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Abstract:- During examination periods in schools, the 

demand on the use of examination rooms usually 

increases thus necessitating an optimal allocation of such 

rooms. This work seeks to explore an optimal way of 

allocating examination rooms by modeling the problem as 

a 0-1 Knapsack problem. Two approaches namely the 

Brute force and Dynamic programming techniques are 

used and implemented in Excel® and NetBeans® 

environments. The obtained results showed that dynamic 

programming approach yields a more optimal result than 

the Brute force implementation.  
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I. INTRODUCTION 

 

In nature, getting a result from a process involves 

usually a series of steps. In some cases, some steps are 

repeated while others occur once. These steps, also known as 

algorithms have been studied extensively by computer 

scientists and have helped to frame modern day computing 

and its related technologies. [14] suggests that we think of an 

algorithm as a recipe that describes the exact steps needed for 

a computer to solve a problem or reach a goal. In other words, 

it can be defined as a detailed step-by-step method for solving 

a problem by using a computer or a sequence of unambiguous 

instructions for solving a problem in a finite amount of time.  

 

A major part of human existence is the idea of getting 

the most value based on a limit at the smallest cost. An 

example is a person going shopping for clothes. Naturally, the 

person wants to get high quality clothes at the best possible 

cost. This situation is called a Knapsack problem in computer 

science and have been studied extensively and applied to 

solve problems in the Financial, Manufacturing, and other 

industries at large. The efficiency of an algorithm is measured 

with respect to the time required execute it and the amount of 

computational space used. Algorithms can also be sorted into 

sequential, parallel, and exact and approximate algorithms.  

 

Usually, in solving robust computing problems 

(problems that are dynamic in nature), there is usually more 

than a correct solution. This helps us to pick the most 

favourable solution (an optimal solution), with respect to time 

and space, that makes use of lesser resources and gives 

maximum output gain with respect to time and space. 

Dynamic programming is a well-suited technique for 

optimization problems because it solves problems by 

combining solutions of solved sub-problems.  

 

According to [8], Brute force algorithm, on the other 

hand, is a type of algorithm that tries a large number of 

patterns to solve a problem and rely on raw computing power 

to achieve this in some cases. 

 

Within every educational system, a period to test the 

knowledge of students based on what they have been taught 

must occur. In most formal educational setting, this period 

usually comes after rigorous class sessions. Not all citadels of 

learning have the structural resources to accommodate a 

combination of the number of students that can sit for 

different courses within the same time period. This work aims 

to find an optimal solution to this problem.  

 

 In this work, the data was modelled like that of typical 

University with a limited number of halls which invariably 

elongates the examination period.  Given the number of 

courses that a typical university runs, this works uses Brute 

force and Dynamic programming techniques to find an 

optimal solution to a 0-1 knapsack problem in the 

configuration of number of students that can make use of a 

particular hall at the same time.  

 

In the 0-1 knapsack problem, each item (in this case, all 

students sitting for a particular course) must be put entirely in 

the knapsack or not included at all, hence, the 0-1 

connotation. The number of resources is limited to one hall 

because of the weight constraint of the knapsack problem. For 

the purpose of this work, we name this hall Main Hall.  

 

II. LITERATURE REVIEW 
 

Algorithms help us put computational and resources 

requirement for solving a problem in the right perspective. 

Various works like [2] and [5] discuss the strength and 

weaknesses of algorithms which ultimately influence choice. 

Generally, factors that influence an algorithm’s choice are the 

number of items to be worked on, the type of algorithimic 

activity that would be carried out on such items, restrictions 

on the items, and the kind of storage device that would be 

used.  

 

[1] posits that rather than solving overlapping 

subproblems repeatedly, dynamic programming suggests 

solving each of the smaller sub problems only once and 
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recording the results in a table from which we can then obtain 

a solution to the original problem. The precding statement 

suggests that dynamic programming help to make use of little 

amount of computational resources because instead of 

solving all sub-problems, it makes use of the result of 

previously solved problem to solve other problem withing the 

problem cycle phases. This also helps to save time which is 

the other primary focus of efficient algorithms.  

