
Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB088 www.ijisrt.com 660

An Explanatory Comparison of Brute Force and

Dynamic Programming Techniques to Solve the 0-1

Knapsack Problem

O.A Balogun 1

M.A Dosunmu2

I.O Ibidapo2
1,2Department of Computer Science and Information Technology, Bells University of Technology, Ota, Ogun State, Nigeria.

Abstract:- During examination periods in schools, the

demand on the use of examination rooms usually

increases thus necessitating an optimal allocation of such

rooms. This work seeks to explore an optimal way of

allocating examination rooms by modeling the problem as

a 0-1 Knapsack problem. Two approaches namely the

Brute force and Dynamic programming techniques are

used and implemented in Excel® and NetBeans®

environments. The obtained results showed that dynamic

programming approach yields a more optimal result than

the Brute force implementation.

Keywords:- Knapsack, Dynamic Algorithm, Brute Force.

I. INTRODUCTION

In nature, getting a result from a process involves

usually a series of steps. In some cases, some steps are

repeated while others occur once. These steps, also known as

algorithms have been studied extensively by computer

scientists and have helped to frame modern day computing

and its related technologies. [14] suggests that we think of an

algorithm as a recipe that describes the exact steps needed for

a computer to solve a problem or reach a goal. In other words,

it can be defined as a detailed step-by-step method for solving

a problem by using a computer or a sequence of unambiguous

instructions for solving a problem in a finite amount of time.

A major part of human existence is the idea of getting

the most value based on a limit at the smallest cost. An

example is a person going shopping for clothes. Naturally, the

person wants to get high quality clothes at the best possible

cost. This situation is called a Knapsack problem in computer

science and have been studied extensively and applied to

solve problems in the Financial, Manufacturing, and other

industries at large. The efficiency of an algorithm is measured

with respect to the time required execute it and the amount of

computational space used. Algorithms can also be sorted into

sequential, parallel, and exact and approximate algorithms.

Usually, in solving robust computing problems

(problems that are dynamic in nature), there is usually more

than a correct solution. This helps us to pick the most

favourable solution (an optimal solution), with respect to time

and space, that makes use of lesser resources and gives

maximum output gain with respect to time and space.

Dynamic programming is a well-suited technique for

optimization problems because it solves problems by

combining solutions of solved sub-problems.

According to [8], Brute force algorithm, on the other

hand, is a type of algorithm that tries a large number of

patterns to solve a problem and rely on raw computing power

to achieve this in some cases.

Within every educational system, a period to test the

knowledge of students based on what they have been taught

must occur. In most formal educational setting, this period

usually comes after rigorous class sessions. Not all citadels of

learning have the structural resources to accommodate a

combination of the number of students that can sit for

different courses within the same time period. This work aims

to find an optimal solution to this problem.

 In this work, the data was modelled like that of typical

University with a limited number of halls which invariably

elongates the examination period. Given the number of

courses that a typical university runs, this works uses Brute

force and Dynamic programming techniques to find an

optimal solution to a 0-1 knapsack problem in the

configuration of number of students that can make use of a

particular hall at the same time.

In the 0-1 knapsack problem, each item (in this case, all

students sitting for a particular course) must be put entirely in

the knapsack or not included at all, hence, the 0-1

connotation. The number of resources is limited to one hall

because of the weight constraint of the knapsack problem. For

the purpose of this work, we name this hall Main Hall.

II. LITERATURE REVIEW

Algorithms help us put computational and resources

requirement for solving a problem in the right perspective.

Various works like [2] and [5] discuss the strength and

weaknesses of algorithms which ultimately influence choice.

Generally, factors that influence an algorithm’s choice are the

number of items to be worked on, the type of algorithimic

activity that would be carried out on such items, restrictions

on the items, and the kind of storage device that would be

used.

[1] posits that rather than solving overlapping

subproblems repeatedly, dynamic programming suggests

solving each of the smaller sub problems only once and

http://www.ijisrt.com/

Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB088 www.ijisrt.com 661

recording the results in a table from which we can then obtain

a solution to the original problem. The precding statement

suggests that dynamic programming help to make use of little

amount of computational resources because instead of

solving all sub-problems, it makes use of the result of

previously solved problem to solve other problem withing the

problem cycle phases. This also helps to save time which is

the other primary focus of efficient algorithms.

