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I. INTRODUCTION 

 
In the last decade, rapid growth in unstructured data 

sources has led to the advent of popular NoSQL databases. 

Searching these data has been identified as a challenge 

concerning scale and format. These unstructured data include 

documents in the image, scanned, printed, handwritten and 

electronic document exchange formats like jpeg, png, pdf etc. 

Various OCR tools are available to automatically convert 

these documents to a machine-understandable text format. 

But still, searching for a particular document upon a query 
has been a problem to address with mere digitalization of 

historical data. Electronically representing these digitalized 

data will fasten many operations and decision making, 

bringing transparency and ease in managing and reliability of 

the source.  

 

Search is a crucial function used in any application. 

Searching can be on anything from the position of a keyword 

to searching for documents. The limited usage of exact 

keyword search has driven the emergence of semantic search 

and thereby bought a new horizon in many applications. 

Modern applications rely heavily on search, the quickest way 
to sift through massive data for important information. 

 

A fundamental problem with document searching is 

ranking, which is significant in document retrieval and 

recommender systems. A document ranker ranks documents 

according to their relevance for a given query.   

 

The document ranking approaches can be broadly 

divided into three categories. Section II explains these three 

models and algorithmic methods.    

 
 

II. DOCUMENT RANKING 

 

The feature vectors of each document𝐷𝑖 have to be 

prepared before querying the documents to retrieve top k 

documents from candidate documents D that matches the 

query q. The q  can contain multiple terms. Document ranking 

can be defined as identifying top k documents that best match 

the q from the D.  

 

The document ranking approaches can be broadly 

classified into three – Score based models, machine learning-
based modes and neural ranking models.  

 

A. Score Based Models  

In this approach, documents are ranked by combining 

independent Scores calculated for each query- the query term 

independence assumption. Like the Boolean models, the early 

models used the number of occurrences of the query terms in 

the documents to identify their relevance. Still, they failed to 

rank the documents based on relevance.  

 

Score-based models use classic IR models like Vector 
Space Models(VSM) and Probabilistic models. The 

traditional Information Retrieval systems, such as query 

likelihood[1] , and BM25[2] are based on exact keyword 

match of document and query words. The above is built 

various smoothing, normalization and weighting techniques.  

 

Score based models used the term frequencies (TF) to 

term importance in a document. The VSM ranked the 

document based on the (Term frequency-inverse Document 

Frequency) TF-IDF score of queries and documents 

represented in vector space. Whereas the probabilistic 

ranking models like BM25, the graph-based approach is built 
on top of VSM by ranking the documents by log odds of their 

relevance. TextRank[3] is an alternative to TF is used mainly 

for web search applications. The documents needed to be 

assessed per query calculated using various methods like 

inverted index[4] and other organization strategies like 

impact ordering [5]. 

 

Lucene is a full-featured text search engine.  Lucene 

ranking function, which is based on a mix of the Vector Space 

Model (VSM) and the Boolean model of information 

retrieval, used to assess how relevant a document is to a given 
query . The primary premise underlying the Lucene technique 

is that the more times a query term appears in a document in 

comparison to how many times it appears in the entire 
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collection, the more relevant that document is to the query. 

Lucene additionally uses the Boolean model to filter down 
the pages that need to be scored depending on the query 

specification's use of boolean logic. 

 

Some of the other tools, like [6] are built using the VSM, 

BM25 and IR Language models.  

 

B.  Machine Learning-Based Models  

The document ranking problem has been solved using 

ML technologies to predict the ranking of documents using 

the "learning to rank" methods. Learning to rank is a machine 

learning approach to solve the document ranking problem. 

The training set will contain the set of documents with their 
relevance against each query. For a given query and set of 

documents, the model will give each document a score, and 

ordering the score of documents in ascending order can be 

used to obtain the rank of documents. Three significant 

methods in learning to rank are pointwise, pairwise and 

listwise methods.  

 

 Pointwise approach 

The pointwise method is a straightforward approach of 

using existing machine learning approaches to build models 

for document ranking. The three sub-categories of the 
pointwise approach include regression-based algorithms, 

classification-based algorithms, and ordinal regression-based 

algorithms.  

 

 Regression-based algorithm  

This approach is used when the output of the training 

model is a real-valued relevance score of documents against 

the query. Polynomial Regression Function and Subset 

Ranking with regression are two powerful algorithms using 

this approach. The polynomial Regression method is used on 

the least square regression method to learn the scoring 
function.  

Subset ranking with the regression method is an 

approach to solving ranking by reducing it to a regression 

problem. Where, for a group of documents associated with a 

given query, the original truth labels of these documents are 

categorized in a multiple ordered category where a function 

is used to rank these documents. [7] 

 

 Classification based algorithms  

Here the document ranking is considered a classification 

problem. The discriminative IR model and Multi-class 

Classification (McRank) are two ranking algorithms using the 
classification method. The discriminative IR and 

discriminative classification models are used for relevance 

ranking. In Machine Learning works of literature, 

discriminative methods are widely used to combine different 

kinds of features without the necessity of defining a 

probabilistic framework to represent the objects and the 

correctness of prediction. Some of the works using this 

approach using the classification methods like Maximum 

Entropy and Support Vector Machine are explained in [8]–

[10]. 

