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Abstract:- Coronavirus Disease 2019 requires chest 

computed tomography (CT) imaging data for early 

diagnosis, treatment, and prognosis (COVID-19). 

Artificial intelligence has been tried to assist physicians in 

enhancing the diagnosis accuracy and operating efficiency 

of CT. Existing supervised techniques on CT images of 

COVID- 19 pneumonia require voxel-based annotations 

for training, which takes a long time and effort. This 

research developed a weakly-supervised technique for 

COVID-19 lesion localization based on generative 

adversarial networks (GAN) using just image-level labels. 

We originally presented a GAN-based framework for 

generating normal- looking CT slices from CT scans with 

COVID-19 lesions. We then devised a unique feature 

matching technique to enhance the realism of produced 

pictures by directing the generator to capture the intricate 

texture of chest CT images. Finally, by subtracting the 

output picture from its matching input image, the 

localization map of lesions may be simply generated. We 

can increase the classification accuracy of our diagnostic 

system by adding a classifier branch to the GAN- based 

architecture to identify localization maps. In this paper, 

three CT datasets regarding COVID-19 were obtained for 

examination from hospitals in Sao Paulo, the Italian 

Society of Medical and Interventional Radiology, and 

China Medical University. Our method of weakly 

supervised learning yielded AUC of 0.883, dice coefficient 

of 0.575, accuracy of 0.884, sensitivity of 0.647, specificity 

of 0.929, and F1-score of 0.640 significantly outperformed 

other frequently used weakly supervised object 

localization algorithms. In addition, we compared the 

suggested technique to fully supervised learning methods 

in the COVID-19 lesion segmentation problem, and the 

proposed weakly supervised method still produces a 

competitive performance with a dice coefficient of 0.575. 

Furthermore, we examined the relationship between 

illness severity and visual score and discovered that the 

common severity cohort had the largest sample size as 

well as the highest visual score, implying that our method 

can aid in the rapid diagnosis of COVID- 19 patients, 

particularly in the massive common severity cohort 

.Finally, we argued that this unique technique may be used 

as an accurate and efficient tool to remove the bottleneck 

of expert annotation costs and promote the advancement 

of computer-aided COVID-19 diagnosis. 

 

Keywords:- Coronavirus Disease 2019, Generative 
Adversarial Network, Lesion Location, and Lesion 

Segmentation. 

 

I. INTRODUCTION 
 

The global spread of the Coronavirus Disease 2019 

(COVID-19) pandemic, caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), has 

posed a significant risk to global public health security. At the 

moment, early quick identification and management for this 

recently identified virus are in their infancy. Although reverse 

transcription polymerase chain reaction (RT-PCR) is 

commonly employed for COVID-19 screening, it has been 

demonstrated to have a significant false-negative rate. 

Because it has a faster testing cycle and can offer more 
precise information about the pathology as well as help 

evaluate the degree or severity of lung involvement, chest 

computed tomography (CT) has been highlighted as an 

essential complementary technique for the diagnosis of 

COVID-19. Manually defining the affected lung area, on the 

other hand The diagnosis of COVID- 19 based on chest CT 

imaging by radiologists is a time-consuming and subjective 

job. Artificial intelligence (AI) is fast being developed to 

operate in conjunction with CT to assist radiologists and 

doctors in improving diagnosis accuracy and working 

efficiency. Convolutional neural networks (CNNs) have 

become more versatile as a result of effective regularisation 
algorithms and fast graphics processing units, allowing CNN 

structures to develop in depth and complexity, width, 

significantly improving learning capacity CNN-based 

computer-aided diagnosis (CADs) of COVID-19 have been 

extensively researched and may be split into two groups. 

 

The automated COVID-19 diagnosis based on CT 

volumes or slices is the most popular. For example, Bai et al. 

propose an Efficient Net-based model for CT slice 

classification and claim that deep learning assisted 

radiologists in identifying COVID-19 from non-COVID-19 
at chest CT. Wang et al., on the other hand, aim to use a 3D 

CNN with a 3D lung mask to make decisions directly. 