Consider a person holding a sack that can contain a set

number of items in a store. In a typical store, there are various

items with different values and weights. The knapsack

algorithm’s goal is to fit into the sack, a combination of items,

that are most valuable that will not exceed the capacity of the

sack. From the illustration, we see that the knapsack problem

is a combinatorial optimization problem by nature because it

chooses the possible items that do not exceed the preset

values. According [6], the 0-1 knapsack problem is the most

common problem being solved. This Knapsack problem

restricts the number of the copies of items to 0 or 1 and is

represented by the formula:

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖 subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊𝑎𝑛𝑑 𝑥𝑖 ∈

{0,1} (1)

Given a set of items numbered from 1 up to n , each

with a weight 𝑤𝑖 and a value 𝑣𝑖 along with a maximum

weight capacity W. The bounded Knapsack problem removes

the restriction of having just an instance of an item, i.e.,

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖 subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊𝑎𝑛𝑑 0 ≤

𝑥𝑖 ≤ 𝑐 (2)

Although it removes the situation of one copy of an item

in the collection, it restricts the number, 𝑥𝑖, to a maximum

non negative integer, c.

The unbounded knapsack poblem, while removing

restrictions on the number of items, also allows no upper

bound on the items, i.e

maximize ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖 subject to ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤

𝑊𝑎𝑛𝑑 𝑥𝑖 ≥ 0 (3)

[13] show that the general class of questions for which

some algorithm can provide an answer in polynomial time is

called "class P" or just "P". This means that finding the

answer to some questions can not be gotten quickly but the

solutions presented can be can be verified based on the

information given about the solution. The class of questions

for which an answer can be verified in polynomial time is

called NP, which stands for "nondeterministic polynomial

time". Knapsack problems fall into class NP problems.

[12] presented the greedy algorithm, dynamic

programming, and bound technique methods of solving the

knapsack problem. They altered the Greedy technique to

work for a 0-1 Knapsack problem. They made use of a

recursive method for the Branch and Bound technique to

expedite the computations and to reduce the memory

consumed.

Their work showed that the Greedy algorithm was the

most efficient but it is inappropriate under certain conditions

because it does not always result in the most optimal

solution.The dynamic programming technique, on the othe

hand, has proved to be very efficient in terms of number of

computations for lesser capacities, but as the capacity of the

knapsack increases, this technique proves to be inefficient.

The memory utilized by this technique is also the highest

among the three approaches considered. Their result showed

that the most efficient approach for the Knapsack problem is

the Recursive Branch and Bound technique because it is

simple and is easy to apply, and can be applied to solve the

knapsack

[3] made use of metaheuristics based on neural-

networks paradigm for solving the Multidimensional

Knapsack Problem (MKP). They show how Neural Networks

can be incorporated to solve domain specific problem and

provided a mathematical formulation for their algorithm.

Making use of the Augmented Neural Networks (AugNN)

which takes advantage of both the greedy-heuristic approach

and the iterative local-search approach they were able to

exploit AugNN by utilizing proven base heuristics to exploit

the problem and domain-specific structure and then

iteratively search the local neighbourhood in a somewhat

random yet guided manner in an effort to improve upon the

initial solution.

Their result showed that AugNN meta-heuristic

performed favourably in terms of both solution time and

quality on a well-known set of difficult benchmark instances

and that relative to the other techniques, their technique

showed simplicity and provided very favourable results.

[7] proposed a new hybrid heuristic approach that

combines the Quantum Particle Swarm Optimization

technique with a local search method to solve the

Multidimensional Knapsack problem while incorporating a

heuristic repair operator that uses problem-specific

knowledge instead of the penalty function technique

commonly used for constrained problems. Their results

showed that on a wide set of benchmark problems, their

method demonstrated competitiveness compared to other

well established state-of-the-art heuristic methods.

[10] presented an Improved Fruit Fly Optimization

Algorithm (IFFOA) for solving the Multidimensional

Knapsack Problem (MKP). Parallel search algorithm was

employed to balance exploitation and exploration and to

make full use of swarm intelligence. A modified Harmony

Search Algorithm (MHS) was proposed and applied to add

cooperation among swarms in IFFOA. Their work involved

extensive numerical simulations and comparisons with other

state-of-the-art algorithms. Their result show that their

algorithm is a an effective alternative for solving the MKP.

