Batch Electrochemical Production of Sodium Hypochlorite : P^h Change and Influence of Alkalinity

Ziad Abdo¹,Akrm Ali¹ Niyazi A. S. Al-Areqi¹ Mohammed Abduljalil¹* Elyas Alaghbari¹, Redwan Ali¹ ¹Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Yemen.

Abstract:- The effect of using variable alkaline mediums; sodium carbonate , sodium hydroxide and ammonium hydroxide in different concentrations on onsite electrochemical production of sodium hypochlorite using a single batch electrolysis cell as studied by following up the rate of reaction and the p^{H} at specific time intervals. Generally the rate of production increase at 0.4 %w/v followed by 0.2 %w/v. Ammonia hydroxide was not suitable as alkaline medium because there was no significant increase in production rate at 0.2 %w/v0.4 %w/v , reaction was very slow and sodium hypochlorite did not firmed at higher concentration. The optimum P^{H} to get best production rate was between (8-8.5)

Keywords:- Sodium Hypochlorite; Electrochemichal Production; Sodium Chloride.

I. INTRODUCTION

Sodium hypochlorite is a pale yellow compound with the distinctive smell of chlorine. NaOCl is a powerful oxidant, strong antimicrobial against bacteria and bleaching agent. It's commonly used as disinfectant for drinking & waste water [1-3]. In the last three years with COVID-19 pandemic sodium hypochlorite has become one of most disinfectant required in the world. Because many safety precaution that are to be taken into consideration during storage and transporting large volumes of liquid chlorine ; the local hypochlorite electrochemical generation increased[4-6].

The chlor-alkaline industry produce many important compound by the electrolysis of brine .this method produce sodium hydroxide and chlorine gas which blended to produce sodium hypochlorite. The following equation illustrate the process at anode (loss of electrons):

- 2Cl	→ C	$l_{2\omega} + 2e^{-1}$
at cathode (gain	of electro	ns):
2H ₂ O _{(b} + 2e	\rightarrow	$H_{2(g)} + OH_{(eq)}$

Because of the civil war in Yemen, we have a complex problem for two main reasons; stopping electricity generation and preventing the import of chlorine gas . Therefore, this work tries to contribute to finding an energysaving solution that uses local resources to produce sodium hypochlorite[7-14]. Riya Qaid Alansi² ²Yemen Standardization, Metrology and Quality Control Organization (YSMO), Sana'a, Yemen.

The main raw material in our experiment was sodium chloride, which may be available from different sources such as rock salt or solar salt, which is obtained by solar evaporation of sea water[15].

II. MATERIALS AND METHOD

Table(1) lists materials, chemicals, and equipment used in electrochemical Production of Sodium Hypochlorite from brine water.

A plastic container filled with 3L of tap water. 360 gm of sodium chloride salt dissolved in tap water to get a 12% w/v solution. Graphite rods was used as anode and zinc plate with 5*10 dimensional used as cathode .the distant between anode & cathode was 20 cm.

After connected zinc plate with negative pole and graphite with positive pole of DC supply power 5ml of reaction mixture Transferred to conical flask contain 5ml of KI has 6% w/v concentration and drops of starch as indicator every ten minutes from 10 up to 120 min . The solution mixture was titrated with a standard Na₂S₂O₃ solution. The P^H has been measured every 10 min since the beginning of the reaction. The previous steps are repeated by adding different concentrations of different alkaline solutions (Na₂CO₃,NaOH,NH₄OH)(0.2%, 0.4 % w/v ,0.6 % w/v, 0.8 % w/v ,1% w/v).

Table 1 Materials, Chemicals, and Equipment Used in the
Present Study.

Material / chemical	Assay%	Source
Salt (NaCl)	Commercial	Local market
	grade	
Tap water	-	Our lab
Distillated water	-	Our lab
Starch indicator	Analytical grade	BHD
Potassium iodide	99-100%	BHD
Sodium thiosulfate	90%	Labtech
		Chemicals
Sodium carbonate	99.5%	Chemical
		laborites
Sodium hydroxide	96.5%	ADWIC
Ammonia solution	25%	Chemical
		laborites

III. RESULTS & DISCUSSION

The effect of adding different concentrations of Na_2CO_3 on the electrochemical kinetics (U) of NaOCl using graphite and zinc rods is presented in fig. (1,2,3,4,5).