 

Consider a person holding a sack that can contain a set 

number of items in a store. In a typical store, there are various 

items with different values and weights. The knapsack 

algorithm’s goal is to fit into the sack, a combination of items, 

that are most valuable that will not exceed the capacity of the 

sack. From the illustration, we see that the knapsack problem 

is a combinatorial optimization problem by nature because it 

chooses the possible items that do not exceed the preset 

values. According [6],  the 0-1 knapsack problem is the most 

common problem being solved. This Knapsack problem 

restricts the number of the copies of items to 0 or 1 and is 

represented by the formula: 

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖  subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊𝑎𝑛𝑑 𝑥𝑖 ∈

{0,1}                            (1) 

 

Given a set of  items numbered  from 1 up to n , each 

with a weight 𝑤𝑖  and a value  𝑣𝑖 along with a maximum 

weight capacity W. The bounded Knapsack problem removes 

the restriction of having just an instance of an item, i.e., 

 

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖  subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊𝑎𝑛𝑑 0 ≤

𝑥𝑖 ≤ 𝑐                          (2) 

 

Although it removes the situation of one copy of an item 

in the collection, it restricts the number, 𝑥𝑖, to a maximum 

non negative integer, c. 

 

The unbounded knapsack poblem, while removing 

restrictions on the number of items, also allows no upper 

bound on the items, i.e 

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖  subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤

𝑊𝑎𝑛𝑑 𝑥𝑖 ≥ 0                                   (3) 

 

[13] show that the general class of questions for which 

some algorithm can provide an answer in polynomial time is 

called "class P" or just "P". This means that finding the 

answer to some questions can not be gotten quickly but the 

solutions presented can be can be verified based on the 

information given about the solution. The class of questions 

for which an answer can be verified in polynomial time is 

called NP, which stands for "nondeterministic polynomial 

time".  Knapsack problems fall into class NP problems.  

 

[12] presented the greedy algorithm, dynamic 

programming, and bound technique methods of solving the 

knapsack problem. They altered the Greedy technique to 

work for a 0-1 Knapsack problem. They made use of a 

recursive method for the Branch and Bound technique to 

expedite the computations and to reduce the memory 

consumed.  

 

Their work showed that the Greedy algorithm was the 

most efficient but it is inappropriate under certain conditions 

because it does not always result in the most optimal 

solution.The dynamic programming technique, on the othe 

hand, has proved to be very efficient in terms of number of 

computations for lesser capacities, but as the capacity of the 

knapsack increases, this technique proves to be inefficient. 

The memory utilized by this technique is also the highest 

among the three approaches considered. Their result showed 

that  the most efficient approach for the Knapsack problem is 

the Recursive Branch and Bound technique because it is 

simple and is easy to apply, and can be applied to solve the 

knapsack  

 

[3] made use of metaheuristics based on neural-

networks paradigm for solving the Multidimensional 

Knapsack Problem (MKP). They show how Neural Networks 

can be incorporated to solve domain specific problem and 

provided a mathematical formulation for their algorithm. 

Making use of the Augmented Neural Networks (AugNN ) 

which takes advantage of both the greedy-heuristic approach 

and the iterative local-search approach they were able to 

exploit AugNN by utilizing proven base heuristics to exploit 

the problem and domain-specific structure and then 

iteratively search the local neighbourhood in a somewhat 

random yet guided manner in an effort to improve upon the 

initial solution.  

 

Their result showed that AugNN meta-heuristic 

performed favourably in terms of both solution time and 

quality on a well-known set of difficult benchmark instances 

and that relative to the other techniques, their technique 

showed simplicity and provided very favourable results.  

 

[7] proposed a new hybrid heuristic approach that 

combines the Quantum Particle Swarm Optimization 

technique with a local search method to solve the 

Multidimensional Knapsack problem while incorporating a 

heuristic repair operator that uses problem-specific 

knowledge instead of the penalty function technique 

commonly used for constrained problems. Their results 

showed that on a wide set of benchmark problems, their 

method demonstrated competitiveness compared to other 

well established  state-of-the-art heuristic methods. 

