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Abstract:- With the help of the Riemann equation, the 

𝐞𝐱𝐩(−∅(𝝃))-expansion method is used to develop 

innovative explicit and precise solutions as well as solitary 

wave solutions for the (2 + 1)-D generalized breaking 

soliton equation. We can acquire exact explicit kink single 

kink, and periodic kink solutions with the help of Maple 

and the 𝐞𝐱𝐩(−∅(𝝃))-expansion approach. By assigning 

special values to the parameters, solitary wave solutions 

can be generated from exact solutions. Furthermore, we 

may infer that our preferred method is powerful, simple, 

and easy to use, and that it provides far more trustworthy 

novel exact answers for mathematical physics and 
engineering treatments. 
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I. INTRODUCTION 

 

Nonlinear phenomena can be found in a wide range of 

theoretical scientific fields, including fluid dynamics, optical 
fiber communication systems, plasma physics, and solid-state 

physics, among others. Due to their numerous arrivals in 

diverse submissions in various domains, such as 

mathematical physics, engineering, signal processing, control 

theory, biology, and so on, nonlinear fractional partial 

differential equations (NFPDEs) have been the concentration 

of many educations. A large deal of recent research has 

contributed to providing the innovative accurate and explicit 

solutions to NFPDEs. Numerous powerful schemes have 

been projected to obtain the approximate, exact and explicit 

solutions of these nonlinear equations, such as, Hirota 

bilinear technique [1], Bäcklund transformation scheme [2], 
inverse scattering transform [3] , extended tanh-function 

(mETF) method [4-6], homotopy analysis scheme [7-10], 

homotopy perturbation technique [11-13], Adomian 

decomposition system [14, 15], fractional sub-equation 

procedure [16],  Lagrange characteristic scheme [17],  

(G′/G)-expansion technique [18, 19], Sardar sub-equation 

methods [20], (
𝐺′

𝐺
,
1

𝐺
) expansion method [21], multiple exp-

function method [22, 23], Frobenius decomposition 

technique [24], local fractional variation iteration method 

[25], local fractional differential equations approach [26, 27], 

multiple (G′/G)-expansion approach [28], Riccati equation 

method mutual with the (G′/G)-expansion technique [29], 

cantor-type cylindrical coordinate system [30], modified 

simple equation method [31], ractional complex transform 

method [32],  exp(−∅(𝜉))-expansion method [33-36], and so 
on.  

 

In this study we have mainly engrossed on (2 + 1)-D 

generalized breaking soliton equation. Here we have 

converted the equation into the Riemann equation of the 

following form. 

 

The (2 + 1)-D generalized breaking soliton equation 

[37] is given by 

 

𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑦 + 𝛾𝑢𝑢𝑥𝑦 + 𝛿𝑢𝑢𝑦 + 𝜀𝑢𝑥𝛿𝑥
−1𝑢𝑦 = 0                                                        

(1) 

 

The Riemann wave's (2 + 1)-D interaction  is interpreted 

(1), in which overlapping solutions  have been produced for 

the case 𝛼 = 0.. The spectral parameter is named after the 

well-known breaking behavior that is characteristic of such 
equations. The spectral value is otherwise handled as a 

multivalued function. As a result, these equations' solution 

types would be multivalued. Our studied equation is studied 

by previous authored before. Recently Xu, Gui-qiong, and 

Abdul-Majid Wazwaz [38 ], Sachin, et al.[39], Yan, Xue-

Wei, et al [40] and so on  used this equation as extracting the 

abundant soliton solutions. As far our knowledge there is no 

extracting about Riemann equation through (2 + 1)-D 

generalized breaking soliton equation.  In this study our main 

goal is to solve Riemann equation which is a computational 

from of (2 + 1)-D generalized breaking soliton equation. 
Another important to know that to solve this equation we 

have utilized a mathematical method exp(−∅(𝜉))- expansion 

method [41] which is not imposed before regarding to solve 

our preferred equation.  

 

This is how the article is written: The exp(−∅(𝜉))-
expansion approach was explored in section 2 of this paper. 

We use this strategy to solve the nonlinear evolution 

equations mentioned earlier in section 3. Graphical depiction, 

results, and discussion are all included in section four. 
Conclusions are presented in Section 5.  
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II. CONSTRUCTION OF THE EXP(−∅(𝜉))-
EXPANSION METHOD: 

 

The exp(−∅(𝜉))-expansion method will be discussed 

word by term in this section. Consider the following example 

of a nonlinear partial differential equation: 

ℜ(𝑈,𝑈𝑥𝑥 , 𝑈𝑥𝑧 , 𝑈𝑥𝑦 , 𝑈𝑥𝑡𝑡 , …… . ) = 0(2) 

 

ℜ is a polynomial of 𝑈, its different type partial derivatives, 

in which the nonlinear terms and the highest order derivatives 

are involved, and  

 

𝑈 = 𝑈(𝑥, 𝑦, 𝑧, 𝑡) is an unfamiliar function. 

