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Abstract:- Bandits with Knapsacks (BwK) is a Multi-

Armed Bandit (MAB) problem under supply/budget 

constraints. Risk scoring is a typical limited-resource 

problem and as such can be modeled as a BwK problem. 

This paper tries to solve the triple problem in risk scoring 

– accuracy, fairness, and auditability by proposing 

FuzzyBwK application in risk scoring. Theoretical 

assessment of FuzzyBwK is made to establish whether the 

regret function would perform better than StochasticBwK 

and AdversarialBwK functions. An empirical experiment 

is then set with secondary data (Australian and German 

credit data) and primary data (Kakamega insurance data) 

to determine whether the algorithm proposed would be fit 

for the proposed problem. The results show that the 

proposed algorithm has optimal regret function and from 

the empirical test, the algorithm satisfies the test of 

accuracy, fairness and auditability. 
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I. INTRODUCTION 

 
Multi-armed bandits (MAB) is a model used to balance 

the acquisition and usage of information. In the model, the 

tradeoff between exploration and exploitation is established by 

a decision-making agent. Studies on the likelihood of one 

unknown probability having a better outcome over another 

unknown probability, which is the basis of MAB, have been 

done over time with some of the early works being dated as 

back as the 1930s [1]. The MAB algorithm chooses in each 

round a set of alternatives (called arms) and receives a reward 

for the alternative chosen. The algorithm does not have enough 

information to answer all “counterfactual” questions about 

what would have happened if a different action was chosen in 
each round [2] and as such, choices of alternatives 

(exploitation) are alternated with learning expeditions 

(exploration) for optimal rewards.  

 

Typical MAB problems have an assumption that the 

resources are unlimited and the bandit can endlessly make 

choices while learning. However, in many real-life situations, 

there are cases where the resources are limited. In other words, 

there are constraints in supply or budgets. The financing 

problem which is modeled in this research is a typical case 

where there is a limitation in budget. The banks usually have 
limited lending headroom and insurance companies have 

maximum risk capacity. The assumption made is that there is 

a knapsack with limited capacity and the problem is therefore 

called Bandits with Knapsack (BwK) [3].  

BwK problem can be modeled as a linear problem where 

the context vectors are linear and are generated in identically 

independent distribution [4]. The problem can also be modeled 

as a Stochastic BwK in which the probability distribution is 

fixed but cannot be predicted precisely [5]. For the risk scoring 

problem, the option for an adversarial distribution was chosen 

over the stochastic option. Adversarial because of the 

assumption made that there are unlimited loan-seekers and 

limited borrowing headroom with the lender but the 

characteristics of the lenders keep changing over time. The 

distribution is no longer fixed. In Adversarial BwK, both the 

reward and resource can change. You do not expect the 
lending headroom of a bank for example to be static over time. 

And the risk profiles of loan seekers also change over time 

depending on many factors including micro and macro factors. 

Adversarial BwK is a much harder problem compared to 

Stochastic BwK. The new challenge is that the algorithm 

needs to decide how much headroom to save for future 

lending, without being able to predict that there will be 

corresponding loan-seekers [6]. 

 

However, in this work, the Adversarial BwK is extended 

to use Fuzzy logic in the explore-exploit subroutine. This 
serves two main purposes. The first reason is that risk scoring 

is an imprecise process and the use of algorithms giving crisp 

outcomes can introduce some bias to the outcomes [7]. Other 

than the challenge of bias (or lack of fairness) introduced by 

machine learning, banking supervisors worry about the 

unexplainability of the algorithms used [8]. Many algorithms, 

including the Adversarial BwK are Blackbox algorithms 

making auditing the algorithms a difficult task hence the 

extreme position taken by some authorities such as GDPR not 

to use automated decision-making mechanisms exclusively [9] 

for decision making. Fuzzy Unordered Rule Induction 

Algorithm (FURIA) proposed here as the explore-exploit 
subroutine is easily auditable since it comprises simple rules 

and can be regarded as a Whitebox. 

 

II. MAIN CONTRIBUTION 

 

This work extends the bandits with limited resources 

otherwise called Stochastic BwK [6] to use fuzzy logic in the 

exploration and exploitation so as to make the stochastic game 

as close to human imprecise reasoning as possible. Whereas 

we can gain regret of the order of O(log T)  in Stochastic BwK, 

Fuzzy BwK gives lower regret of the order of  p(log(p/t)-
log(P/T)) hence making Fuzzy BwK give better rewards over 

the distribution over arms.  
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This paper also presents a white-box subroutine as 

opposed to the Stochastic BwK which is a blackbox subroutine. 
Whitebox subroutine is easily auditable and hence can be easily 

accepted by financial services regulators, as opposed to 

Blackbox which has faced opposition from regulators, with 

some regulators banning the use of automated risk scoring 

mechanisms on the account of the inauditability of the 

algorithms. 