However, the CNN-based categorization model can only 

deliver final conclusions and lacks reasoning capability. 

Despite the fact that visualisation techniques such as 

Gradient- weighted Class Activation Mapping (Grad- 

CAM)can be employed to alleviate this scarcity, the lesion 

localization map created by such visualization approaches 

coarse and provides less valuable information for treatment 

evaluation. 
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Fig 1:  depicts the network architecture proposed for 

COVID-19 lesion localization. The patch discriminator and 

the encoder-decoder collaborate to eliminate probable 

COVID-19 lesions from input CT slices. To improve the 

image quality of the generated CT slices, shallow layers of 

the pre-trained ResNet-18 are used to perform low-level 

feature matching between input and output. The localization 

maps are classified using another ResNet-18. 

 

COVID-19 lesion segmentation is another type. 

Fanetal., for example, provide an automated COVID-19 lung 
infection segmentation approach based on a carefully built 

network combined with edge information from infected areas 

and show that segmentation accuracy may be further 

enhanced by employing pseudo segmentation labels.Wang et 

al. offer a noise-resistant architecture for COVID-19 lesion 

segmentation to address the erroneous annotation caused by 

pneumonia lesions' complicated appearances and substantial 

inter- and intra-observer variability. These supervised 

learning approaches appear to be more accurate than weakly 

supervised visual augmentation techniques in terms of 

automated segmentation of lung infected areas. However, in 
order to produce promising results, such fully supervised 

learning approaches need huge pixel- level annotated CT 

slices. Most available COVID-19 CT scan datasets with 

human labelling of diseased areas could not match this need. 

In contrast, the majority of existing COVID-19 datasets just 

give patient-level labels (i.e., class labels) to indicate whether 

a person is infected or not, with no detailed annotations. To 

address the fore mentioned short com 

 

 
Fig 2:  depicts an overview of the proposed COVID-19 

lesion localization method. (a) A generator and a 

discriminator collaborate to eliminate possible lesions 

during model training. Feature matching improves the 

picture quality of the produced fake normal images. (b) 

During model inference, we derived the localization map by 

subtracting the generator's output from its input. The 

localization map is superimposed on the original picture to 

help with the COVID-19 diagnosis. 

 

We developed a weakly supervised learning strategy for 
accurate COVID-19 lesion localisation based on generative 

adversarial network combing with feature match, as seen in 

Fig. 1. A generator, a discriminator, and a feature extractor 

were included in the suggested model. By re-moving ground-

glass opacity (GGO) and pulmonary consolidation from CT 

slices with COVID-19, the generator and discriminator 

collaborated to generate a normal-looking picture. The 

intricate texture of chest CT scans, on the other hand, may not 

be properly represented by such a GAN-based architecture. 

We created a feature extractor to instruct the generator to 

output pictures with similar low-level characteristics to the 
inputs, which boosts lesion localization accuracy.We created 

a diagnostic system with better classification accuracy and 

interpretability by providing the GAN-based framework with 

a classifier branch. During the global SARS-CoV-2 outbreak, 

computer-aided diagnosis of COVID-19 using chest CT is 

critical.We demonstrated in this study that the proposed 

method could relieve radiologists of laborious workloads, 

thereby contributing to the large-scale screening of COVID-

19. 
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II. BEHAVIORAL MAPPING AND TRACKING 

 
Behavioural mapping is a research tool used to observe 

and record patterns in a particular setting at a particular time. 

Behavioural mapping can be either location-based or 

individual-based, depending on whether the focus of 

observation is to identify location wise behaviours or 

individual-based patterns o 

 

 
Fig 3- Behavioral Mapping and Tracking METHODOLOGY 

 

This work involved three datasets. The initial dataset 

came from Brazil and included 1252 CT scans that were 

positive for SARS-CoV-2 infection (COVID-19) and 1230 
CT scans from patients who were not infected with SARS-

CoV- 2, totaling 2482 CT images from 120 patients. These 

statistics were gathered from actual patients in hospitals in 

Sao Paulo, Brazil. However, there were no segmentation 

labels in this dataset, and we simply utilised it for training. 