 

Step-1.  
Now we'll look at a transformation variable that will combine 

all of the independent variables into a single variable, such as 

𝑈(𝑥, 𝑡) = 𝑢(𝜉),𝜉 = 𝑘𝑥 + 𝑙𝑦 +𝑚𝑧 ± 𝑉𝑡             (3)                                                                                          

 

By fulfilling this variable Eq. (3) permits us reducing Eq. (2) 

in an ODE for 𝑈(𝑥, 𝑡) = 𝑢(𝜉) 𝑃(𝑢, 𝑢′, 𝑢′′ , 𝑢′′′ , …… . ) 
  (4) 

                                                      

Step-2.  
Assume that the solution of the ODE Eq. (4) can be stated as 

follows using a polynomial in exp(−∅(𝜉)) 
   𝑢 = ∑ 𝑎𝑖exp(−∅(𝜉))

𝑖𝑚
𝑖=0 ,               (5)  

                                 

 

where the derivative of ∅(𝜉) satisfies the ODE in the 

following form  

 ∅′(𝜉) = exp(−∅(𝜉)) + 𝜇 exp(∅(𝜉)) + 𝜆           (6)        

                                                                    

then the solutions of ODE Eq. (6) are 

 

Situation I:  

Hyperbolic function solution (when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0): 

 

      ∅(𝜉) = ln

(

 
 
−√𝜆2−4𝜇 tanh(

√𝜆2−4𝜇

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

             

         

and         ∅(𝜉) = ln

(

 
 
−√𝜆2−4𝜇 coth(

√𝜆2−4𝜇

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

 

 

Situation II: 

Trigonometric function solution (when 𝜆2− 4𝜇 < 0, 𝜇 ≠
0)): 

         ∅(𝜉) = ln

(

 
 
√4𝜇−𝜆2 tan(

√4𝜇−𝜆2

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

             

          

and            ∅(𝜉) = ln

(

 
 
√4𝜇−𝜆2 cot(

√4𝜇−𝜆2

2
(𝜉+𝐶))−𝜆

2𝜇

)

 
 

 

 

Situation III: 

Exponential function solution (when 𝜆2 − 4𝜇 > 0, 𝜇 =
0): 

               ∅(𝜉) = − ln (
𝜆

exp(𝜆(𝜉+𝐶))−1
)        

     

Situation IV: 

Rational function solution (when 𝜆2 − 4𝜇 = 0, 𝜇 ≠
0, 𝜆 ≠ 0): 

                 ∅(𝜉) = ln (−
2(𝜆(𝜉+𝐶)+2)

𝜆2(𝜉+𝐶)
)        

 

 

Situation V: 

Other solution (when 𝜆2 − 4𝜇 = 0, 𝜇 =, 𝜆 = 0): 

                     ∅(𝜉) = ln(𝜉 + 𝐶)     
 

Where 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1,… ,𝑚 and 𝜇 are constants to be 

determined later. The homogeneous balance between the 
highest order derivatives and nonlinear terms appearing in 

ODE can be used to calculate the positive integer m  in (3). 

 

Step-3.  

We execute a polynomial form of exp(−∅(𝜉)) by 

replacing Eq. (5) into Eq.(4) and utilizing the ODE (6) to 

aggregate all orders of exp(−∅(𝜉)) together. The algebraic 

system for 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1,… ,𝑚 and 𝜇 is obtained by 

equating each coefficient of this polynomial to zero.  
 

Step-4.  

Assuming that the constants 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1, … ,𝑚 and  

𝜇  can be obtained by solving the algebraic system, and that 

the general solutions of the auxiliary ODE (6) are well known 

to us, we may substitute 𝑎𝑖 , 𝑉, 𝜆; 𝑖 = 0,1,… ,𝑚 and 𝜇 the 

general solutions of Eq.(5) into Eq (6). As a result, we are 

able to find exact and explicit traveling wave solutions to 

nonlinear partial differential equations (2) 

 

III. USE OF THE PROPOSED METHOD 
 

In this part, we use the Riemann equation to obtain the 

exact solution of the (2 + 1)-D generalized breaking soliton 

problem using our proposed exp(−∅(𝜉))-expansion 

approach. The generalized breaking soliton equation of 

(2+1)-D in this case is of the form 

 

𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑦 + 𝛾𝑢𝑢𝑥𝑦 + 𝛿𝑢𝑢𝑦 + 𝜀𝑢𝑥𝛿𝑥
−1𝑢𝑦 = 0                                                       

(7)       

           

