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Abstract:- Quantum cryptography consists of using the 

properties of quantum physics to establish cryptography 

protocols that achieve levels of security that are proven 

or conjectured not achievable using only classical 

phenomena. An important example of quantum 

cryptography is the quantum distribution of keys, which 

we have been able to present in this reflection, more in 

relation to the RSA protocol, by proposing to increase its 

security by using these principles of quantum 

cryptography for the distribution of the private key. 
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I. INTRODUCTION 
 

Among the current hot topics, we note the security of 

data. This question is a permanent issue in many areas of 

private or public life, and represents a strategic issue for not 

only companies, but all organizations within them that use 

new technologies. The protocols used today for the 

encryption and decryption of messages use increasingly 

complex mathematical codes with increasingly long public 

keys, as the power of (classical) computers capable of 

breaking them increases. Talking today about the computer 

and quantum algorithms requires the use of other 

mechanisms, thus improving the security of current data 
security protocols, which in this situation can easily be 

compromised. 
 

In cryptography or quantum computing, the bits of 
cryptography or classical computing are replaced by 

quantum bits (Qbits or Qubits), which have the particularity 

of being random, unlike classical bits which are 

deterministic. These qubits constitute keys, which are then 

used in conventional encryption protocols. Since it is 

impossible to clone quantum information without it being 

destroyed, or to measure a quantum state without modifying 

it, the reading of the information by an intruder would be 

immediately detected by the recipients of the message. 
 

In this quantum context, the preferred medium for 

sending qubits over great distances is the photon, which has 

the particularity of allowing the encoding of information on 

observable variables such as the polarization of light, 

something that we have wanted presented in this article, 

precisely by illustrating through the above behavior, the 

inviolability of the RSA private key considered here as a 
quantum object. 

 

 

 

 

 

The RSA protocol through a trivial example: 

 Definition 
By cryptographic protocol RSA, we mean is a 

cryptographic system (cryptosystem), for public 

key encryption. It is often used for securing 

confidential data, especially when transmitted over 

an insecure network like the Internet. 
 

RSA was first described in 1977 by Ron 

Rivest, Adi Shamir and Leonard Adleman of MIT 

(Massachusetts Institute of Technology). Public 

key encryption, also called asymmetric encryption, 

uses two different but mathematically related keys, 

one public and the other private. The public key 

can be shared with anyone, while the private key 

must be kept secret. In RSA encryption, both the 

public key and the private key can be used to 
encrypt a message. In this case, it is the key 

opposite to that used for encryption that is used for 

decryption. It is notably thanks to this characteristic 

that RSA has become the most widely used 

asymmetric algorithm: it offers a method for 

ensuring the confidentiality, integrity, authenticity 

and non-repudiability of electronic communications 

and data storage. 
 

It is important to note today that many 

protocols, such as SSH, OpenPGP, S/MIME and 

SSL/TLS rely on RSA for their encryption and 

digital signature functions. This algorithm is also 

used in software: browsers are a clear example, 

because establishing a secure connection on an 

insecure network such as the Internet or validating 
a digital signature are part of their attributions. 

RSA signature verification is one of the most 

common operations performed in computing. 
 

 Drawing 
In order to better understand the algorithm on 

which the RSA protocol is based, we will in the 

lines below, approach an extremely trivial example, 

which will thus allow us to verify the operation of 

this said system. 
 

Take for example the following binary numbers: 

 11(binary) which correspond to 3(decimal 

system) and ; 

 101(binary) which correspond to 5(decimal 

system). 
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Let's assume in view of what is said above that p = 3 

and q = 5. We therefore find the following: 
 

A. Key calculation (private and public) 

 n = p×q = 15 

 (p-1)×(q-1) = 8.  
 

In this case, e = 3 is prime with 8. We can choose d = 3 

since e×d = 3×3 = 9 = 8×1 + 1 
 

B. Message encryption 
If for example the number to encrypt A is equal to 2,we 

therefore have Ae = 23 = 8, therefore Ae is congruent to 8 

modulo 15. The coded number is therefore B is equal to 8. 
 

C. Decryption of the coded message 

To decipher, we take the remainder from the division of 

Bd by n. Bd = 83 = 512. By making the Euclidean division of 

512 by 15, we obtain: Bd = 512 = 34×15 + 2. The remainder 

is therefore 2, that is to say A, the number that we have 

ciphered at the beginning. 
 

 The polarization 

As we already know, light is an electromagnetic 

wave, where an electric field oscillates in a plane 

perpendicular to that where the magnetic field 

oscillates. The direction of light propagation 

follows the intersection of these two planes, as 

shown below. 
 

 
Fig. 1: Vertically polarized light 

 

Our figure above illustrates the linear polarization of 

light, which we can define as the direction in which its 

electric field oscillates. 
 

In reality, all the photons that make up a ray of light 

have their own polarizations. When these have polarizations 

aligned in the same direction, the light is said to be linearly 

polarized. Light can be polarized in all directions: 

horizontally, vertically, diagonally, and even not polarized at 

all. In the latter case, the photons that constitute this light all 
have polarizations that do not point in a particular direction. 

The light that surrounds us, like that which comes to us from 

the sun, tends not to be polarized. 
 