We gathered the second dataset, which comprises of 98 axial 

CT slices from various COVID-19 patients, to test the 

proposed method's lesion localization accuracy. The Italian 

Society of Medical and Interventional Radiology collected 

all of the CT slices. A radiologist used different labels to 

segment the CT pictures, detecting lung infections The 98 CT 
slices were separated into two groups: validation and testing. 

The validation set contained 50 CT slices with the goal of 

adjusting hyperparameters and selecting a model. The 

model's performance was evaluated using the remaining 48 

CT slices. This testing set was designated as Testing Set 1.The 

third study came from China Medical University and 

included 300 CT images from seven individuals infected with 

SARS-CoV-2. Because pixel-level annotations are not 

available in this dataset, we invite a radiologist to assess the 

accuracy of lesion localization. This testing set was 

designated as Testing Set 2. 

 
 Network Architecture 

When only image-level labels were provided, our 

objective was to reliably pinpoint possible lesions on CT 

slices using COVID-19. We suggested an unique weakly 

supervised learning approach based on this assumption, 

employing GAN with feature match. A generator with an 

encoder-decoder architecture was trained to remove potential 

COVID-19 features and generate bogus CT slices. The input 

CT slices included both normal and abnormal cases. 

 
Unusual circumstances The generator was normal in the 

input slices,was attempting to produce slices that were the 

same as inputs The infected COVID- 19 lung area may be 

easily located and segmented by subtracting the generator's 

output from the relevant inputs. 

 

To assist the generator in producing a CT slice that 

seems to be genuine normal, a discriminator was included to 

determine if the output CT slice was real normal or fake 

normal. The discriminator assisted the generator in removing 

as many COVID-19 signals from the original CT slice as 

feasible. It is obvious that the generator and discriminator 
create a generative adversarial network (GAN). It is crucial to 

highlight that paired photos are not required for model 

training,It has been demonstrated that CNN features retrieved 

from shallow layers respond to corners, edge/color 

conjunctions, and mesh patterns. The L1 loss of these 

matched characteristics was then calculated. The feature-

level loss aids in the matching of low- level features between 

the generator's input and output, improving the realism of the 

generated pictures. 

 

In addition, by incorporating a classifier branch into the 
network, we may create a diagnostic system based on 

localization maps. If the classifier's input only contains 

lesions for abnormal photos and nothing for normal images 

(zero values everywhere), the classifier would be able to 

predict the category of the incoming images more quickly and 

precisely. Furthermore, building a more accurate classifier 

may aid the generator's output in retaining normal areas while 

eliminating lesions from the original picture. 

 

 Loss Function 

The goal was to develop a mapping function G: X -> Y 

between two domains X and Y using training 

examples{xi}NX  and{yj}MY,,  where  X  represents  CT scans 

with COVID-19 and normal CT slices, and Y represents 

normal CT slices. To differentiate between slices y and 

translated slices G, a discriminator D is utilised (x). Our goal 

included four terms: adversarial losses for matching the 

distribution of generated images to the distribution of data in 

the target domain; a consistency loss to emphasise the 
similarity between the generator's output and input; a feature 

match loss to guide the generator to perform feature 

matching; and a cross- entropy loss to train the classifier. G: 

X ->Y and its mapping function where G attempts to produce 

pictures G(x) that resemble images from the domain Y, while 

D attempts to discern between translated samples G(x) and 

genuine samples y. It was worth noticing that (1) differed 

from the original implementation of GAN. We replaced the 

negative log-likelihood goal with a least-square loss. This 

loss performs more consistently during training and produces 

higher-quality results. The consistency loss and feature match 

loss may be stated as 
 

Lcons (G,X)=Ex∼pdata(x)[|G(x)−x|1 ] 