[11] made use of the Knapsack problem to solve

advertorial issues in a radio station. With a pile of adverts that

needed to be aired, given a limited amount of time, they

developed a software that optimally solved the selection

problem. Their result showed that out of 900 seconds of

http://www.ijisrt.com/
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)
https://www.sciencedirect.com/topics/computer-science/quantum-particle
https://www.sciencedirect.com/topics/computer-science/local-search-method
https://www.sciencedirect.com/topics/computer-science/knapsack-problem
https://www.sciencedirect.com/topics/computer-science/penalty-function
https://www.sciencedirect.com/topics/engineering/constrained-problem
https://www.sciencedirect.com/topics/computer-science/heuristic-methods

Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB088 www.ijisrt.com 662

alloted time for adverts, their algorithm was able to optimally

make use of 890 seconds.

[4] presented a novel Binary Monarch Butterfly

Optimization (BMBO) method, intended for addressing the

0–1 knapsack problem (0–1 KP). Two tuples, consisting of

real-valued vectors and binary vectors were used to represent

the monarch butterfly individuals in BMBO. Real-valued

vectors constituted the search space, whereas binary vectors

formed the solution space. Three kinds of individual

allocation schemes were tested in order to achieve better

performance. Toward revising the infeasible solutions and

optimizing the feasible ones, a novel repair operator, based

on greedy strategy, was employed.

BMBO was verified and compared with BABC (Binary

Version of Artificial Bee Colony Algorithm), BCS (Binary

Cuckoo Search algorithm), BDE (Binary differential

evolution based memetic algorithm) and GA (Genetic

algorithm) on three types of 0–1 KP instances. Their

experimental results showed that BMBO outperformed the

other four methods in terms of search accuracy, convergent

speed and numerical stability.

The comparative study of the BMBO with four state-of-

the-art classical algorithms pointed toward the superiority of

the former in terms of search accuracy, convergent capability

and stability in solving the 0–1 KP, especially for the high-

dimensional instances.

[9] made use of Cohort Intelligence (CI) Algorithm to

solving 0–1 Knapsack problem. They showed that learning

with CI refers to a cohort candidate’s effort to self-supervise

its own behaviour and further adapt to the behavior of the

other candidate which it intends to follow which in turn

makes every candidate to improve/evolve its behaviour and

eventually the entire cohort behavior. This approach was

tested by using it to solve an NP-hard combinatorial problem

such as Knapsack Problem (KP). Several cases of the 0–1 KP

were solved. Their results showed that the CI methodology

produced satisfactory results with reasonable computational

cost. Furthermore, according to the solution comparison of CI

with other contemporary methods, they posited that the CI

solution was comparable and for some problems even better

than the other methods. The CI methodology was therefore

validated and the self-supervising nature of the cohort

candidates was successfully demonstrated along with their

ability to learn and improve qualities which further improved

their individual behaviour.

III. METHODOLOGY

A. The Knapsack Problem

Given a number of items a, i.e.𝑎1, 𝑎2,…,𝑎𝑛 , with each

item having a value,v,𝑣1, 𝑣2,…,𝑣𝑛 and a weight,w,𝑤1,

𝑤,…,𝑤𝑛 the 0-1 knapsack problem seeks to find the number

of items that can wholly fit into a sack subject to the overall

weight, W, that the sack can carry given that W ≥ 0 such that

aˈ⊆ a

The above statement can be mathermatically

represented by

Maximise

∑ 𝑣𝑖

𝑖∈𝑎′

… … … 3.1

Subject to

∑ 𝑤𝑖 ≤ 𝑊

𝑖∈𝑎′

… … … 3.2

As earlier stated, we will be calling the examination

room, Main hall. Main hall has a capacity (i.e. W) of 528.

The list contains 10 courses i.e. 𝑐1, 𝑐2,…,𝑐10 with values

(course units) betweeen 2 and 3, as listed in Table 1:

Table 1: Courses weight and value distibution

Courses weight (w) Value (v)

c1 476 3

c2 65 2

c3 481 3

c4 31 3

c5 521 3

c6 62 3

c7 135 3

c8 321 2

c9 124 3

c10 197 2

Capacity =528

As earlier stated , the Knapsack problem is of

combinatorial optimization laying emphasis that the solution

to the problem will not necessarily follow a particular order

i.e. combination does not emphasise the order in which the

problem is to be solved.