 

III. RELATED WORKS 

 

Multi-armed bandits is a typical solution for a problem 

where a balance between acquisition of information and the 

usage of the information is required. Many researchers have 
worked on the MAB problem with early works dating back to 

1930s [1].  

 

The MAB problem considered under limited resources 

was Bandits with knapsacks as first conceived by [10]. Many 

different versions have since been investigated, including 

Linear Contextual BwK [11], and Combinatorial Semi BwK 

[12].  

 

The regret of the stochastic BwK is in the order O(T) with 

the regret evaluating to 𝑂√𝑇 for linear BwK, 𝑂 ((
𝑂𝑃𝑇

𝐵
+

1) 𝑚√𝑇) for linear contextual BwK, 𝑂(√𝑛) (
𝑂𝑃𝑇

√𝐵
+

√𝑇 + 𝑂𝑃𝑇) for combinatorial semi BwK. All these are 

linearly distributed.  

 

Adversarial BwK, which is a harder problem compared 

to stochastic problem because a condition on limitation of 

resources/budget, is introduced by [6]. The regret for 

Adversarial BwK is better than the O(T) achieved by the 

stochastic BwK. It evaluates to something close to OLog(T). 

The high-probability algorithm for Adversarial BwK evaluates 

to O(d log T),  the modified uniform exploration under the 

Adversarial BwK evaluates to 𝑂(𝑇3/4)√𝐾𝑙𝑜𝑔
𝑇

𝛿
 while the 

adaptive Adversary evaluates to 𝑂(√𝑛𝑇 log(1/𝛿)) [6].  

 

So far, there is no research that has ventured in use of 

fuzzy logic in consumer risk scoring. It has however been 

experimented on work accidents and occupational risks [13], 

enterprise risk [14], operational and emerging risks [15]. 
Traditional models based on probability and/or set theory are 

premised on the fact that a client is either in a set or not. This 

assumption provides accurate information if there is complete 

information provided by the entity being assessed. This paper 

explores the use of Fuzzy as the subroutine in the BwK. The 

paper will also evaluate the regret function of the Fuzzy BwK 

and compare with both the Stochastic BwK and Adversarial 

BwK regrets.  

 

For practicality, the use of Fuzzy Unordered Rule 

Induction Algorithm (FURIA) was considered. FURIA is a 
fuzzy eager learner that does not start with default rules [16]. 

Rather, it learns and updates the rules on an ongoing basis. 

Essentially, it gets into information acquisition and usage 

cycles, a typical feature of MAB. 
 

IV. EXPERIMENT 

 

The experiment is divided into two parts. The first part 

was a theoretical assessment of the Fuzzy BwK to confirm the 

regret value against Stochastic and Adversarial BwK regrets. 

The second part is experimentation of FURIA against other 

algorithms on three different datasets to evaluate for accuracy 

and fairness. One of the datasets is german credit datai , the 

second is Australian credit dataii  and the third is Kakamega 

agricultural insurance dataiii. The algorithms against which 

FURIA is evaluated are algorithms commonly used for risk 
scoring and they include Logistic regression, Naïve Bayes, K-

Nearest Neighbors, Bayesian-Network, Additive logistic 

regression boosting, Adaptive Boosting and Locally weighted 

learning.  

 

V. FUZZY BWK 

 

In BwK, we take it that there are d ≥ 1 limited resources 

to be consumed and that in each round of choice, the algorithm 

chooses an alternative (arm) from a set of K actions. There are 

d ≥ 1 loan-seekers and for each choice, a loan-seeker (arm) at 

∈ [K] is chosen for loan advancement from a set of K 

applicants in each round t ∈ [T]. We also take it that rt is a 

reward and ct,i is the consumption of each resource i ∈ [d]. 

Each resource i is endowed with budget Bi ≤ T. The game stops 

early, at some round τalg < T, when the total consumption of 

any resource exceeds its budget. The algorithm’s objective is 

to maximize its total reward. In other words, to lend to the 

optimum lending headroom, to the set of borrowers with the 

least default probability. 
 

In adversarial learning, given a set of actions A, and a 

payoff range denoted by ft ∈ [bmin, bmax] K, for some 

distribution f(t) chosen as a deterministic function in history, 

the risk-scoring algorithm with known upper bound on regret 

is given by  

 

𝑅 = [𝑚𝑎𝑥a∈A ∑ t ∈  [T] (f)𝑡(𝑎)] − [∑ t ∈  [T] (f𝑡)(a𝑡)] 

 

We consider regret minimization in games with a zero-

sum game (A1, A2, G) being a game between two players i ∈ 

{1, 2} with action sets A1 and A2 and payoff matrix G ∈ R 
A1×A2.Repeated over the Lagrangian game, this evaluates to 

 

𝑅𝐸𝑊(𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐵𝑤𝐾) ≤ 𝑂 (
𝑇

𝐵
√𝑇 𝐾 log

𝑑𝑇

𝛿
) + 𝑂𝑃𝑇𝑑𝑝 

 
The Adversarial regret as evaluated by [6] is  

𝑂(𝑅𝐸𝐺)(𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐵𝑤𝐾) ≤ (1 + 𝑂𝑃𝑇𝑑𝑝(𝜋)) 

 

where π is the Lagrange function.  