Lfeat(G, F, X) = Ex∼pdata(x
Σ 

w |F (G(x)) − 

Fi(x)|1 
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where 1 denotes the L1 norm, F is a feature extractor, 

and Fi(x) signifies the feature map computed by forwarding 
propagation after the ith convolutional layer of F under the 

input x as illustrated in Fig. 2, wi determines the relative 

priority of the five objectives. The cross-entropy loss may be 

calculated as follows: 

 

L (G,C)=E [−tlog(s)−(1−t)log(1−s)] (4) 

 

ce x∼pdata(x) 

 

s=C(φ(x−G(x))) (5) 

 

where C is a classifier, C(x) is the classifier's output for 

the input x, φ(x G(x)) is the localization map, t represents 

classification labels, normal cases are designated as 0, 

abnormal cases are marked as 1, and φ is a ReLU activation. 

 

The total loss function for optimizing the proposed 

model was 

Ltotal(G,D,C)=−Lgan(G,D,X,Y) + αLcons(G,X)+βLfeat(G,F 

,X)+γLce(G,C) (6) 

whereα,β,and γ are three hyper- parameters for losses 

balancing. 

We aimed to solve: 

G∗=argmin max Ltotal(G,D,C)   (7)G,C          D 

It's worth noting that the feature extractor F was pre-trained 

in a binary classification task, so we didn't have to update it 

during GAN training. 

 

 Implementation Detail 
The PyTorch framework was used to run experiments 

on an NVIDIA GeForce GTX 1080TI with 11 GB RAM. The 

generator G was updated using the Adam optimizer with a 

learning rate of 5e-6. TTUR were employed to stabilise 

training by setting the discriminator D's learning rate to four 

times G. The classifier C was trained at a rate of 1e-4. Due to 

GPU memory limitations, we utilised a batch size of 8. 

During training, samples were horizontally and vertically 

flipped and scaled to 256 256 on the fly, and pixel values 

were normalised from 0 to 1 before being sent to the model. 

 

As the generator G in our tests, we employed a modified 
U-Net. We specifically changed the max pooling operation 

with a 3X3 convolution with a stride of 2. In order to improve 

discrimination between different produced slices, batch 

normalisation was substituted by instance normalisation. To 

prevent gradient vanishing, residual connections were added 

to each convolution block. As the discriminator D, a patch 

GAN was utilised, which produced a N N array rather than a 

single scalar output signalling true or false. To stabilise GAN 

training, a mini-batch standard deviation layer was added to 

the second to last convolutional layer of Patch GAN. As the 

classifier C, we utilised a ResNet-18. 
 

The training set contained 2482 CT scans with only 

image-level labels available. Real normal slices for training 

the discrim- inator were the 1230 normal CT slices from the 

trainings . The validation set includes 50 CT slices annotated 

at the pixel level. Our model was tested using two sets of data: 

Testing Set 1 (48 CT slices with pixel- level annotation) and 

Testing Set 2 (300 CT slices without labels). During model 

training, an alternate technique was used by iteratively 
updating different portions of the model, 

 

maxL1= −Lgan(G,D,X,Y) + αLcons(G,X)(8) GD 

 

MinL2=βLfeat(G,F,X) 

 

G 
(9) 

minL3=γLce(G,C)(10) 

G,C 

 

where α is set to 3.0, β is set to 1.0, γ is set to 0.4 as 

suggested, and hyper-parameters w1, w2, w3, w4, and w5 

were set to 3.0, 2.5, 2.0, 1.5, and 1.0, respectively. Note that 

we treated the local, respectively. Note that we treated the 

localization map φ(x G(x))in (5) as a fixed constant while 
updating (10),This suggests that we did not change the 

generator G's settings when training the classifier C. This 

option was discussed in Section III.F. We employed a 

gaussian kernel withσ = 4.5 to smooth the findings because 

the localization map created by the suggested approach was 

scatter and might include some noise. Finally, the localization 

map was mapped using min-max normalisation on a scale of 0 

to 1. 

 

III. EXPERIMENTS AND RESULTS 

 

 Compare With Different Weakly Supervised Learning  
Methods. 

