The Effect of Changing Q-factor on the Stability Response of Active-R Filter using Op-amps

Adnan Abdullah Qasem
Department of Physics
University of Saba Region
Marib, Yemen

G. N. Shinde
School of Physics
S. R. T. M. University
Nanded, India

Abstract

This article illustrates a new configuration to realize the stability of third order active-R filter. If the resistive voltage-dividers have high input impedance and low output impedance, the circuit realizes concurrently three transfer functions low-pass, band-pass, and highpass concurrently in single circuit with work at different nodes with gratified results. It observed that, the low-pass filter works for all values of quality factor and is extremely stable only when the quality factor is less or equal to one. Whereas, the band-pass filter works and is asymptotically stable for all values of quality factor. The high pass filter works for all values of quality factor and is asymptotically stable only when the quality factor is less or equal to one. The circuit has also low sensitivity to passive and active elements. From the results, it can be seen that when the quality factor is less or equal to one, the circuit has excellent low-pass performance and highpass performance and for all values of quality factor, the circuit has excellent band-pass performance.

Keywords:- Filter; Stability response; Third order; Active-R; Quality factor; OTA, Op-amp.

I. INTRODUCTION

A filter is basically a device designed to isolate, suppress or pass a group of signals from a combination of signals. Filters are widely used in signal processing, communications systems and in the electronic instrumentation.

Electrical Filters can be categorized at many stages based on the type of signals processed into analog and digital filters, based on the type of elements used in their
construction into passive and active filters, and based on the type of function achieved into low pass, band pass, high pass and band stop (reject) filters.

Passive and active filters are distinguished by the passivity of the elements used in their construction. If an element needs power or unable of power gain, then it is known as a passive element. An element that is not passive is known as active elements.

Passive filters are constructed completely with passive elements i.e. (resistors, capacitors, and inductors) and do not use any active elements or power supply. An active filter uses an active element such as operational amplifiers, transistors, and operational transconductance amplifiers along with or without use any passive elements. The most used of filters are low pass, band pass, high pass, band stop (band reject) and all pass filters.

In recent years, the current mode analogue signal processing circuit techniques have received wide attention due to the high accuracy, the wide signal bandwidth, and the simplicity of implementing signal operations [1-2]. In filter circuit designs, current-mode active-R filters are becoming popular since they have many advantages compared with their voltage-mode counter parts, the current-mode active-R filters have large dynamic range, higher bandwidth, greater linearity, simple circuitry, low power consumption, etc. [3-4]. In filter circuit designs, current-mode filters are becoming popular since they have many advantages compared with their voltage-mode counter parts, the current-mode filters have large dynamic range, higher bandwidth, greater linearity, simple circuitry, and low power consumption etc, [5-6]. This
article proposes a new circuit configuration for realizing concurrently $3^{r d}$-order active-R low pass, band pass, and high pass filters. The circuit configuration, circuit analysis, and designed equations have been discussed for different values of Q -factor. This active-R filter is designed with operational amplifiers, and resistors with three resistive voltage-dividers only.

II. PROPOSED CIRCUIT CONFIGURATION

The proposed circuit configuration for realizing multiple-output $3^{r d}$-order active-R filter with feedforward input signal is shown in Figure 1. The circuit contains three OAs, and four resistors with three resistive voltage-dividers. Resistors (formed by $g_{i a}$ and $g_{i b}$) assist the resistive voltagedivider arrangement. The input sinusoidal low current signal is fed to the inverting terminal of the first op-amp, through the first resistive voltage-divider (formed by $g_{1 a}$ and $g_{1 b}$). The non-inverting terminal of the first op-amp, is grounded. The output of the first op-amp, is connected to the noninverting terminal of the second op-amp, through the second resistive voltage-divider (formed by $g_{2 a}$ and $g_{2 b}$). The feed forward input sinusoidal signal is given to the inverting terminal of the second op-amp. The output of the second opamp, is connected to the non-inverting terminal of the third op-amp, through the third resistive voltage-divider (formed by $g_{3 a}$ and $g_{3 b}$). The inverting terminal of the third op-amp, is grounded. If the resistive voltage-dividers have high input impedance and low output impedance the circuit attains the low pass, the band pass, and the high filters at three different nodes. The low pass, the band pass, and the high pass filters are as shown in Figure 1.

Fig 1 Circuit diagram of $3^{r d}$-order active-R filter.