When the concentration of Na₂CO₃ is increased from 0.2% w/v to 0.4% w/v, the slope value increases. It was also observed that slope value was strong and suddenly rose at 0.8 % w/v while slope value was low at 0.6 % w/v and 1% w/v.

Table (2) describe values of production rate with change of Na₂CO₃ concentration and P^H ranges. In addition to some statistical parameters, standard deviation (SD)and squared correlation coefficient (R2). The highest production rate was at 0.8 % w/v followed by 0.4 % w/v, while the rest concentration gave low production rate .

Fig 3 Effect of Added 06% w/v Na₂CO₃ on Electrochemical Kinetics of NaOCl

Fig 5 Effect of Added 1 % w/v Na₂CO₃ on Electrochemical Kinetics of NaOCl

ISSN No:-24562165

Table 2 Values of Production Rate with Change pof Na₂CO₃ Concentration and P^H Ranges Standard Deviation and Squared Correlation Coefficient.

	-			
W / V %		U	R ²	SD
Na ₂ CO ₃	$\mathbf{P}^{\mathbf{H}}$ rang	mol NaOCl s ⁻		
		1 cm ⁻²		
0.2	9 - 10	4.66*10-	0.32595	7.46*10-6
		10		
0.4	9 - 10	1.60*10-9	0.84375	9.32*10-6
0.6	9.7 –	8.14*10-	0.67064	$1.08*10^{-5}$
	10.2	10		
0.8	10.3 -	2.32*10-9	0.87778	2.69*10 ⁻⁵
	10.6			
1	10 - 10.7	9.34*10-	0.3636	1.95*10 ⁻⁵
		10		

Fig 6 Relationship between Production Rate of NaOCl and Na₂CO₃ Concentration

When NaOH used as an alkaline medium the slope value was high at 0.4 % w/v , 0.6 % w/v compare with 0.2 % w/v. As shown in figure (7,8,,9) the highest production rate was at 0.4 % w/v as seen at figure (10) and table (3).

As clearly presented in figure (11,12), when NH₄OH used as alkaline medium no change in the kinetics of NaOCl production was observed When concentration was raised from 0.2 % w/v to 0.4 % w/v . the hypochlorite was not formed at higher concentration . Table (4) and figure (13) illustrate no significant change in production rate of sodium hypochlorite. The NaOCl production rate in the previous alkaline medium in different concentration was compared . result obtained clearly tell the production rate was high for NaOH medium compared with sodium carbonate and ammonium hydroxide when concentration was 0.4 % w/v , 0.6 % w/v while production rate with NH₄OH was higher at 0.2 % w/v.

Fig 7 Effect of Added 0.2 % w/v NaOH on Electrochemical Kinetics of NaOCl

Fig 8 Effect of Added 0.4 % w/v NaOH on Electrochemical Kinetics of NaOCl

Fig 9 Effect of Added 0.6 % w/v NaOH on Electrochemical Kinetics of NaOCl

ISSN No:-24562165

Fig 10 Relationship between Production Rate of NaOCl and NaOH Concentration

Table 3 Values of Production Rate with Change of NaOH
Concentration and P ^H Ranges Standard Deviation and
Squared Correlation Coefficient

W / V %	P ^H rang	U	\mathbf{R}^2	SD
NaOH		mol		
		NaOCl s ⁻		
		$^{1} \text{ cm}^{-2}$		
0.2	11.14 -	1.77*10 ⁻⁹	0.88531	2.37 *10-
	11.21			5
0.4	11.40 -	8.54*10 ⁻⁹	0.70489	8.24*10-5
	11.93			
0.6	11.90 -	7.02*10-9	0.89012	6.14*10 ⁻⁵
	11.96			

Table 4 Values of Production Rate with Change of NH₄OH Concentration and P^H Ranges Standard Deviation and Squared Correlation Coefficient

W / V %	P ^H rang	U	R ²	SD
NH4OH		mol NaOCl s [.] ¹ cm ^{.2}		
0.2	9 – 9.8	7.89*10 ⁻⁹	0.95933	8.75*10-5
0.4	9.9 – 10.24	7.67*10-9	0.92181	9.04*10 ⁻⁵

Fig 13 Relationship between Production Rate of NaOCl and NH₄OH Concentration

Figures from (14) to (23) illustrate the change of P^H during reaction with different alkaline medium in different concentrations.

