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I. INTRODUCTION 

 

 Let  denote the class of functions of the form  

 

 
 

Which are analytic in the open disc . Let  denote the subclass of function in  which are 

univalent in  and indeed normalized by  It is well known that every function  has an inverse  

defined by  

  

 

 

and  

 

 

 

A function  is said to bi-univalent function in  if  and  are together univalent functions in . Let  denote 

the class of bi-univalent functions defined in . The inverse function  is given by 
  

 
 

Spacek [22] introduced the concept of spirallikeness which is a natural generalization of starlikeness. Spirallike functions 

can be characterized by the following analytic condition: 

 

A function  in  is -spirallik if and only if,  

 

 
 

Where  In [11], Jackson introduced and studied the concept of the -derivative operator    as follows : 

 

 
 

Equivalently (4), may be written as  

 

 
 

Where ,   note that as    

http://www.ijisrt.com/


Special Issue-(2nd ICTSA-2022)                                         International Journal of Innovative Science and Research Technology                                                 

                                                       ISSN No:-24562165 

 

IJISRT22DEC1495                                                             www.ijisrt.com                                                              106 

 

 Definition 1.1  Let - -  denote the class of - -bi-spirallike functions of order . The 

function , given by (1), is said it is in - -  if it satisfies:  

 

 
 

and  

 

 (7) 

 

 2   Main Results  

  

 Theorem 2.1  Let   

Be in - -  Then  

  

  

 

Where 

 

 
 

Proof. Let  

 

 
 

 is analytic in  and satisfies  and  It can be checked that the function  defined 

by:  

 

 

 

Is a member of the class .  
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Let  

 

By comparing coefficient in (9), we have  
 

 
 

 
 

 
 

Where 

 

 
 

Similarly we take  

 

 
 

Where  is Analytic in  and Satisfies  
 

 

 

The function  defined by  

 

 

 

Is a Member of the class . Let  

 

By comparing coefficient in (13), we have  
 

 
 

 
 

 
 

Where 

 

   
From (10) and (14) we have  
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We shall obtain a refined estimate on  for use in the estimates of  and  For this purpose we first add (11) with 

(15), then use the relations (17) and get the following: 

 

  
 

Putting  from (10) we have after simplification:  

 

 

 

By applying the familiar inequalities  and  we get:  

 

 
 

and  
 

 

 

We next find a bound on . For this we substract (15) from (11) and get  

 

  
 

The relation  from (17), reduces the above expression to  
 

 
 

Using  and (18), we get  
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Where  
 

 
 

 
 

Therefore, the inequalities  and  give the following:   

 

 
 

Which Simplifies  

 

 
 

Now we find an estimate on . At first we shall derive  relation connecting  and . To this end, Now we 

collect (12) and (16) we get  

 

 
 

Where  

 

. 

 

Now we are putting  in (21) we get  

 

 
  

Where 

 

 
 

Substituting from(20) in (21) we get after simplification: 

 

 
 

Since , we have  

 

SINCE , WE HAVE 
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Where 

 

.  

 

 
 

Or 

 

  

 

Observing that  we have  and therefore  

 

  

 

We Replace  

 

   
 

By the right hand side of (22) ,  
 

put   

 

and    

 

 

 

 

 

This gives  
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Where 

 

 

 

 
 

Next, replacing  by the expression in the right hand side of (23) and  by (18) we finally get  

 

  

 

  

 

Where  

 

This Gives 

 

 
Where   
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Where 

 

 
 

 
 

 
 

  

 

By applying the inequalities  we get 
 

 
 

Where  
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As    in the above Theorem we get the following:  

 

 Corollary 2.1 [21] Let  be in -  Then  

 

 
  

  
  

 
 

 Theorem 2.2 Let , given by (1) in the class . Then 

 

 
  

 
 

and  

 

 
 

Proof. Let , then by Definition 1.1 we have  

 

 
 

and  
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Where  

 

 

 

and  

 

 

 
As in the proof of Theorem 2.1, by suitably comparing coefficient in (31) and (32) we have  

 

 
  

 
 

 
 

Where and  

 

 
  

 
  

 
 

Where 

 

 
 

In order to express  interms of  and  we first add (34) and (37) and get  

 

 
 

Again putting  from (33) we have 

  

 

 

Or equivalently  

 

 
 

The familiar inequalities  yield  

 

 

Which Implies that  
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 Following the Lines of Proof of Theorem 2.1, with Appropriate Changes, we Get that  

 

 

 

The inequalities  yield 

 

 
 

We shall next find an estimate on , By substracting (38) from (35) we get  

 

 
 

A substitution of the value of  from the relation (33) gives 

 

 
 

Therefore, using the inequalities , , the estimate for  from (41)and the estimate for  

from (42), we get  

 

 

 

Or equivalently, 
 

 

 

 

As    in the above Theorem we get the following:  

 

 Corollary 2.2 [21] Let , given by (1) in the class . then 
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II. CONCLUSIONS 

 

In this paper, we introduced and investigated two new 

subclasses of the function class  of - - -spirallike 

functions defined in the open unit disc. Furthermore, We find 

estimates on the coefficients for functions in 
these two new subclasses for functions. Future work making 

use of the values of  a2 a3  and a4  we can caluculate Hankel 

determinant coefficient for the bi- spirallike function classes. 
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