A Circuit Analysis and Design Equations:

The open loop gain of an operational amplifier (LF356N) is an internally compensated op-amp, which is represented by a "single-order model":

$$
\begin{equation*}
A(s)=\left(A_{0} w_{0} /\left(S+w_{0}\right)\right) \tag{1}
\end{equation*}
$$

Where,
$A_{0}=$ open loop D.C. gain of op-amp, $w_{0}=$ open loop 3 dB bandwidth, $\beta=A_{0} w_{0}=$ gain bandwidth product of opamplifier and S is the complex frequency variable.

For $S \gg w_{0}$.

$$
\begin{equation*}
A(s)=\left(A_{0} w_{0} / S\right)=\beta_{i} / S \text { where } i=1,2,3, \ldots \tag{2}
\end{equation*}
$$

This shows that the op-amplifier is an "integrator". Thus, the current-mode transfer functions of low pass, band pass and high pass are calculated as:

The current-mode transfer function for the low pass filter is given by:

$$
\begin{equation*}
T(S)_{L P}=\frac{k_{1} k_{2} k_{3} \beta_{1} \beta_{2} \beta_{3} g_{3}}{a_{1} S^{3}+a_{2} S^{2}+a_{3} S+a_{4}} \tag{3}
\end{equation*}
$$

The current-mode transfer function for the band pass filter is given by:

$$
\begin{equation*}
T(S)_{B P}=\frac{k_{1} k_{2} \beta_{1} \beta_{2} g_{2} S}{a_{1} S^{3}+a_{2} S^{2}+a_{3} S+a_{4}} \tag{4}
\end{equation*}
$$

The current-mode transfer function for the high pass filter is given by:

$$
\begin{equation*}
T(S)_{H P}=\frac{g_{0} S^{3}}{a_{1} S^{3}+a_{2} S^{2}+a_{3} S+a_{4}} \tag{5}
\end{equation*}
$$

Where

$a_{1}=g_{0}+g_{1}+g_{2}+g_{3}$	$k_{1}=\left\{g_{1 a} /\left(g_{1 a}+g_{1 b}\right)\right\}$
$a_{2}=k_{1} \beta_{1} g_{1}+k_{1} \beta_{2} g_{2}$	$k_{2}=\left\{g_{2 a} /\left(g_{2 a}+g_{2 b}\right)\right\}$
a_{3} $k_{3}=\left\{g_{3 a} /\left(g_{3 a}+g_{3 b}\right)\right\}$ $=k_{1} k_{2} \beta_{1} \beta_{2} g_{2}+k_{1} k_{3} \beta_{2} \beta_{3} g_{3}$ $a_{4}=k_{1} k_{2} k_{3} \beta_{1} \beta_{2} \beta_{3} g_{3}$ l	

The circuit is designed using the coefficient matching technique i.e., by comparing the coefficients of denominator of the transfer functions with the coefficients of denominator of the general $3^{r d}$-order transfer function [7]. The general $3^{\text {rd }}$-order transfer function is given by:

$$
\begin{equation*}
T(s)=\frac{\alpha_{3} S^{3}+\alpha_{2} S^{2}+\alpha_{1} S+\alpha_{0}}{S^{3}+w_{0}\left(1+\frac{1}{Q}\right) S^{2}+w_{0}^{2}\left(1+\frac{1}{Q}\right) S+w_{0}^{3}} \tag{6}
\end{equation*}
$$

By comparing the coefficients of denominator of equations (3), (4), and (5) with the coefficients of denominator of equation (6), we get the design equations as:

$$
\begin{align*}
& g_{0}+g_{1}+g_{2}+g_{3}=1 \tag{7}\\
& k_{1} \beta_{1} g_{1}+k_{1} \beta_{2} g_{2}=w_{0}\left(1+\frac{1}{Q}\right) \tag{8}
\end{align*}
$$

$$
\begin{equation*}
k_{1} k_{2} \beta_{1} \beta_{2} g_{2}+k_{1} k_{3} \beta_{2} \beta_{3} g_{3}=w_{0}^{2}\left(1+\frac{1}{Q}\right) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
k_{1} k_{2} k_{3} \beta_{1} \beta_{2} \beta_{3} g_{3}=w_{0}^{3} \tag{10}
\end{equation*}
$$

Using these equations, the values of $R_{0}=\frac{1}{g_{0}}, R_{1}=\frac{1}{g_{1}}, R_{2}=\frac{1}{g_{2}}$, and $R_{3}=\frac{1}{g_{3}}$ are calculated for different values of Q and f_{0}.

