
Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB323 www.ijisrt.com 561

Implementation of Self Addressing RAM
Kiran P V, Naveen Kumar Kanavi, Gita Reshmi, Veena A

Department of Electronics and Communication Engineering,
Proudhadevaraya Institute of Technology,

Hosapete, India

Abstract:- This paper aims to implement a RAM which

can address itself to load the data into its memory.

Using Xilinx 14.1 ISE for simulation and synthesis the

RAM of size 16 x 32 is implemented with consecutive

addresses generated automatically by the additional

circuit in the design.

Keywords:- RAM, BRAM, Single Port BRAM, Dual Port

BRAM.

I. INTRODUCTION

The basic memory structures are divided into RAM and

ROM. The RAM, also known as Read/Write memory is

capable of both Read and Write operations, whereas ROM is

read only and can be useful in program memory of a
computing system. The basic operations in a RAM requires

an enable signal for both read and write operations, clock for

synchronization and data to be written into memory

locations. The address decoders are needed to reach the

memory locations in the memory for both operations which

significantly increases the complexity of the design.

II. BRAMS IN FPGAS

Xilinx FPGAs provide SelectRAM memory blocks that
can be utilized for implementing RAM, ROM, FIFO,

CAMs, large look up tables, buffers, shift registers etc. The

Spartan family of devices supports two configurations of

memories such as Dual Port RAMs and Single Port RAMs.

The BRAMs when used in dual port configuration have two

independent access ports which support read and write data

operations. Each port has its own clock and enable signals.

If used in single port configuration, it has only one set of

clock and enable signals as shown in the fig1 and Fig 2.

Fig. 1: Single Port BRAM

Fig. 2: Dual Port BRAM

Utilizing these configurations we can implement

variety of applications that involves memories, such as

FIFO, CAM, ROM, etc.

III. ALGORITHM

In this paper we discuss the algorithm that implements
a RAM that does not require address generation by address

decoders that are commonly found in any memory

implementations. Instead it relies on self addressing scheme

where each location of the memory is addressed by data

itself which is part of any location. Therefore data that we

refer here is partly actual data that we store in a location and

additional bits that act as an address for next location. The

overall algorithm is shown in Fig 3.

Fig. 3: Block Diagram of algorithm

The Multiplexer block selects the Base address which

is the address from where we need to write the data in to the

memory or next address where data is to be written into the

memory. Array block stores the set of data values to be

written into RAM at different locations. And RAM block

MULTIPLEXER
RAM

ARRAY

Base

Address

Data in

+

Address

Data

Out

Data

in

Data

Out

http://www.ijisrt.com/

Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB323 www.ijisrt.com 562

involves implementation of a single port RAM instantiated

through the VHDL code.

The data from the array is combined with Address by

the Multiplexer and this data is written into location

specified by the output from the multiplexer.

IV. IMPLEMENTATION

The implementation is done using Xilinx 14.1 ISE and

VHDL programming language. The entity is shown in Fig 4.

It has three input ports for Base Address, Clock and Write

Enable. One output port for reading the data out from the

memory. Fig 5 shows the internal architecture of the

algorithm which is implemented using structural modeling

in VHDL where it has four components. The component

mux implements the functionality of a multiplexer, Arry
impalements the data array, the component incmenter

implements auto increment for address and dualpram for

implementing single port RAM using VHDL component

primitive.

Fig. 4: Design Entity

Fig. 5: Architecture of Entity

V. OUTPUT WAVEFORMS

Fig.6 shows output waveforms produced by simulation

tool ISE simulator. The simulation results consists of Clock,

Enable and Data out signals.

Fig. 6: Simulation Waveforms

VI. DEVICE UTILIZATION

The device utilization is found by Xilinx Synthesis

tool.

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice

Registers
40 126800 0%

Number of Slice LUTs 40 63400 0%

Number of fully used

LUT-FF pairs
39 41 95%

Number of bonded

IOBs
42 210 20%

Number of Block

RAM/FIFO
1 135 0%

Number of

BUFG/BUFGCTRLs
1 32 3%

Table 1: Device utilization

VII. CONCLUSIONS

In this paper we implemented an algorithm that loads a

whole set of data values from the array into various memory

locations of RAM without involving address decoders. The

algorithm can write data into memory locations with data

itself as an address which reduces the dependency on

decoders. The algorithm was successfully verified using

Xilinx simulation tools.

REFERENCES

[1.] Kylie Locke, “Parameterizable Content Addressable

Memory”, Xilinx Application Note, March 2011.

[2.] “Using Block RAM in Spartan-3 Generation FPGAs”,

Xilinx Application Note, March 1, 2005.

[3.] Dave Astels, “Memories”, November 2021.

http://www.ijisrt.com/