To assess the performance of the proposed weakly 

supervised learning method for COVID-19 infected region 

localization in CT slices, we compared it to three widely used 

weakly supervised object location methods, including Grad-

CAM, Smooth-Grad, and multi-scale Grad-CAM, which were 

recently applied to COVID-19 localization from CT slices. 

These three approaches were likewise trained using solely 

image-level labels from the training set. The obtained 

localization maps were normalised on a scale of 0 to 1.In 

Testing Set 1, all poorly supervised learning techniques were 
tested. The pixel-level area under the curve (AUC) scores of 

our proposed approach, multi-scale Grad-CAM, Grad-CAM, 

and Smooth-Grad were 0.883, 0.712, 0.674, and 0.530, 

respectively. Figure 3 depicts the matching receiver operating 

characteristic (ROC) curve (a). We discovered that the 

suggested technique could exactly pinpoint contaminated 

regions, whereas the other three methods could only 

approximately identify potentially infected regions.We also 

discovered that Smooth-Grad performs significantly worse 

than other poorly guided localization algorithms. Because 

pneumonia lesions frequently shared low-level features with 

surrounding tissue, using gradients with respect to the input 
images as a proxy for feature importance is not ideal. To 

further show the usefulness of the 
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Fig 4: A comparison of several weakly supervised learning 

techniques in Testing Set 1. (a) The ROC curve for COVID-

19 lesion localisation using several poorly supervised 

learning algorithms. (a) Quantitative evaluation of various 

poorly supervised learning techniques. (c) Qualitative 

comparison of several unsupervised learning approaches. In 

the input photos, lesions are represented by orange colour 

outlines. 
 

Suggested technique, we turned the localization maps 

into binary pictures in the validation set using the grid search 

threshold. The Binary pictures indicate potentially 

contaminated areas. To analyse segmentation outcomes, we 

utilised dice coefficient, accuracy, sensitivity, specificity, and 

F1-score as performance measures. With a dice coefficient of 

0.575, the suggested technique outperforms the other three 

ways by a wide margin, demonstrating the efficiency of our 

proposed method. Furthermore, we provide qualitative 

examples of numerous common lesion localization outcomes. 
 

 Compare With Fully Supervised Learning Methods 

In this set of studies, we tested the suggested approach's 

segmentation accuracy by comparing the segmentation 

results to the state-of-the-art segmentation method known as 

Inf-Net. Inf-Net was trained on a training set of 50 CT slices 

and tested on the same 48 CT slices as us. We wanted to see 

if the weakly supervised learning 

 

 
Fig 5 shows the comparison of fully supervised learning 

methods in Testing Set 1. 

 
Fig 6: Feature match analysis in Testing Set 1. 

 

(a) Comparing picture quality with and without feature 

matching. The lower the metric, the better. 

(b) Lesion localization performance with and without feature 
match. (c) A qualitative evaluation of feature matching 

with and without. 

 

Approach could be used instead of the fully supervised 

learning method because the annotated data was restricted. To 

evaluate the segmentation outcomes, we employed dice 

coefficient, sensitivity, and specificity. compares the 

proposed weakly supervised learning approach to various 

fully supervised learning methods In all performance 

measures, the suggested technique outperformed U- Net and 

Dense U-Net trained in a fully supervised way,while Inf-Net 

was superior. 

 

 Feature Match Increases the Accuracy of Lesion Locali 

zation 

 

 We explored the impact of feature match approach on 

infected region segmentation in this set of trials. 

As performance measures for image quality, we 

employed Fréchet Inception distance (FID), activation 

maximisation score (AM), maximum mean discrepancy 

(MMD), multi-scale structural similarity (MS-SSIM), and 

sliced Wasserstein distance (SWD). For quantitative 
assessment of lesion localisation, we employed the dice 

coefficient, sensitivity, specificity, F1-score, and AUC. As 

shown in Fig. 5(a), using feature match in the model improves 

picture quality and leads in more precise lesion location. 