III. SENSITIVITY

The passive and active sensitivities with respect to the parameters $g_{0} \cdot g_{1} \cdot g_{2} \cdot g_{3} \cdot k_{1} \cdot k_{2} \cdot k_{3} \cdot \beta_{1} \cdot \beta_{2}$ and β_{3} are given by:

A. $\quad \boldsymbol{w}_{\mathbf{0}}$ Sensitivities:

$$
\begin{align*}
& S_{g_{0}}^{w_{0}}=-\frac{1}{3} g_{0} \tag{11}\\
& S_{g_{1}}^{w_{0}}=-\frac{1}{3} g_{1} \tag{12}\\
& S_{g_{2}}^{w_{0}}=-\frac{1}{3} g_{2} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& S_{g_{3}}^{w_{0}}=-\frac{1}{3}\left\{g_{3}-1\right\} \tag{14}\\
& S_{k_{1}}^{w_{0}}=S_{k_{2}}^{w_{0}}=S_{k_{3}}^{w_{0}}=\frac{1}{3} \tag{15}\\
& S_{\beta_{1}}^{w_{0}}=S_{\beta_{2}}^{w_{0}}=S_{\beta_{3}}^{w_{0}}=\frac{1}{3} \tag{16}
\end{align*}
$$

B. Q Sensitivities:

$$
\begin{equation*}
S_{g_{0}}^{Q}=-\frac{1}{3}(1+Q) g_{0} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
S_{g_{1}}^{Q}=-\frac{1}{3}(1+Q) g_{1} \tag{18}\\
S_{g_{2}}^{Q}=-\frac{1}{3}(1+Q) g_{2}\left\{\frac{3}{\left(g_{2}+g_{3}\right)}-1\right\} \tag{19}\\
S_{g_{3}}^{Q}=-\frac{1}{3}(1+Q)\left\{\frac{3 g_{3}}{\left(g_{2}+g_{3}\right)}-\left(g_{3}+2\right)\right\} \tag{20}
\end{gather*}
$$

$$
\begin{equation*}
S_{k_{1}}^{Q}=-\frac{1}{3}(1+Q) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
S_{k_{2}}^{Q}=-\frac{2}{3}(1+Q)\left\{\frac{3 g_{2}}{2\left(g_{2}+g_{3}\right)}-1\right\} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
S_{k_{3}}^{Q}=-\frac{2}{3}(1+Q)\left\{\frac{3 g_{3}}{2\left(g_{2}+g_{3}\right)}-1\right\} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
S_{\beta_{1}}^{Q}=-\frac{2}{3}(1+Q)\left\{\frac{3 g_{2}}{2\left(g_{2}+g_{3}\right)}-1\right\} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
S_{\beta_{2}}^{Q}=-\frac{1}{3}(1+Q) \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
S_{\beta_{3}}^{Q}=-\frac{2}{3}(1+Q)\left\{\frac{3 g_{3}}{2\left(g_{2}+g_{3}\right)}-1\right\} \tag{26}
\end{equation*}
$$

In w_{0} sensitivities, the passive sensitivities are smaller than unity, whereas the active sensitivity values are one third in magnitude. In Q sensitivities, the passive and the active
sensitivities are smaller than unity. These values ensure the stability of the circuit.

IV. RESULTS AND DISCUSSION

The circuit performance is studied for different values of Q-factor with a particular value of central frequency for the low pass, the band pass, and the high pass filters. The general operating range of this filter is 10 Hz to 6.392 MHz . The value of $\beta_{i}\left(\beta_{1}=\beta_{1}=\beta_{1}\right.$ is $2 \pi(6.392) \times 10^{6} \mathrm{rad} / \mathrm{sec}$, and $k_{i}\left(k_{1}=k_{2}=k_{3}\right)$ is 0.5 mS .

Table 1 Resistors values for low pass, band pass, and high pass filters, with $f_{O}=20 \mathrm{kHz}$.