Where 𝛼, 𝛽, 𝛿are nonzero constants. In this situation, we 

turn the problem into a handy Riemann equation by creating 

overlapping solutions for the case 𝛼 = 0. If we put  

𝜀𝑢𝑥𝛿𝑥
−1𝑢𝑦 = 0 and free parameters are changed in unit we 

get the Riemann equation is of the form 
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 𝑢𝑡 + 𝑛𝑢𝑥𝑥𝑦 + 𝑙𝑢𝑢𝑦 + 𝛾𝑢𝑢𝑥𝑦 + 𝑠𝑢𝑥𝑢𝑦 = 0           (8)                                                                  

 

where 𝑢𝑦 = 𝑢𝑥 .  The travelling wave equation we take as the 

form 

 

𝑢 = 𝑢(𝑥, 𝑡), 𝜉 = 𝑔𝑥 − 𝜇𝑡, 𝑢 = 𝑢(𝜉), 𝑢(𝑥, 𝑡) = 𝑢(𝜉)   
                      (9)                                                                  

 
The following ordinary differential equation is obtained 

by using the travelling wave equation Eq. (9) and integrating 

Eq. (8) with regard to 𝜉. 

 

 2𝑚𝑛𝑟2𝑢′′ +𝑚(𝑙 + 𝑠)𝑢2 − 2𝜇𝑢 = 0                   (10)                                                    

 

We find 𝑁 = 2 when we analyze the homogeneous 

balance between the highest order derivative 𝑢′′ and the 

nonlinear factor 𝑢2. As a result, we can employ the auxiliary 

solution in the following form using our suggested method. 

 

 𝑢(𝜉) = 𝐴0 + 𝐴1𝑒
−∅(𝜉) + 𝐴2(𝑒

−∅(𝜉))
2
                (11)                                                                       

 

Where 𝐴0, 𝐴1 and 𝐴2are arbitrary constant to be 

resolute such that 𝐴1 = 0 while 𝜆, 𝜇 are arbitrary constants. 

 

We get the value of 𝑢′′ by differentiating Eq. (11) and 

utilizing Eq. (6).     
  

Now placing the value of 𝑢𝑎𝑛𝑑𝑢′′in Eq. (10) and 

coefficient of 𝑒𝑖𝜑(𝜉), 𝑖 = 0, ±1,±2…. to zero, we get 

 𝑚𝑙𝐴0
2 +𝑚𝑠𝐴0

2 + 2𝜇𝐴0                        

 4𝑚𝜇2𝑛𝑟2𝐴1
2 + 2𝑙𝑚𝐴0𝐴1 + 2𝑚𝑠𝐴0𝐴1 + 2𝜇𝐴1 

2𝑙𝑚𝐴0𝐴2 + 𝑙𝑚𝐴1
2 + 2𝑚𝑠𝐴0𝐴2 +𝑚𝑠𝐴1

2 + 2𝜇𝐴2   
4𝜆𝑚𝜇𝑛𝑟2𝐴1 + 2𝑙𝑚𝐴1𝐴2+ 2𝑚𝑠𝐴1𝐴2  

𝑙𝑚𝐴2
2 +𝑚𝑠𝐴2

2  
Resolving this set of polynomial by using maple we get 

following solutions set 
Set-1: 

𝜇 = −
1

2
𝑙𝑚𝐴0 −

1

2
𝑚𝑠𝐴0, 𝐴0 = , 𝐴2 =

𝐴2, 𝐴1 = 1, 
 

Where 𝜇 and 𝜆 are arbitrary constants.  

Now replacing the values of 𝑙,𝑚, 𝐴0, 𝐴1, 𝐴2into Eq. (11) we 

get 

 

Incident-I: (when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0)) we get following 

hyperbolic solution 

Family-1 

𝑢1(𝜉) =

  

 

Where, 𝜉 = 𝑔𝑥 − (−
1

2
𝑙𝑚𝐴0 −

1

2
𝑚𝑠𝐴0)  and 𝐶 is an arbitrary constant. 

Family-2 

𝑢2(𝜉) =   

 

Incident-II: (when 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0) get following trigonometric solution 

Family-2 

   𝑢3(𝜉) =  

      𝑢4(𝜉) =   

Where,𝜉 = 𝑔𝑥 − (−
1

2
𝑙𝑚𝐴0 −

1

2
𝑚𝑠𝐴0)  and 𝐶 is an arbitrary constant. 

Incident-III: (when 𝜆2 − 4𝜇 > 0, 𝜇 = 0, 𝜆 ≠ 0) we get following exponential solution 

Family-3 

 𝑢4(𝜉) =  

Where, 𝜉 = 𝑔𝑥 − (−
1

2
𝑙𝑚𝐴0 −

1

2
𝑚𝑠𝐴0)   

 And 𝐶 is an arbitrary constant. 