However, we discovered that adding feature matching to the 

model reduces sensitivity. This finding is most likely due to 

the fact that generated slices with less detailed information 

tend to produce over-segmented results, resulting in ahigher 

sensitivity. 
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 Visualization Comparison Between Different Methods 

The 300 COVID-19 CT slices in this investigation were 
classified as mild, common, severe, and critical based on the 

severity by calculating the percentage of lesion to lung size, 

with mild: 10%; common: 10%; severe: 30%; 50%; and 

critical: more than 50%. The sample sizes for mild, common, 

severe, and critical were 77, 152, 50, and 21, respectively, 

and the proportion of lesion to lung size for each cohort was 

5.46% ±2.41%, 20.32%±5.80%, 39.45%±6.00%, and 

59.64%± 5.96%. 

 

The association between severity and visual score was 

next examined, with the visual scores of moderate, common, 

severe, and critical being 3.77± 1.01, 4.78± 0.44, 
 

 
Fig 7: Visual score comparison across different approaches 

in Testing Set 2. (a) A quantitative comparison of multiple 
weakly supervised learning approaches was performed using 

a Student's t-test, with P values of 

∗P<0.05;∗∗P<0.01;∗∗∗P<0.001.  (b)  In  comparison to a fully 

trained fully supervised learning model.(c) A qualitative 

comparison of several methodologies. 
 

 
Fig. 8. Correlation between severity and visual score. The 

severity was divided into mild, common, severe and critical 

according to the percentage of lesion to lung size (mild: 

percentage <10%, common:10% <percentage <30%, 

severe: 30%<percentage <50% and critical: percentage 

>50%). We compared the visual score  between common 
group and the other groups with a Student’s t-

test,∗P<0.05;∗∗P<0.01;∗∗∗P<0.001. 

 

4.32 ±1.04, and 3.48± 1.54, respectively. According to 

our findings, The common cohort had the highest sample 
number, and its visual score was greater than that of the other 

three cohorts, with statistical differences (P 0.05). 

 

 Evaluate the Classifier 

We explored the impact of the classifier branch on 

lesion localisation and evaluated classification accuracy in 

this set of tests. We wanted to discover if the classifier C 

might increase the accuracy of lesion localisation. 

 

 
Fig 9 shows a comparison of Plain-ResNet-18 and LM-

ResNet-18 categorization results. (a) Plain- ResNet-18 and 

LM-ResNet-18 classification performance. (b) Plain- 
ResNet-18 and LM-ResNet-18 testing curves. 

 

As suggested, we set the hyper-parameter in (10) to 

0.4. We compared the segmentation accuracy of updating 

generator G and classifier C simultaneously versus only 

updating classifier C. The outcomes are displayed. The 

classifier G might not benefit the generator G. As a result, 

during training the classifier, we set the localization map as 

a fixed constant. 

 

Because Testing Sets 1 and 2 contain only positive 
samples, we randomly divided the 2482 CT slices with 

image-level labels (original training set) into a training set (n 

= 1737) and an independent testing set (n = 745) to assess 

classification accuracy. It should be noted that Testing Sets 1 

and 2 were not included in this experiment. Because the 

classifier C's inputs were localization maps, we named it LM-

ResNet-18. For comparison, we created a baseline model 

(ResNet-18) trained on original normal and pathological CT 

scans. Plain-ResNet-18 is the name we gave to the basic 

model. During experiments, the hyper-parameters of these 

two models stay constant. For a fair comparison, the data 

augmentations outlined in Section II.D were also used during 
training in Plain-ResNet-18. The classification results of 

Plain-ResNet-18 and LM-ResNet-18 are shown in Fig. 8(a). 