Q	R_{0} $(\mathrm{k} \Omega)$	R_{1} $(\mathrm{k} \Omega)$	R_{2} (Ω)	R_{3} (Ω)
0.1	931.2	68.4	430.52	0.25
0.5	981.2	18.66	117.24	0.25
1	987.5	12.44	78.08	0.25
5	992.5	7.46	46.75	0.25
10	993.1	6.84	42.83	0.25
20	993.43	6.53	40.87	0.25

A. Stability Response of low pass filter for different values of Q-factor.

The Figure 2 shows the stability response of a low pass filter for different values of Q-factor. The table 2 shows the data obtained from the analysis of the stability response
curves shown in Figure 2. It is observed that the low pass filter works for $\mathrm{Q} \geq 0.1$. The gain margin decreases with an increase in the value of Q -factor, and is a positive value only for $\mathrm{Q} \leq 1$. For instance, it is 41.6 dB at 66.3 kHz for $\mathrm{Q}=0.1$ and is 9.54 dB at 28.3 kHz for $\mathrm{Q}=1$. Therefore, the low pass filter with respect to Q -factor is asymptotically stable only for $\mathrm{Q} \leq 1$ with $f_{O}=20 \mathrm{kHz}$. The stability response shows the phase margin of 179° at 0.173 kHz for $\mathrm{Q}=1$. The peak gain takes place at 0 dB for $\mathrm{Q} \leq 1$, and for all other values of Q , it increases with an increase in the value of Q -factor.

Fig 2 Stability response of a low pass filter with $f_{O}=$ 20 kHz .

Table 2 Graph analysis of Figure 2

\mathbf{Q}	Gain Margin $\left(\boldsymbol{G}_{\boldsymbol{M}}\right)$		Phase Margin $\left(\boldsymbol{P}_{\boldsymbol{M}}\right)$		Peak Gain		Stability Status
	$(\mathbf{d B})$	$\boldsymbol{f}_{\boldsymbol{G C O O}}$ $(\mathbf{k H z})$	$(\mathbf{d e g})$	$\boldsymbol{f}_{\boldsymbol{P C O}}$ $(\mathbf{k H z})$	$(\mathbf{d B})$	$\boldsymbol{f}_{\boldsymbol{P}}$ $(\mathbf{k H z})$	
0.1	41.6	66.3	-180	0	0	4.04×10^{-8}	S
0.5	18.1	34.6	-180	0	0	4×10^{-16}	S
1	9.54	28.3	179	0.173	0	0.04	S
5	-7.13	21.9	-27.7	25.1	10	20	$N S$
10	-13.6	21	-39.9	25.3	16	20	$N S$
20	-19.8	20.5	-45.9	25.4	22	20	$N S$

B. Stability Response of band pass filter for different values

 of Q-factor.The Figure 3 shows the stability response of a band pass filter for different values of quality factor Q . The table 3 shows the data obtained from the analysis of the stability response curves shown in Figure 3. The stability response is studied for quality factors $(0.1,0.5,1,5,10$ and 20$)$, with $f_{O}=$ 20 kHz . The band pass filter works for $\mathrm{Q} \geq 0.1$. The gain margin with respect to Q is infinite dB . Accordingly, the band pass filter with respect to Q -factor is extremely stable for all values of Q with $f_{O}=20 \mathrm{kHz}$. The phase margin varies between the maximum value of 171° at 7.88 kHz for $\mathrm{Q}=0.1$ to the minimum value of 41° at 27.1 kHz for $\mathrm{Q}=20$. The peak gain varies from the minimum value of 0 dB at 6.9 kHz for $\mathrm{Q}=0.1$ to the maximum value of 21.1 dB at 20 kHz for Q $=20$.

Fig 3 Stability response of a band pass filter with $f_{O}=$ 20 kHz .

Table 3 Graph Analysis of Figure 3

Q	$\begin{gathered} \text { Gain Margin } \\ \left(G_{M}\right) \end{gathered}$		Phase Margin$\left(\boldsymbol{P}_{M}\right)$		Peak Gain		Stability Status
	(dB)	$\begin{gathered} \boldsymbol{f}_{G C O} \\ (\mathbf{k H z}) \end{gathered}$	(deg)	$\begin{gathered} \boldsymbol{f}_{P C O} \\ (\mathbf{k H z}) \end{gathered}$	(dB)	$\begin{gathered} \boldsymbol{f}_{P} \\ (\mathbf{k H z}) \end{gathered}$	
0.1	Inf	Nan	171	7.88	0	6.9	S
0.5	Inf	Nan	127	22.1	1.2	14.5	S
1	Inf	Nan	94.2	27.2	3.2	18	S
5	Inf	Nan	52.4	27.8	12.3	20	S
10	Inf	Nan	45.1	27.4	17	20	S
20	Inf	Nan	41	27.1	21.1	20	S