𝑐(𝑛,𝑟) =
𝑛!

(𝑛−𝑟)!𝑟!
 … … … 3.3

B. Brute force algorithm application

 Compute all the subsets of the list to give 2n number of

subsets.

 Find the sum of the weights in each set and note those that

do not increase by the weight capacity. In this situation,

sum weights in each subset exceed the capacity.

 Repeat step 1 for each subset until a sub list set of weight

does not increase by W.

 Sum the values of the sub lists that satisfy the condition in

(iii).

 Select the highest value as the answer to the problem.

C. Dynamic programming application

General approach

 Characterize the structure of an optimal solution

 Recursively define the value of an optimal solution

 Compute the value of an optimal solution in a bottom-up

fashion

 Construct an optimal solution from computed information

http://www.ijisrt.com/

Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB088 www.ijisrt.com 663

IV. RESULT AND DISCUSSION

In the process of finding optimal solutions, we made use

of Microsoft Excel and NetBeans IDE version 8.2. The results

are presented in the figures below

 Brute force algorithm

Using a top-down approach, the brute force algorithms

gave the following result

Fig 4.1: Brute force algorithm solution by weight

Making use of the top two results, the Brute force

algorithm gave a combined weight value of 321 (from

courses, 𝑐9,𝑐10) and 518 (from courses 𝑐6, 𝑐7,𝑐8).

Fig 4.2: Brute force algorithm solution by value

Chart 2 shows that courses𝑐6, 𝑐7,𝑐8) have the most

value, thereby making it the optimal solution for brute force

algorithm.

Fig 4.3: Chart showing result of dynamic programming

Our results (From chart 3), show that the

combination 𝑐2, 𝑐7,𝑐9, 𝑐10 gives the highest weight i.e. 7 spare

spaces will remain in Main hall but has has a unit value of 10.

𝑐2, 𝑐6,𝑐9, 𝑐10 has a weight of 518 i.e. 10 les than the capacity

of main hall but has a higher value of 11that that of 𝑐2,

𝑐7,𝑐9, 𝑐10

Our result shows that the optimal solution to this

conundrum are the combinations 𝑐2, 𝑐4,𝑐6, 𝑐7 and 𝑐9 because

it has the highest value of 14 and a weight of 417. A potential

candidate for the optimal solution are the combinations 𝑐2,

𝑐4,𝑐6, 𝑐7 and 𝑐10 because it has a weight of 490 although it

carries a value of 13.

Both solutions

 Remove half of the courses to be written in Main hall

thereby freeing up the hall largely for other courses.

 Are not too far away from the capacity number of the hall.

 Analysis also show that Brute force algorithm far less

number of steps and less use of system computational

resources to arrive at its optimal solution than that of

dynamic programing

V. CONCLUSION AND RECOMMENDATION

This work took a look into Brute force and Dynamic

programming to solve a sitting arrangement conundrum

modelledlike the 0-1 Knapsack problem. After data

generation and algorithms implementation, we were able to

get optimal solutions to the problem which gave an insight

into the requirements of both algorithms.

We see that Brute force got the job done thereby laying

credence to its efficiency but it also shows that it was

incapable of solving the problem optimally to fit into a real-

world scenario i.e., computationally, the Brute force approach

is not economically realistic.

http://www.ijisrt.com/

Volume 7, Issue 2, February – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22FEB088 www.ijisrt.com 664

Dynamic programming on the other hand was able to

provide as many optimal options that may be suitable for

different situations within the context of solving the problem.

We therefore recommend that more data should be used in

order to appropriately judge the efficiencies of both

algorithms in scenarios like this.

REFERENCES

[1]. BrainKart.com. (2018). Dynamic Programming.