The accuracy, sensitivity, specificity, and F1-score of the 

LM-ResNet-18 were 0.982, 0.972, 0.989, and 0.981, 

respectively, whereas the Plain-ResNet-18 achieved 0.953, 

0.949, 0.956, and 0.954. The testing curves for the two models 

are shown in Fig. 8(b). Because the localization maps are 

constantly updated during training, the LM- generalization 

ResNet-18's capacity may be increased. 
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IV. DISCUSSION 

 
We suggested an unique weakly supervised learning 

strategy for COVID-19 lesion localisation in this paper. Our 

technique outperformed other commonly used weakly 

supervised learning methods in terms of performance. This AI 

research was motivated by the aim to create a tool to help 

radiologists tackle the epidemic. The suggested solution can 

reduce radiologists' effort by providing COVID-19 cues in a 

visual augmentation mode. Furthermore, the generated 

localization maps can be used as pseudo labels, which 

radiologists can refine as annotations. This human-in-the-

loop strategy can significantly reduce annotation time. Lung 

lesion localisation is critical in the COVID-19 diagnostic 
approach because it delivers explainable findings, whereas 

the CNNs-based classification model can only provide final 

judgments with no reasoning capability. Cam- based methods 

and gradient-based methods are proposed to provide a 

solution to the CNNs-based classification model's flaw, 

findings that may be explained to back up ultimate 

judgments. 

 

 
Fig 10. Qualitative assessment of model robustness. 

 

However, after training a classifier, these poorly 

supervised learning visualisation approaches can only 

estimate locate possible biomarkers in pictures at low 

resolution. We showed that the GAN-based weakly 
supervised learning system can reliably pinpoint COVID-19 

lesions at high resolution. Aside from that, we discovered that 

multi-scale Grad-Cam outperforms single-scale Grad-Cam, 

implying that multi-scale characteristics aid in object 

localisation. This discovery also demonstrates the efficacy of 

the suggested technique in lesion localization since the 

generator attempts to combine characteristics from all levels 

rather than manually selecting data from a specific level to 

construct the localization map. 

 

Several research utilising fully supervised learning 

approaches have yielded encouraging results in COVID-19 
lesion segmentation. However, in order to prevent over-

fitting, these fully supervised learning algorithms need a 

massive scale of pixel- level annotations. We introduced 

another approach that performs well, is based on GAN with 

feature matching, and does not require pixel-level annotations 

in this paper. The suggested weakly supervised algorithm 

produces a competitive outcome with a dice coefficient of 

0.575 when compared to fully supervised learning methods 

trained on 50 CT slices with pixel-level annotations. 
However, the dice coefficient of 0.575 is significantly lower 

than the fully supervised technique trained on a large-scale 

dataset with pixel- level annotations. 

 

A decent AI-assisted COVID-19 diagnosis tool should 

provide visual signals to aid decision-making. To determine if 

the proposed technique provides radiologists with valuable 

visual information, we developed a metric called visual score 

that estimates the degree of overlap between the prediction 

localization map and the ground truth localization map. The 

suggested technique yielded encouraging results in Testing 

Set 2 with a visual score of 4.35±0.96, suggesting that the 
prediction findings are highly compatible with the 

observations and may be used to support the radiologist's 

final choice. We also see that the pre-trained fully supervised 

model performs worse than the suggested technique, as 

shown in Fig. 6. (b). This conclusion is most likely owing to 

the domain difference between their training set and our 

Testing Set 2, as well as the Image pre-processing differs 

between their approach and ours. This discovery also 

highlights the AI system's existing flaws, as these systems are 

fragile and sensitive to minor changes in data distribution 

[47]. Retraining the model on a new dataset is one solution to 
this problem. In this scenario, weakly supervised learning 

approaches have a significant benefit since we just need to 

supply weak labels for the new dataset rather than 

comprehensive annotations as in fully supervised learning. 

 

We also looked at the relationship between severity and 

visual score to see how accurate our diagnostic augmentation 

technique was in COVID-19 patients with varying degrees of 

pulmonary lesion severity. We discovered that the lesion 

localization findings in the common severity cohort with the 

highest visual score were very consistent with the radiologist 

(Fig. 7). Meanwhile, the common cohort accounted for more 
than half of the research cases (152/300), which is greater 

than the other three cohorts combined. These findings imply 

that the suggested technique may be used to quickly screen 

individuals with common severity, as measured by the 

proportion of the damage to the body. 