 

[10] presented an Improved Fruit Fly Optimization 

Algorithm (IFFOA) for solving the Multidimensional 

Knapsack Problem (MKP). Parallel search algorithm was 

employed to balance exploitation and exploration and to 

make full use of swarm intelligence. A modified Harmony 

Search Algorithm (MHS) was proposed and applied to add 

cooperation among swarms in IFFOA. Their work involved 

extensive numerical simulations and comparisons with other 

state-of-the-art algorithms. Their result show that their 

algorithm is a an effective alternative for solving the MKP. 

 

[11] made use of the Knapsack problem to solve 

advertorial issues in a radio station. With a pile of adverts that 

needed to be aired, given a limited amount of time, they 

developed a software that optimally solved the selection 

problem. Their result showed that out of 900 seconds of 
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alloted time for adverts, their algorithm was able to optimally 

make use of 890 seconds. 

 

[4] presented a novel Binary Monarch Butterfly 

Optimization (BMBO) method, intended for addressing the 

0–1 knapsack problem (0–1 KP). Two tuples, consisting of 

real-valued vectors and binary vectors were used to represent 

the monarch butterfly individuals in BMBO. Real-valued 

vectors constituted the search space, whereas binary vectors 

formed the solution space. Three kinds of individual 

allocation schemes were tested in order to achieve better 

performance. Toward revising the infeasible solutions and 

optimizing the feasible ones, a novel repair operator, based 

on greedy strategy, was employed.  

 

BMBO was verified and compared with BABC (Binary 

Version of Artificial Bee Colony Algorithm), BCS (Binary 

Cuckoo Search algorithm), BDE (Binary differential 

evolution based memetic algorithm) and GA (Genetic 

algorithm) on three types of 0–1 KP instances. Their 

experimental results showed that BMBO outperformed the 

other four methods in terms of search accuracy, convergent 

speed and numerical stability. 

 

The comparative study of the BMBO with four state-of-

the-art classical algorithms pointed toward the superiority of 

the former in terms of search accuracy, convergent capability 

and stability in solving the 0–1 KP, especially for the high-

dimensional instances. 

 

[9] made use of Cohort Intelligence (CI) Algorithm to 

solving 0–1 Knapsack problem. They showed that learning 

with CI refers to  a cohort candidate’s effort to self-supervise 

its own behaviour and further adapt to the behavior of the 

other candidate which it intends to follow which in turn 

makes every candidate to improve/evolve its behaviour and 

eventually the entire cohort behavior. This approach was 

tested by using it to solve an NP-hard combinatorial problem 

such as Knapsack Problem (KP).  Several cases of the 0–1 KP 

were solved. Their results showed that the CI methodology 

produced satisfactory results with reasonable computational 

cost. Furthermore, according to the solution comparison of CI 

with other contemporary methods, they posited that the CI 

solution was comparable and for some problems even better 

than the other methods. The CI methodology was therefore 

validated and the self-supervising nature of the cohort 

candidates was successfully demonstrated along with their 

ability to learn and improve qualities which further improved 

their individual behaviour. 

 

III. METHODOLOGY 

 

A. The Knapsack Problem 

Given a number of items a, i.e.𝑎1, 𝑎2,…,𝑎𝑛 , with each 

item having a value,v,𝑣1, 𝑣2,…,𝑣𝑛 and a weight,w,𝑤1, 

𝑤,…,𝑤𝑛 the 0-1 knapsack problem seeks to find the number 

of items that can wholly fit into a sack subject to the overall 

weight, W, that the sack can carry given that W ≥ 0 such that 

aˈ⊆  a 

 

The above statement can be mathermatically 

represented by 

Maximise 

∑ 𝑣𝑖

𝑖∈𝑎′

… … … 3.1 

Subject to 

∑ 𝑤𝑖 ≤ 𝑊

𝑖∈𝑎′

… … … 3.2 

 

As earlier stated, we will be calling the examination 

room, Main hall.  Main hall has a capacity (i.e. W) of 528. 

The list contains 10 courses i.e. 𝑐1, 𝑐2,…,𝑐10 with values 

(course units) betweeen 2 and 3, as listed in Table 1: 

 

Table 1: Courses weight and value distibution 

Courses weight (w) Value (v) 

c1 476 3 

c2 65 2 

c3 481 3 

c4 31 3 

c5 521 3 

c6 62 3 

c7 135 3 

c8 321 2 

c9 124 3 

c10 197 2 

 

Capacity =528 

 

As earlier stated , the Knapsack problem is of 

combinatorial optimization laying emphasis that the solution 

to the problem will not necessarily follow a particular order 

i.e. combination does not emphasise the order in which the 

problem is to be solved. 