 
Fig. 2: Directions of polarization of light 

 

However, polarized light can be created, for example, 

by using a polarizing filter also called a polarizer. The light 

that succeeds in passing through a polarizing filter is 

necessarily polarized in the direction imposed by the axis of 

the polarizer. In below, the axis of the polarizer is indicated 

by a double gray arrow. We can see such a filter as a sieve 

formed by vertical slits while the photons are flat pieces. 

Only photons whose polarization is aligned with the slits can 

pass. Inbelow, the polarizing filter passes the vertically 
polarized photons (3a) and absorbs the horizontally 

polarized photons (3b). By turning the polarizing filter, one 

turns by this very fact the polarization of the photons which 

can cross it 3c. 
 

 
Fig. 3: Polarization filter 

 

What happens if we send a photon with a 45° 

polarization on a polarizing filter that only lets through the 

vertical polarization? From the point of view of the filter, 

this photon is both vertically and horizontally polarized: it is 

in superposition of states! This is possible because 

polarization is a quantum property of light. This photon 

being in equal superposition of the horizontal and vertical 

polarizations, the filter must know its polarization to decide 
if it lets it pass or not. For this it must actually measure the 

state of polarization. If the photon is measured with vertical 

polarization, it will pass completely through the filter. 

However, it will be absorbed if measured with horizontal 

polarization. 
 

Below figure shows the fact that these two results are 

possible with a hatched wave: sometimes the photon passes, 

sometimes it does not. For a 45° polarization, the photon has 

a 50% chance of passing the filter. If this happens, then it 

will have perfectly vertical polarization. Then, if we modify 

the angle between the polarization of the photon and the 

polarizer, the probabilities that the photon will pass will 

change according to Malus' law. And since it's quantum, 

only probabilities can be inferred, and the end result is quite 

impossible to predict! 
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Fig 4: Photon passing probabilities 

 

What happens if we send light that contains several 

photons all polarized in the same way through a polarizer? 

Each of the photons has the same probability of passing the 

filter, a probability which is given by the angle between this 

polarization and the axis of the polarizer. Thus, the fraction 

of the number of photons that pass is given by this 

probability. The intensity of the light beam passing through 

the filter therefore decreases as a function of the angle 

between the initial polarization of the light and that of the 

polarizer. 
 

II. LINEAR POLARIZATION OF RSA KEYS 
 

Consider two people wishing to communicate securely, 

and needing to share an encryption key (In this case the 

private key, e or d depending on the case, the one supposed 

to be secret). 
 

After the calculation of the keys e and d as illustrated 

above and the encryption, the use of quantum technology 

occurs when we share our two keys (no problem for the 

public key). For the sharing of the private key deemed 

quantum, the transmitter will send a series of photons to the 

receiver, and for each of these photons, it will randomly 

draw both a base (+ or x) and a bit (0 or 1). Each photon will 

therefore be randomly one of these 4 states: 0+, 1+, 0x or 

1x. 

 

Source base + x X + + + x + … 

Bits transmitted 0 0 1 1 0 1 1 0 … 

Quantum states 0+ 0x 1x 1+ 0+ 1+ 1x 0+ … 

Table 1: Quantum distribution of the secret key 
 

The receiver sees the photons arrive and for each of 
them it must measure the polarization. But he must choose a 

basis of measurement. For each he draws it at random: + or 

x, and notes the result of his measurement. 
 

If for a given photon, the receiver has chosen the 
“good” base, i.e. the same as the transmitter, it will certainly 

obtain the correct bit, 0 or 1, sent by the transmitter. If, on 

the other hand, he has chosen the other base, he will obtain 0 

or 1 at 50% probability. And in this case, he will get the 

"bad" result once out of 2 on average. 

Example: 
 

Source base + x X + + + x + … 

Bits transmitted 0 0 1 1 0 1 1 0 … 

Quantum states 0+ 0x 1x 1+ 0+ 1+ 1x 0+ … 

Destination basis + + X + x x x + … 

Bits measured 0 0 ou 1 1 1 0 ou 1 0 ou 1 1 0 … 

Table 2: Polarization measurement 
 

Once the transmission of the photons has been carried 

out, the transmitter and the receiver communicate "publicly" 

(without a particular secure channel) the list of bases that 
they have used for each of the photons. And they throw from 

their list all the photons for which the bases are different. 
 

For all the remaining photons, they used the same base 

and are therefore certain to have the same bits: 0 or 1. This 
series of bits will constitute the encryption key which is, in 

fact, known to both of them. 
 

At the end of the process specified above, it is 

important to focus on the photons for which the emitter and 
the receiver have chosen the same base, since the others will 

be discarded anyway. Like the receiver, any ill-intentioned 

person who is not supposed to have access to the key will 

have to choose for each photon a base of measurement + or 

x. In 50% of cases it will be correct. But in the remaining 

50% it will choose a base different from the base of the 

emitter and the receiver, for example it chooses x while the 

emitter and the receiver have chosen +. 
 

III. CONCLUSION 
 

In this article, we have proposed a reflection on 

improving the complexity of the security of the RSA 

cryptosystem, by using quantum cryptography to secure the 

private key, which is supposed to remain inviolable in the 

eyes of any malicious person, wanting to thus recovering in 

an illicit manner the RSA key produced at the source level, 

eg jeopardizing its security, up to its destination. 
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