 

lung size, which can aid in the fast identification of 

COVID-19 during major outbreaks and epidemics, 

particularly in large populations with shared severity. The 

visual scores for the mild and critical cohorts were 3.77 ±1.01 

and 3.48 ±1.54, respectively, which were likewise 
satisfactory and proved the robustness of the suggested 

technique. Some extreme instances' qualitative outcomes We 

can tell from the radiologist's visual evaluations that the 

suggested technique is more resilient than existing ways. 

Furthermore, we can see from the first two instances in Fig. 

9 that the suggested technique may aid radiologists in 

recognising some lesions that are difficult to detect. 

 

Several research have also suggested using the GAN- 

based framework for lesion localisation. However, due to the 

complex texture of chest CT images, these GAN-based 
frameworks are not adequate for COVID-19 lesion 

localization. Based on this discovery, we presented a feature 
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match technique to aid the model in capturing the complex 

texture of chest CT images, hence improving image quality. 
We discovered that feature matching might help the model 

create photos with finer-grained textures by reducing noise. 

We demonstrated that combining the GAN-based framework 

with feature matching improves lesion localization accuracy. 

Overall, the feature match strategy was a straightforward but 

effective way to improve the GAN-based framework for 

lesion localization. 

 

We may further construct a diagnostic system with 

strong interpretability by adding a classifier branch to the 

network [17], because the diagnosis findings are based on 

infected areas. The diagnosis system may not only offer 
diagnosis findings but also the location of the lesion. As 

demonstrated in Fig. 8, the diagnostic system outperformed 

the vanilla classifier trained on original CT slices in 

classification performance. The shown lesion localization 

and classification accuracy showed that the proposed GAN-

based diagnosis system might be used in place of the CAM-

based diagnosis system. This diagnostic augmentation 

technique relieves part of the burden on clinicians by 

minimising reliance on personal experience and labor-

intensive practise and confirmation. Doctors may make faster 

and more accurate judgements using the proposed enhanced 
lesion diagnosis technology, while non-professionals, such as 

medical interns and general practitioners, can do pseudo-

professional diagnoses. 

 

The following are the limitations of our investigation. 

First, the suggested technique can only offer probable lesion 

localisation without distinguishing between GGO and 

pulmonary consolidation, which is very important in 

determining severity. 

 

Second, because this study's analysis is based on slice-

level data rather of volume-level data, the study's findings 
cannot be applied to volume-level situations. However, by 

aggregating the findings inside a CT volume, the suggested 

technique may simply be expanded to volume-level 

applications. 

 

Behavioural mapping is a research tool used to observe 

and record behaviours in a particular setting at a particular 

time. Behavioural mapping can be either place-based or 

individual-based, depending on whether the focus of 

observation is to identify locational wise behaviours or 

individual time-based patterns of behaviours. 
 

This is an example of how observation can be used to 

visualize how many visitors visited various booths at a 

exhibition fair. The map shows the frequency of visitors and 

reveals the booths most heavily and least heavily visited. 

Insights can be used to improve fair service, and attracting 

more visitors. 

 

 

 

 
 

 

V. CONCLUSION 

 
Feature match weakly supervised learning approach for 

COVID-19 lesion localisation. The generator is used to 

convert a CT slice with lesions into the matching slice with 

the lesions eliminated, while the discriminator is used to 

enhance the generator to produce more realistic-looking fake 

normal CT slices. A pre-trained feature extractor is utilised to 

enrich the fine-grained features in order to improve the 

picture quality of the produced slices. To stabilise model 

training, many techniques such as improved loss function, 

TTUR, and mini-batch standard deviation layer are applied. 

The experimental results confirmed the proposed method's 

superiority, which significantly outperformed other widely 
used weakly supervised localization methods. Furthermore, 

the proposed method yields a competitive result,In the lesion 

segmentation task, the fully supervised method outperformed 

the unsupervised method. We believe that the proposed 

method can be used as a powerful tool to alleviate the expert 

annotation cost bottleneck and advance the progress of 

computer- aided COVID-19 diagnosis. 
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