𝑐(𝑛,𝑟) =
𝑛!

(𝑛−𝑟)!𝑟!
 … … … 3.3 

 

B. Brute force algorithm application 

 Compute all the subsets of the list to give 2n number of 

subsets. 

 Find the sum of the weights in each set and note those that 

do not increase by the weight capacity. In this situation, 

sum weights in each subset exceed the capacity.  

 Repeat step 1 for each subset until a sub list set of weight 

does not increase by W. 

 Sum the values of the sub lists that satisfy the condition in 

(iii). 

 Select the highest value as the answer to the problem.  

 

C. Dynamic programming application 

General approach 

 Characterize the structure of an optimal solution  

 Recursively define the value of an optimal solution 

 Compute the value of an optimal solution in a bottom-up 

fashion 

 Construct an optimal solution from computed information 

http://www.ijisrt.com/


Volume 7, Issue 2, February – 2022                International Journal of  Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

  

IJISRT22FEB088                 www.ijisrt.com                     663 

IV. RESULT AND DISCUSSION 

 

In the process of finding optimal solutions, we made use 

of Microsoft Excel and NetBeans IDE version 8.2. The results 

are presented in the figures below 

 

 Brute force algorithm 

Using a top-down approach, the brute force algorithms 

gave the following result  

 

Fig 4.1: Brute force algorithm solution by weight 

 
 

Making use of the top two results, the Brute force 

algorithm gave a combined weight value of 321 (from 

courses, 𝑐9,𝑐10) and 518 (from courses 𝑐6, 𝑐7,𝑐8).  

 

Fig 4.2: Brute force algorithm solution by value 

 
 

Chart 2 shows that courses𝑐6, 𝑐7,𝑐8) have the most 

value, thereby making it the optimal solution for brute force 

algorithm. 

 

 

 

 

 

Fig 4.3: Chart showing result of dynamic programming 

 
 

Our results (From chart 3), show that the 

combination 𝑐2, 𝑐7,𝑐9, 𝑐10 gives the highest weight i.e. 7 spare 

spaces will remain in Main hall but has has a unit value of 10. 

𝑐2, 𝑐6,𝑐9, 𝑐10 has a weight of 518 i.e. 10 les than the capacity 

of main hall but has a higher value of 11that that of 𝑐2, 

𝑐7,𝑐9, 𝑐10 

 

Our result shows that the optimal solution to this 

conundrum are the combinations 𝑐2, 𝑐4,𝑐6, 𝑐7 and 𝑐9 because 

it has the highest value of 14 and a weight of 417. A potential 

candidate for the optimal solution are the combinations 𝑐2, 

𝑐4,𝑐6, 𝑐7 and 𝑐10 because it has a weight of 490 although it 

carries a value of 13. 

 

Both solutions  

 Remove half of the courses to be written in Main hall 

thereby freeing up the hall largely for other courses. 

 Are not too far away from the capacity number of the hall.  

 Analysis also show that Brute force algorithm far less 

number of steps  and less use of system computational 

resources  to arrive at its optimal solution than that of 

dynamic programing 

 

V. CONCLUSION AND RECOMMENDATION 

 

This work took a look into Brute force and Dynamic 

programming to solve a sitting arrangement conundrum 

modelledlike the 0-1 Knapsack problem. After data 

generation and algorithms implementation, we were able to 

get optimal solutions to the problem which gave an insight 

into the requirements of both algorithms. 

 

We see that Brute force got the job done thereby laying 

credence to its efficiency but it also shows that it was 

incapable of solving the problem optimally to fit into a real-

world scenario i.e., computationally, the Brute force approach 

is not economically realistic.  
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Dynamic programming on the other hand was able to 

provide as many optimal options that may be suitable for 

different situations within the context of solving the problem. 

We therefore recommend that more data should be used in 

order to appropriately judge the efficiencies of both 

algorithms in scenarios like this.  
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