C. Stability Response of high pass filter for different values of Q-factor.

The Figure 4 shows the stability response of a high pass filter for different values of Q-factor. The table 4 shows the data obtained from the analysis of the stability response curves shown in Figure 4. The high pass filter works for all values of Q . It is observed that the gain margin with respect to Q decreases down with an increase in the value of Q-factor and is a positive value only for $\mathrm{Q} \leq 1$. For instance, it is 42.2 dB at 6.03 kHz for $\mathrm{Q}=0.1$ and is 9.65 dB at 14.1 kHz for Q $=1$. Hence, the high pass filter with respect to Q is asymptotically stable only for $\mathrm{Q} \leq 1$ with $f_{O}=20 \mathrm{kHz}$. The stability response shows the phase margin of infinite degree for $\mathrm{Q} \leq 1$. The peak gain takes place almost at 0 dB for $\mathrm{Q} \leq$ 1 , and for $\mathrm{Q}>1$, it increases with an increase in the value of Q-factor.

Fig 4 Stability response of a high pass filter with $f_{O}=$ 20 kHz .

Table 4 Graph Analysis of Figure 4

\mathbf{Q}	Gain Margin $\left(\boldsymbol{G}_{\boldsymbol{M}}\right)$		Phase Margin $\left(\boldsymbol{P}_{\boldsymbol{M}}\right)$		Peak Gain		Stability Status
	$(\mathbf{d B})$	$\boldsymbol{f}_{\boldsymbol{G C O}}$ $(\mathbf{k H z})$	$(\mathbf{d e g})$	$\boldsymbol{f}_{\boldsymbol{P C O}}$ $(\mathbf{k H z})$	$(\mathbf{d B})$	$\boldsymbol{f}_{\boldsymbol{P}}$ $(\mathbf{k H z})$	
	42.2	6.03	Inf	Nan	-0.3	1.59×10^{16}	S
0.5	18.2	11.5	Inf	Nan	0	1.59×10^{16}	S
1	9.65	14.1	Inf	Nan	0	1×10^{9}	S
5	-7.07	18.3	27.5	16	10.8	20	$N S$
10	-13.5	19.1	39.8	15.8	16.8	20	$N S$
20	-19.7	19.5	45.8	15.8	22	20	$N S$

V. CONCLUSION

A realization of $\mathbf{3}^{\text {rd }}$-order active-R filter with feedforward input signal has been proposed. The circuit consists of three operational amplifiers (OAs), and four resistors, with three resistive voltage-dividers (formed by $\boldsymbol{g}_{\boldsymbol{i}}$ and $\boldsymbol{g}_{\boldsymbol{i b}}$). The input sinusoidal low current signal is applied to the inverting terminal of the first op-amp, through the first resistive voltage-divider (formed by $\boldsymbol{g}_{1 \boldsymbol{a}}$ and $\boldsymbol{g}_{\boldsymbol{1} \boldsymbol{b}}$). If the resistive voltage-dividers have high input impedance and low output impedance, the circuit realizes low pass, band pass, and high pass transfer functions at three different nodes. With respect to quality factor, the low pass filter works for all values of quality factor and is extremely stable only when Q ≤ 1. Whereas, the band pass filter with respect to quality factor works and is asymptotically stable for all values of Q .

With respect to quality factor, the high pass filter works for all values of quality factor and is asymptotically stable only when $\mathrm{Q} \leq 1$. The circuit has also low sensitivity to passive and active elements. From the results, it can be seen that when $\mathrm{Q} \leq 1$, the circuit has excellent low pass performance and high pass performance and for all values of Q, the circuit has excellent band pass performance. The circuit realizes concurrently low pass, band pass, and high pass filters.

ACKNOWLEDGEMENTS.

My thanks are first to Allah, the Almighty, for providing me with the gifts of faith, health, and strength to accomplish this article and helping me to reach this milestone. I am thankful to all the staff members of physical department, and all the staff members of university of Saba

Region for everything. I am very much thankful to my wife, for her great moral support and every possible help during writing this article. Finally, I am very much thankful to Tazi university, for giving me this opportunity to publish this article.