 

Incident IV & Incident V: 

When 𝜆2− 4𝜇 = 0 the executing value of 𝐴0 is undefined. So the solution cannot be obtained. For this purpose incident IV is 

rejected. 
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Likewise when 𝜆2 − 4𝜇 = 0, 𝜇 =, 𝜆 = 0 the accomplishing value of 𝐴0, 𝐴1 are undefined. As a result, no solution can be found. So 

incident V is also excluded. 

 

 

IV. OUTCOMES AND DELIBERATIONS 

 

The physical elucidation of the Riemann equation's 

established exact traveling wave solutions will be covered in 

this part. In the section 'physical explanation,' the acquired 

traveling-wave solutions of the unique 3D time-fractional 

WBBM equations are described in three-dimensional 3D 

surface plots. MATLAB is used to construct the charts for 

u(x,t) at various time intervals with various values of (0,1). 

The plots clearly depict a range of solutions, such as the kink 

solution, solitary kink shape solution, and periodic wave 
solutions, which are all dependent on the selection of various 

free parameters with the necessary physical explanation.  A 

three-dimensional line plot compares several wave 

constituents or displays the degree of variation across time. 

Wave points are connected by a line and constructed in a 

series with equally spaced breaks to emphasize the 

relationships between them. The 3D elegance of the graphic 

adds to its visual appeal. A solitary wave, or soliton, is a self-

reinforcing wave packet that maintains its shape while 

travelling at a constant amplitude and velocity, according to 

mathematical physics. Soliton are physical system solutions 

to a class of nonlinear dispersive partial differential equations 
that are weakly nonlinear. Figure 1 depicts the key physical 

structures of these kink-type solutions, including their paths, 

segment shifts after impact, and dissociation into separate 

single kink soliton (1-5). The frequency and amplitude of the 

wave were modified as the parameter was improved, and the 

kink solution profile became single kink. 

 

 
 

Fig. 1. Depicts the singular kink solution for the function 

solution  𝑢1(𝜉) for the parameters𝜆 = 3, 𝜇 = −2, 𝑐 =

0.5, 𝑙 = 1, 𝑠 = 1,𝑚 = 1.9, 𝑔 = 1.5, 𝑟 = 1, 𝐴0 =
1, and𝐴2 = 1. 

 

 

 

 
Fig.2. Denotes the bright kink solution for the function 

solution  𝑢2(𝜉) for the parameters 𝜆 = 3, 𝜇 = −2, 𝑐 =

−2.5, 𝑙 = 1.8, 𝑠 = 1, 𝑟 = 1,𝑚 = 1.9, 𝑔 = 1.5, 𝐴0 =
1, and𝐴2 = 1. 

 
Fig3.  Signifies the periodic kink solution for the function 

solution  𝑢3(𝜉) for the parameters 𝜆 = 3, 𝜇 = 2, 𝑐 = 2.5, 𝑙 =

1.8, 𝑠 = 1, 𝑟 = 1,𝑚 = 1.9, 𝑔 = 1.5, 𝐴0 = 1, and𝐴2 = 1 

 
Fig. 4.  Characterizes the bright periodic kink solution for 

the function solution  𝑢4(𝜉) for the parameters 𝜆 = 3, 𝜇 =

−2, 𝑐 = −2.5, 𝑙 = 1.8, 𝑠 = 1, 𝑟 = 1,= 1.9, 𝑔 = 1.5, 𝐴0 =
1, and𝐴2 = 1 
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Fig. 5.  Symbolizes the singular kink solution for the 

function solution  𝑢5(𝜉) for the parameters 𝜆 = 3, 𝜇 = 0, 𝑐 =

−2.5, 𝑙 = 1.8, 𝑠 = 10, 𝑟 = 10, 𝐴0 = 1.5, and𝐴2 = 1 
 

V. CONCLUSIONS 

 

In this paper, the Riemann equation is used to examine 

accurate traveling-wave solutions of the (2 + 1)-dimensional 

generalized breaking soliton problem using the exp(−∅(𝜉))-
expansion method. Using the companionable wave 

transform, the equations are reduced to several ODEs. The 

ODE's consequence form is then used to exchange the 

expected solutions. The coefficients of like power of 

exp(−∅(𝜉)) are compared to zero to determine the SAE. The 

relationships between the parameters are shown by solving 

this system. Unwavering explicitly are certain physical and 

composite solutions made up of tangent, cotangent, cosecant, 

hyperbolic tangent, hyperbolic cotangent, and hyperbolic 

cosecant functions. To understand the impact of b, a graphical 

representation of certain solutions is represented in some 

finite fields using Maple. As a result, we strongly recommend 

that the findings of this study be made public. 
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