 
 

McRank explained in[11] is based on the Discounted 

Cumulative Gain(DCG), where a perfect classifications result 
in perfect DCG scores, and the DCG errors are bounded by 

classification errors.   

 

 Ordinal Regression-based Algorithms  

Ordinal regression takes the ordinal relationship among 

the ground truth labels in the data to learn for document 

ranking. [12]–[16] is based on this approach.  

 

   Pairwise approach 

In this approach, the relative order between pairs of 

documents. The goal of learning is to maximize the number 

of correctly ordered document pairs. Here, the ranking 
problem is transformed into a task of pairwise classification, 

with an assumption that the ranking of documents can be 

achieved if all the pairs of documents are correctly ordered.  

 

The input space of the pairwise approach contains a 

couple of documents, both represented as feature vectors. The 

output space includes pairwise preferences from {1, -1} 

between each pair of documents. However, the loss function 

merely considers the relative order between two documents 

rather than the total order relationship among all the 

documents associated with the same query. In this regard, the 
adopted loss functions are not per the evaluation measures.  

 

The number of document pairs per query may differ 

from query to query; thus, the result can be biased in favour 

of queries with more documents in the training data[17]. 

Some of the algorithms using pairwise approaches are [18]–

[25] 

 

 Listwise approach 

The listwise techniques use all of the documents in the 

training set that are connected with the same query as input. 
When performing listwise learning, there are two sorts of loss 

functions to consider. The loss function for the first type is 

linked to a specific evaluation metric(nDCG [26], ERR[27]). 

So because typically employed metrics are non-differentiable 

and non-decomposable, these strategies either strive to 

optimize the upper bounds as surrogate objective 

functions.[28]–[30] or approximate the target metric using 

some smooth functions [31]–[33]. However, several 

difficulties with the initial type methods remain unresolved.  

 

On the one hand, some surrogate functions or 

approximated metrics are not convex, making optimization 
difficult. But the relationship between the surrogate function 

and the adopted metric has not been sufficiently investigated 

in most ranking algorithms, making it unclear whether 

optimizing the surrogate functions can optimize the target 

metric. The loss function in the second kind is not explicitly 

linked to a specific evaluation metric. The difference between 

the anticipated and ground-truth rankings is reflected in the 

loss function (E.g. [34]–[36]. Despite the fact that no specific 

assessment criteria are explicitly involved or optimized in this 

study, it is feasible that the learnt ranking function will 

perform well in terms of evaluation metrics.  
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In [37], the query-level ranking loss is quantified based 

on the smoothed Wasserstein distance between the predicted 
ranking and the ranking derived from ground truth labels, 

with a new ranking-specific cost matrix.  

 

C.  Neural Network Based Models 

The ability of neural networks to work with raw queries 

and documents, compared with the other learning 

frameworks, has created a breakthrough success and is widely 

applied in neural networks. There are mainly two approaches 

in neural ranking models – representation based and 

interaction-based neural ranking models.  

 

 Representation Based Neural Ranking Models 
Vector representations of queries and documents 

through a sequence of neural computations, and ranking is 

calculated based on their similarity in representations. They 

learn good representations and match them in the learned 

representation space of query and documents. DSSM[38] and 

its convolutional version CDSSM[39] get representations by 

hashing letter-tri-grams to a low dimensional vector.[40] uses 

pseudo labelling as a weak supervised signal to trait h 

representation based ranking model. Some of the works are 

in [41]–[44]. 

 
 Interaction Based Neural Ranking Models 

The vector representations of query and documents are 

created, and the word level similarity of both document and 

query is checked before applying an additional sequence of 

neural computations for ranking. Some of the works are [45]–

[49]  

 

The DRMM model[47] considers more factors, such as 

query term importance, exact matching signals, and diverse 

matching requirement. DRMM[47] and KNRM[48]consider 

only interaction between unigrams in the query and unigrams 

in the document. Each matrix Mij element will be cosine 
similarity between the i-th query term j-th document term 

vectors. CONV-KNRM [49]  is extended KNRM 

incorporated n-grams in interaction matrices. Some works 

like[46], [50], [51] first look at the local interaction between 

two texts, then design different network architectures for 

learning more about two texts, then design different network 

architectures for learning more complicated interaction 

patterns for relevance matching.   

 

III. CONCLUSION 

 
In this paper, the different document ranking algorithms 

are compared. We have investigated different approaches 

toward the solution to the problems. We divided the 

document ranking problem solutions into three main classes 

based on the approaches toward the problem. They are score-

based, Machine Learning based, and Neural ranking 

approaches. Future works in this area can be bringing out a 

ranking method including contents of documents mentioned 

as references within the same set of documents, which can in 

turn help in multi-document summarization for question 

answering applications.  
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