
=

L

n∗b
 . 

Where, n= 90, 180 as indicated above. 

Using the induced equation in AISC representing the incident 

twisting angle (ф) W.R.T. the applying torque at a warpless 

end of a cantilever beam with using a specific section having 

individual properties of (G, E, Cw , J, λ, L) as follows: 
 

ф = (1 − (
2(cos(λL)−1)

λLsin(λL)
)) ∗

ML

GJ
            (2) 

Where: 

E is the modulus of elasticity. 

G is the shear modulus of elasticity, can be determined from 
E

2+2ϑ
. 

ϑ is the poisson ratio = 0.3 for common steels. 

Cw is the warping constant. 

J is the torsional constant. 

λ is the torsional parameter and is determined from √
GJ

Cw
=

0.62√
J

Cw
. 

D. Methodical implementation 

The objective function A = (2b+ h)t to be minimized. 

The constraint equation to be limited below the permitted 

deflection: 
 

(1− (
2(cos(λL)−1)

λLsin(λL)
)) ∗

ML

GJ
≤

L

nb
               (3) 

 

For C section: 
As listed in AISC design guide for torsion[8], the 

determination of torsional constant, warping constant and the 

torsional parameter for the C-section could be as follows: 

J = (2b + h) ∗
t3

3
 

Cw =
tb

3
h

2

12

(6b+ h)

3b + 2h
 

λ =
31 ∗ (

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1

2

25
 

Therefore, with a Lagrange multiplier is denoted by Y to 

avoid the confliction with the torsional parameter, the general 

equation including the objective function with the constraint 

equation in the form of F(b,h,t,L,Y) would be as follows: 
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t(2 ∗ b +  h) +  Y

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

L

180b
+

3LM

(

 
 
 
 
 25

(

 
 
 

2 cosh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
− 2

)

 
 
 

31L∗sinh

(

 
 
 31L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
(

t2(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

−  1

)

 
 
 
 
 

Gt3(2 ∗ b +  h)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

To execute the optimization approach, it is a must to 
apply the Lagrange multiplier to a vector depends on each 

parameter concerning all dimension (b,h,t,L,Y) as indicated 

above.It is worth noting that the relationships deduced from 

these derivations will be complex enough to bring this issue 

to its face.When noticing those resulting equations, using  

the last two developed equations will give the 
prerogativeto to use the last equation arising from the last 

derivation (
∂F

∂Y
) would be used to devastate the subsequent 

equation (
∂F

∂L
) and the following can be extracted: 

 

∂F

∂Y
=

L

n∗b
+

3ML

(

 
 
 
 
 
 
 
 
 

25∗

(

 
 
 
 

2∗cosh

(

 
 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
 

− 2

)

 
 
 
 

31∗L∗sinh

(

 
 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
 

∗(
t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

− 1

)

 
 
 
 
 
 
 
 
 

G∗t3∗(2∗b + h)
= 0 ......................................................( 4) 

Therefore: 

∂F

∂L
=

25∗

(

 
 
 

2∗cosh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
− 2

)

 
 
 

31∗L∗sinh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

− 1− 1+

cosh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
∗

(

 
 
 

2∗cosh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 
− 2

)

 
 
 

L sinh
2

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 

=

0 ...................................................................................................................................................................... (5) 

 

Hereafter, the following relation can be concluded: 

 

31∗(
t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25∗tanh

(

 
 
 31∗L∗(

t2∗(2∗b + h)∗(6∗b + h)

b
3∗h2∗(3∗b + 2∗h)

)

1
2

25

)

 
 
 

=
(1+

G∗t3∗(2∗b + h)

(n∗b)∗3∗M
)

(1−
G∗t3∗(2∗b + h)

(n∗b)∗3∗M
)

 ............................................................................................... (6) 

 

By bearing in mind that (r1 =
h

b
, r2 =

t

b
,R =

L

h
 ) (G = 810 t/cm2  for most steels) , ( n = 180) to give more appropriately to the 

design process, the relation can be formed to: 
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tanh (1.24
R

r2
∗ (

(2+ r1)∗(6+ r1)

(3+ 2∗r1)
)

1

2
)

1.24
R

r2
∗ (

(2+ r1)∗(6+ r1)

(3+ 2∗r1)
)

1

2

=
(1−

1.5t3∗(2 +r1)

M
)

(1+
1.5t3∗(2 +r1)

M
)

 

For more simplifying: 

 

1.5t3∗(2 +r1)

M
=

(1.24∗
R

r2
∗(
(2+ r1)∗(6+ r1)

(3 + 2∗r1)
)

1
2
−tanh(1.24∗

R

r2
∗(
(2+ r1)∗(6+ r1)

(3 + 2∗r1)
)

1
2
))

(1.24∗
R

r2
∗(
(2+ r1)∗(6+ r1)

(3 + 2∗r1)
)

1
2
+tanh(1.24∗

R

r2
∗(
(2+ r1)∗(6+ r1)

(3 + 2∗r1)
)

1
2
))

 ......................................................................... (7) 

 

This relation presents the optimal solution for the 

optimal ratios for all global dimensionfor C section. But the 

single solution to this equation would be very complicated to 

be catch, therefore, it is possible to be solved numerically or 

solved graphically using some logical assumptions. By noting 

many texts of codes of practice and the common industrial 

cross-sections, the thickness, t could be ranged between 1.25 

mm to 4 mm, R could be ranged between 5 to 40, r2= 0.1 and 

λL could be ranged between 0.1 to 10 as texted in AISC guide 

for torsion. Consequently, the most convenient suggestions 

for r1 would be illustrated form Fig. 3) to Fig. 5): 