Despite obtaining high slope value with NaOH at 0.4 % w/v and 0.6 % w/v, but the used volume from the burette was very small. This means that the high PH value was unsuitable and inhibited the formation of NaOCl. Blue color did not appear at 0.8% w/v NaOH concentration even after 120 minutes because sodium hypochlorite was not formed.

ISSN No:-24562165

Also the yellow color did not appear when 5ml of KI added To make sure , experiment with only NaCl were carried out. Blue and yellow colors are noted clearly . Reaction was slow when NH_4OH used blue and yellow color did not show at early minutes of reaction.

Fig 19 $P^{\rm H}$ Change at 0.2% w/v of NaOH

ISSN No:-24562165

Fig 20 P^H Change at 0.4% w/v of NaOH

Fig 21 P^H Change at 0.6% w/v of NaOH

Fig 22 P^H Change at 0.2% w/v of NH₄OH

Fig 23 P^H Change at 0.4% w/v of NH₄OH

Fig 24 Electrochemical Kinetics of NaOCl without Alkali

Fig 25 P^H Change without Alkali Medium

IV. CONCLUSION

The main objective of this research work was to study the effects of P^{H} change and the effect of adding variables type and concentration of alkaline medium on the electrochemical production of sodium hypochlorite.

The P^H range from 8 to 8.5 gave the best results at the on-site electrochemical production of sodium hypochlorite using zinc plate and graphite rods with a 20 cm distance between them. So the recommended concentration of alkaline medium is no more than 0.4 % w/v.

REFERENCES

- [1] "OxyChem Sodium Hypochlorite Handbook" (PDF). oxy.com. OxyChem.
- [2] Rachitsky, G., et al. (2001). "Sodium hypochlorite: a wide potential in dentistry." Dentistry **6**.
- [3] Van der Bruggen, B., et al. (2003). "A review of pressure-driven membrane processes in wastewater treatment and drinking water production." Environmental progress **22**(1): 46-56.
- [4] Basudan, S. O. (2019). "Sodium hypochlorite use, storage, and delivery methods: A Survey." Saudi Endodontic Journal **9**(1): 27.
- [5] Gil, M. I., et al. (2009). "Fresh-cut product sanitation and wash water disinfection: problems and solutions." International journal of food microbiology 134(1-2): 37-45.
- [6] Guivarc'h, M., et al. (2017). "Sodium hypochlorite accident: a systematic review." Journal of endodontics **43**(1): 16-24.
- [7] Monteiro, M. K. S., et al. (2021). "A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide." Current Opinion in Electrochemistry **27**: 100685.
- [8] Du, F., et al. (2018). "Sodium hydroxide production from seawater desalination brine: process design and energy efficiency." Environmental science & technology 52(10): 5949-5958.
- [9] Garcia-Herrero, I., et al. (2017). "Life Cycle Assessment model for the chlor-alkali process: A comprehensive review of resources and available technologies." Sustainable Production and Consumption **12**: 44-58.
- [10] Lakshmanan, S. and T. Murugesan (2014). "The chlor-alkali process: work in progress." Clean Technologies and Environmental Policy **16**(2): 225-234.
- [11] Crook, J. and A. Mousavi (2016). "The chlor-alkali process: A review of history and pollution." Environmental Forensics 17(3): 211-217.
- [12] Spasojevic, M., et al. (2013). "Development of RuO 2/TiO 2 titanium anodes and a device for in situ active chlorine generation." Hemijska industrija.

- [13] Saleem, M., et al. (2012). "On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater." International Journal of Electrochemical Science **7**(5): 3929-3938.
- [14] Khelifa, A., et al. (2004). "Application of an experimental design method to study the performance of electrochlorination cells." Desalination **160**(1): 91-98.
- [15] Lefond, S. J. (2012). Handbook of world salt resources, Springer Science & Business Media.