 

By greedily growing the rules in FURIA, the upper 

bound would evaluate to  
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𝑂(𝑅𝐸𝐺)(𝐹𝑢𝑧𝑧𝑦 𝐵𝑤𝐾)

≤ (1 + 𝑂𝑃𝑇𝑑𝑝(p(log(p/t) − log(P/T)))) 

 

In the Adversarial BwK, the algorithm will be as slow as 

𝜋 will allow. The logarithm smoothening introduced in the 

FuzzyBwK is meant to compensate for this. The FuzzyBwK is 

of order Olog(T) making it better than the stochastic O(T). As 

such, FuzzyBwK promises better performance in the explore-

exploit MAB problem compared to StochasticBwK and 

Adversarial BwK.  

 

VI. EMPIRICAL RESULTS 

 

The following section compares regret achieved by 

various algorithms and this is compared with what is achieved 

by FuzzyBwK. The experiment is made by testing various 

algorithms including FURIA using three datasets. The three 

datasets are the German, Australian and Kakamega datasets 

and the evaluation is against accuracy and fairness. Fairness is 

measured by determining the incorrectly classified entities. As 

for fairness, two common error estimators were used to 

determine how different the automated assessment scores were 

from human assessments. These estimators are Mean Absolute 
Error (MAE) and Relative Absolute Error (RAE). The 

assumption made is that human assessment is devoid of bias 

and as such the algorithm that returns the lowest MAE and 

RAE should be having the lowest bias (highest fairness), or 

would be regarded as counterfactually fair.  

MAE is used to determine the quantum of error between 

the measured value and the ‘true’ value.  
 

For n number of items to be classified, MAE is calculated 

by  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 

 

for every pairs of predicted value yi and true value xi.  

 

RAE as a measure takes into consideration both bias and 

accuracy. It is the ratio of the absolute error of a measurement 

to the measurement being taken. As opposed to MAE, RAE is 

used to put the error into perspective.  

 

RAE is given by getting the difference between the 

approximated value vA from the real value vE and then dividing 
the absolute difference by the real value. This is then expressed 

as a percentage.  

 

𝑅𝐴𝐸 = |
𝑣𝐴 − 𝑣𝐸

𝑣𝐸

| 𝑥100% 

 

From Table 1, it is clear that FURIA returns the lowest 

regret, evidenced by the lowest incorrectly classified items and 

the lowest MAE and RAE. FuzzyBwK promises better results 

compared to other algorithms commonly used in risk scoring. 

 
Table 1. German, Australia and Kakamega Accuracy and Fairness 

 

The rule-set in the Whitebox that is FURIA is as 

presented in Fig. 1, 2 and 3. They are easily auditable and as 

such can easily find acceptance by banking 

supervisors/regulators. 

 

i.(checking_status = no checking) => class=good (CF = 

0.88) 

ii.(duration in [-inf, -inf, 20, 21]) and (credit_amount in 

[1274, 1288, inf, inf]) and (housing = own) => class=good 

(CF = 0.82) 

iii.(duration in [-inf, -inf, 11, 12]) => class=good (CF = 0.85) 
iv.(installment_commitment in [-inf, -inf, 2, 3]) and 

(credit_amount in [-inf, -inf, 8072, 8086]) => class=good 

(CF = 0.78) 

v.(savings_status = no known savings) and (credit_amount 

in [1977, 2181, inf, inf]) => class=good (CF = 0.86) 

vi.(checking_status = <0) and (duration in [15, 16, inf, inf]) 

and (credit_amount in [-inf, -inf, 2145, 2348]) and 

(employment = 1<=X<4) => class=bad (CF = 0.91) 

vii.(checking_status = <0) and (duration in [21, 24, inf, inf]) 

and (installment_commitment in [2, 3, inf, inf]) and 

(own_telephone = no) => class=bad (CF = 0.77) 

viii.(credit_amount in [3990, 4057, inf, inf]) and (age in [-inf, 

-inf, 29, 30]) and (duration in [30, 36, inf, inf]) => 

class=bad (CF = 0.75) 

ix.(checking_status = 0<=X<200) and (duration in [20, 21, 

inf, inf]) and (savings_status = <100) => class=bad (CF = 
0.66) 

x.(checking_status = <0) and (age in [-inf, -inf, 35, 36]) and 

(credit_amount in [-inf, -inf, 1442, 1498]) => class=bad 

(CF = 0.67) 