 
Fig. 3: The suggested values for 𝒓𝟏 for C sections, whenapplying a direct torque of 0.1 t.cm 

 

 

Fig. 4: The suggested values for 𝒓𝟏 for C sections,when applying a direct torque of 0.5 t.cm 

𝐫𝟐 = 𝟎.𝟏 

𝐫𝟐 = 𝟎.𝟏 

𝒓𝟏 

𝝀𝑳 
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Fig. 5: The suggested values for 𝒓𝟏for C sections, when applying a direct torque of 1 t.cm 

 

For Z section: 

Cw =
tb

3
h

2

12

(b+ 2h)

2b+ h
 

J = (2b+ h) ∗
t3

3
 

λ =
31 ∗ L ∗ (

t2∗(2∗b + h)2

b
3∗h2∗(b + 2∗h)

)

1

2

25
 

Following the same approach, this can be accomplished that: 

1.5𝐭𝟑∗(𝟐+ 𝐫𝟏)

Mt.cm
=

(𝟏.𝟐𝟒∗𝐑∗(
(𝟐 + 𝐫𝟏)

𝟐

𝐫𝟐
𝟐∗(𝟏+ 𝟐𝐫𝟏)

)

𝟏
𝟐
)−𝐭𝐚𝐧𝐡(𝟏.𝟐𝟒∗𝐑∗(

(𝟐 + 𝐫𝟏)
𝟐

𝐫𝟐
𝟐∗(𝟏+ 𝟐𝐫𝟏)

)

𝟏
𝟐
)

(𝟏.𝟐𝟒∗𝐑∗(
(𝟐 + 𝐫𝟏)

𝟐

𝐫𝟐
𝟐∗(𝟏+ 𝟐𝐫𝟏)

)

𝟏
𝟐

)+𝐭𝐚𝐧𝐡(𝟏.𝟐𝟒∗𝐑∗(
(𝟐 + 𝐫𝟏)

𝟐

𝐫𝟐
𝟐∗(𝟏+ 𝟐𝐫𝟏)

)

𝟏
𝟐

)

 ........................................................................ (8) 

 

Therefore, the corresponding values for r1 can be established from the following figures: 
 

 
 

Fig. 6: The suggested values for 𝒓𝟏 for Z sections, when applying a direct torque of 0.1 t.cm 

𝐫𝟐 = 𝟎.𝟏 

𝐫𝟐 = 𝟎.𝟏 
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Fig. 7: The suggested values for 𝒓𝟏 for Z sections, when applying a direct torque of 0.5 t.cm 

 

 

Fig. 8: The suggested values for 𝒓𝟏 for Z sections, when applying a direct torque of 1 t.cm 

For I section: 

Cw =
tb

3
h

2

24
 

J = (2b+ h) ∗
t3

3
 

λ = 1.7536 (
t2 ∗ (2 ∗ b +  h)

b
3 ∗ h

2
)

1

2

 

 

Following the same approach, this can be accomplished that: 

 

1.5t3(2 + r1)

Mt .cm
=

1.75R

r2
√(2 + r1)−tanh(

1.75R

r2
√(2 + r1))

1.75R

r2
√(2 + r1)+tanh(

1.75R

r2
√(2 + r1))

 ......................................................................................................... (9) 

 

Therefore, the corresponding values for r1 can be established from the following figures: 

𝐫𝟐 = 𝟎.𝟏 

𝐫𝟐 = 𝟎.𝟏 

𝒓𝟏 

𝝀𝑳 

𝒓𝟏 

𝝀𝑳 
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Fig. 9: The suggested values for 𝒓𝟏for I sections, when applying a direct torque of 0.1 t.cm. 

 

 

Fig. 10: The suggested values for 𝒓𝟏 for I sections, when applying a direct torque of 0.5 t.cm. 

 

 

Fig. 11: The suggested values for 𝒓𝟏 for I sections, when applying a direct torque of 1 t.cm. 

  

𝒓𝟏 

𝝀𝑳 

𝐫𝟐 = 𝟎.𝟏 

𝐫𝟐 = 𝟎.𝟏 

𝐫𝟐 = 𝟎.𝟏 
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II. EVALUATION AND DISCUSSIONS  
 

The following extraction can be found out from the 

noticed relations: 
 

1.5t3∗(2 + r1)

Mt.cm
= (

λL−tanh(λL)

λL+tanh(λL)
) would be the mother 

relation can achievethe optimal ratios for any cantilevered 

beam with any cross-sectional profile, when applying a direct 

torque at its warpless end. 
 

The calculation is carried out for the cantilever beam of 

preferred section of the thickness 1.25 mm ≤ t≤ 4mm, r2 =
 0.1 

 

Value of the span to depth ratio can be limited within 5 

to 30, and cannot be used 40, because this would need 

preposterous values for λL with it is corresponding value for 

thickness. 
 

III. CONCLUSION 

 

This manuscript presents a methodology to optimize of 

thin-walled open-section cantilever beams with a warpless 

end, handling the Lagrange multiplier approach. Choosing 

the cross-section area as the objective function and vertical 

deflection for constraint functions, optimal ratios of cross-

section individual parts (webs and flanges) are illustrated 

from fig. (3) to fig. (11) by following the perpendicular line 

from pointing of λL till the required thickness, then by simple 

interpolation, the value of the corresponding R, and the value 

of r1 can be determined easily. 
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