Retrieved from BrainKart.com:

https://www.brainkart.com/article/Dynamic-

Programming_8041/

[2]. Chatterjee, J. m. (2015). A study of the factors

considered when choosing an appropiate data mining

algorithm. Retrieved September 24, 2019, from

LinkedIn Slideshare:

https://www.slideshare.net/jyotirmoyc1/a-study-on-

the-factors-considered-when-choosing-an-appropriate-

data-mining-algorithm

[3]. Deane, J., & Agarwal, A. (n.d). Neural metaheuristics

for the multidimensional knapsack. Retrieved 2019,

from

https://pdfs.semanticscholar.org/2f57/1ae946c865b4e9

8e0a980c31806a686b4621.pdf

[4]. Feng, Y., Wang, G.-G., Deb, S., Lu, M., & Zhao, X.-J.

(2015). Solving 0–1 knapsack problem by a novel

binary monarch. Neural Comput & Applic. doi:DOI

10.1007/s00521-015-2135-1

[5]. Folorunsho, O., vincent, O. R., & Salako, O. (2010). An

exploratory study of critical factors affectning the

effeciency of sorting techniques (shell, heap and treap).

Annals computer science series. Retrieved September

24, 2019, from

https://pdfs.semanticscholar.org/e7f5/dd2277375eb335

afea49583dd9ee3b057059.pdf

[6]. Goyal, S., & Parashar, A. (2016). A Proposed Solution

to Knapsack Problem Using Branch & Bound

Technique. (IJIRMF, Ed.) IJIRMF, 2(7). Retrieved Nov

20, 2019, from

https://www.academia.edu/27758590/A_Proposed_Sol

ution_to_Knapsack_Problem_Using_Branch_and_Bou

nd_Technique_Somya_Goyal_and_Anubha_Parashar?

auto=download

[7]. Haddir, B., Khemakhem, M., Hannafi, s., & Wilbaut, c.

(2016, June 6). A hybrid quantum particle swarm

optimization for the Multidimensional Knapsack

Problem. Retrieved October 2, 2019, from

https://www.sciencedirect.com/science/article/abs/pii/S

0952197616300963

[8]. John, S. (2016, March 29). What is Brute Force

algorithm. Retrieved SEPT 25, 2019, from Simplicable:

https://simplicable.com/cite/brute-force

[9]. Kulkarni, A. J., & Shabir, H. (2016, June 14). Solving

0–1 Knapsack Problem using Cohort Intelligence. Int. J.

Mach. Learn. & Cyber. doi:DOI 10.1007/s13042-014-

0272-y

[10]. Meng, T., & Ke-pan, Q. (2017, January). An improved

fruit fly optimization algorithm for solving the

multidimensional knapsack problem. Appled Soft

Computing, 50, 79-93.

doi:https://doi.org/10.1016/j.asoc.2016.11.023

[11]. Peasah, O. K., Amponsah, S., & Asamoah, D. (2011,

April). Knapsack problem: A case study of garden city

radio (GCR), Kumasi, Ghana. African Journal of

Mathematics and Computer Science Research, 4(4),

170-176. Retrieved 2019, from

http://www.academicjournals.org/AJMCSR

[12]. Pushpa, S. .., Mrunal, T. V., & Suhas, C. (2016). A

Study of Performance Analysis on Knapsack Problem.

International Journal of Computer Applications, 975.

Retrieved August 2, 2019, from

https://pdfs.semanticscholar.org/f5bc/0cba225a9051c3

1dd918641e23d678cee64f.pdf

[13]. Sojeva, D. (n.d.). P versus NP problem. Edinburgh.

Retrieved from

https://www.academia.edu/6675083/P_versus_NP_pro

blem_1_P_versus_NP_problem

[14]. Study.com. (2019). What is an Algorithm in

Programming? - Definition, Examples & Analysis.

Retrieved from Study.com:

https://study.com/academy/lesson/what-is-an-

algorithm-in-programming-definition-examples-

analysis.html

http://www.ijisrt.com/

	An Explanatory Comparison of Brute Force and Dynamic Programming Techniques to Solve the 0-1 Knapsack Problem
	Abstract:- During examination periods in schools, the demand on the use of examination rooms usually increases thus necessitating an optimal allocation of such rooms. This work seeks to explore an optimal way of allocating examination rooms by modelin...
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. METHODOLOGY
	B. Brute force algorithm application
	C. Dynamic programming application

	IV. RESULT AND DISCUSSION
	 Brute force algorithm

	V. CONCLUSION AND RECOMMENDATION

	REFERENCES