Fig 1. FURIA Rule Set for German Dataset 
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(A9 = t) and (A15 in [225, 234, inf, inf]) => A16=+ (CF = 

0.95) 

(A9 = t) and (A10 = t) => A16=+ (CF = 0.9) 
(A9 = t) and (A14 in [-inf, -inf, 110, 120]) and (A4 = u) 

=> A16=+ (CF = 0.93) 

(A9 = t) and (A7 = h) => A16=+ (CF = 0.86) 

(A9 = f) and (A3 in [0.375, 0.415, inf, inf]) => A16=- (CF 

= 0.96) 

(A9 = f) => A16=- (CF = 0.93) 

(A10 = f) and (A14 in [100, 108, inf, inf]) and (A15 in [-

inf, -inf, 1, 40]) => A16=- (CF = 0.83) 

 

Fig 2. FURIA Rule Set for Australian Dataset 

 

i. (SOURCE = BROKERS) and (SI BAND = 

1M<=2M) => PRICING RATE=2% (CF = 0.78) 

ii. (GROSS PREMIUM = 24,500) => PRICING 
RATE=2% (CF = 0.75) 

iii. (SUM INSURED = 18,000) => PRICING 

RATE=11% (CF = 0.5) 

iv. (GROSS PREMIUM = 11,000) and (SOURCE = 

BROKERS) => PRICING RATE=11% (CF = 0.5) 

v. (SUM INSURED = 40,000) and (GROSS 

PREMIUM = 2,000) => PRICING RATE=5% (CF = 0.88) 

vi. (SOURCE = AGENTS) => PRICING 

RATE=4% (CF = 0.89) 

vii. (SOURCE = DIRECT) => PRICING RATE=4% 

(CF = 0.61) 
viii. (SUM INSURED = 50,000) and (GROSS 

PREMIUM = 2,000) => PRICING RATE=4% (CF = 0.93) 

ix. (GROSS PREMIUM = 6,000) => PRICING 

RATE=4% (CF = 0.89) 

x. (SUM INSURED = 55,000) => PRICING 

RATE=4% (CF = 0.59) 

xi. (GROSS PREMIUM = 10,000) => PRICING 

RATE=4% (CF = 0.56) 

xii. (SUM INSURED = 45,000) and (GROSS 

PREMIUM = 2,000) => PRICING RATE=4% (CF = 0.67) 

xiii. (SUM INSURED = 370,000) => PRICING 
RATE=1% (CF = 0.5) 

xiv. (SUB CLASS = CROP INSURANCE-SW) and 

(SI BAND = 1M<=2M) => PRICING RATE=7% (CF = 

0.72) 

xv. (SUM INSURED = 30,000) and (GROSS 

PREMIUM = 2,000) => PRICING RATE=7% (CF = 0.61) 

xvi. (SOURCE = DIRECT) and (SUM INSURED = 

240,000) => PRICING RATE=6% (CF = 0.61) 

xvii. (SOURCE = DIRECT) and (SUM INSURED = 

32,000) => PRICING RATE=6% (CF = 0.51) 

xviii. (SOURCE = DIRECT) and (SUM INSURED = -

240,000) => PRICING RATE=6% (CF = 0.51) 
xix. (GROSS PREMIUM = 8,000) and (SUM 

INSURED = 100,000) => PRICING RATE=8% (CF = 

0.5) 

xx. (SOURCE = BANCASSUARANCE) and 

(GROSS PREMIUM = 4,800) => PRICING RATE=3% 

(CF = 1.0) 

xxi. (SOURCE = BANCASSUARANCE) and (SUB 

CLASS = LIVESTOCK INSURANCE-SW) => 

PRICING RATE=3% (CF = 0.93) 

xxii. (SUM INSURED = 15,000) => PRICING 

RATE=13% (CF = 0.6) 

Fig 3. FURIA Rule Set for Kakamega Dataset 

 

VII. CONCLUSION 

 

Risk scoring requires accuracy, fairness and auditability. 

Fuzzy logic, applied in the Fuzzy BwK using FURIA as the 

subroutine in BwK results in higher accuracy scores compared 

to other algorithms commonly used in risk scoring. Accuracy 

is important since it inspires confidence among the financial 

institutions using the algorithm. No financial institution wants 

to grow a bad loan book. Fairness is also important since loan 

seekers want to have confidence that they will be treated fairly 

by the algorithms without being discriminated against. FURIA 

promises counterfactual fairness, evidenced by the low MAE 
and RAE in the results. The simple rules used by FURIA are 

easy to audit unlike the blackbox algorithms that many of the 

machine learning algorithms are. This means that it can be 

easily accepted by banking supervisors who for a long time 

have had issue with algorithms that cannot be explained or 

audited. 
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