REFERENCES

[1]. Tsukutani, Takao, et al, "Electronically Tunable Current-Mode Active-Only Biquadratic Filter," International Journal of Electronics 87.3 (2000): 307314
[2]. G. N. Shinde, and D. D. Mulajkar, "frequency response of electronically tunable current-mode third order high pass filter with central frequency $\mathrm{f}_{0}=10$ KHz with variable circuit merit factor Q," Scholar's research library 02.03 (2010): 248-252.
[3]. C. Toumazou, F. J. Lidgey, and D. G. Haigh, " Analogue IC Design: The Current-Mode Approach," United Kingdom: Institution of Engineering and Technology, 1990.
[4]. G. W. Roberts and A. S. Sedra, "All Current-Mode Frequency Selective Circuits," Electronics Letters 25.12 (1989): 759-761.
[5]. G.N. Shinde and D.D. Mulajkar, "frequency response of electronically tunable current mode third order high pass filter with central frequency $\mathrm{f}_{0}=10 \mathrm{KHz}$ with variable circuit merit factor Q," Scholar's research library, 2(3):248-252, 2010.
[6]. C. Ugurn, "anovel current-mode second-order notch filter configuration employing single CDBA and reduced number of passive components," ELSEVIER, 147-151, 2004.
[7]. F. Kacar and H. Kuntman, "new current-mode filter using single FDCCIT with grounded resistors and capacitors," Open Journal of Energy Efficiency 02.04 (2013): 2169-2645.
[8]. R. E. Kass and A. E. Raftery (1995), "Bayes Factors," Journal of the American Statistical Association 90, 773-794.
[9]. B. Kalpesh, A. Kehul and Pandya, "Design and Analysis of CMOS Telescopic Operational Transconductance Amplifier for $0.35 \mu \mathrm{~m}$ Technology," International Journal of Science and Research 02.03 (2013): 2319-7064.
[10]. Alka Yadav, "Design and Analysis of Operational Transconductance Amplifier Using Pspice," International Journal of Research in Engineering and Technology 03.04 (2014): 931-934.
[11]. V. Dattaguru and Kamath, "New OTA-C CurrentMode Second-Order and Fourth-Order Band-Pass Filters," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 3.6 (2015): 130-134.
[12]. D. Teryima, A. Mise Johnson and A. Atsuwe Benard, "Implementation of an Active RC Band-Pass Filter at Varying Quality Factors Using Matlab," International Journal of Scientific \& Technology Research 03.05 (2014): 350-352.
[13]. R. L. Ozenbaugh, and M. P. Timothy, "EMI Filter Design," Third Edition, CRC Press, May 18, 2013.
[14]. U. N. Chavan and G. N. Shinde, "Implementation of Second-Order Switched Capacitors Filters with Feedback Signal," IJETTCS 02.06 (2013): 31-33.
[15]. A. A. Qasem and G. N. Shinde, "Electronically Tunable Third-Order Switched-Capacitor Filter with Feedforward Signal to Minimize Overshoot," Global Journal of Researches in Engineering: F Electrical and Electronics Engineering 14.07 (2014): 2249-4596.
[16]. C. Richard Dorf and J. A. Svoboda, "Introduction to Electric Circuits," 9th ed. United States: John Wiley \& Sons, 2013.
[17]. J. Richard and Tervo, "Practical Signals Theory with matLaB Applications," United States: John Wiley \& Sons, 2013.
[18]. Gupta and Manish, "New Single Input Multiple Output Type Current Mode Biquad Filter Using OTAs," Circuits and Systems 07.04 (2016): 231-238.
[19]. B. Chaturvedi and S. Maheshwari, "High-Input LowOutput Impedance All-Pass Filters Using One Active Element," IET Circuits, Devices \& Systems 6.2 (2012): 103.
[20]. S. Peerawut, D. Kobchai, Kumngern and Montree, "Electronically Tunable Voltage-Mode Universal Filter with Single-Input Five-Output Using Simple OTAs," International Journal of Electronics 100.8 (2013): 1118-1133.
[21]. N. Alexander, A. Iorkyaa, A. Bernard and Amah, "A Comparison of Higher-Order Active Band-Pass RFilter Response with Equivalent Band-Pass RC-Filter Response at Varying Q-Factors," Circuits and Systems 05.10 (2014): 229-237.
[22]. Mohan and Jitendra, "Single Active Element Based Current-Mode All-Pass Filter," International Journal of Computer Applications 82.1 (2013): 23-27.

