
Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 846

A Comparative Study between the Greedy and

Dynamic Technique for Better Optimization

Performance

Mirza Samiulla Beg, Ph.D. Scholar, Department of Computer Science & IT, AKS University,Satna

Akhilesh A. Waoo, Head, Department of Computer Science & IT, AKS University, Satna

Abstract:- Greedy algorithms can be classified as blind.

In a simple way, it always looks to the future and does

not look back on the past. All the greed you are trying to

achieve is trying to accumulate the best value in the

solutions at hand, even though some of the solutions may

be very useful in the future. The Dynamic (DP) system is

different from greed in the way in which an improved

solution is selected. As mentioned earlier, greedy people

are constantly on the lookout for profits without regard

for the future or the past. DP produces all possible

solutions from handmade solutions, and then re-

evaluates and re-runs all of them to choose the best

solution. In this paper, I want to tell you that a strong

process gives better results than the method of greed. It

can therefore be said that if we apply the dynamic

techniques in the Artificial Bee Colony Algorithm, then

it will give us better results. In this paper, I have shown

that motivation strategies are better.

Keywords:- WSN (Wireless Sensor Network), ABC

(Artificial Bee Colony) Algorithm, DP (Dynamic

Technique), BS (Base Station), IoT (Internet of Things).

I. INTRODUCTION

The greedy algorithm can be a group of algorithms

with one common feature, making it the easiest choice in

each area for each step without looking at the programs.

Therefore, the essence of the greed algorithm can be a task

of choice: given the group of options, select the best option

currently. Due to the myopic nature of the greedy algorithm,

(as expected) is incorrect in several problems. However,

certain problems can be easily solved using the greedy

algorithm, which can be shown to be correct.

II. GREEDY ALGORITHM

The greedy algorithm, because the name suggests,

always makes choices that seem the easiest now. this

suggests that it makes a good choice in the area within the

hope that this choice will create the right global

solution.Assume that you have a purposeful task that needs

to be prepared (or enlarged or reduced) somewhere. The

greedy algorithm makes greedy choices at every step to

ensure that the targeted work is done. The greedy algorithm

has only one gun to calculate the right solution so it doesn’t

go back and change the selection. Many greedy algorithms

are incorrect.

Advantages and Disadvantages - Greedy Algorithm

1. It's easy to come back with a greedy algorithm (or even

more greedy algorithms) for drag.

2. Analyzing the duration of the operation of greedy

algorithms will generally be much easier than other

methods (like Divorce and Win). Separating and winning

the process, it is not clear whether the process is fast or

slow. This is common because at each repetition level

the size is smaller and therefore the number of minor

problems increases.

3. The hard part is that in the greedy algorithms you must

find it very difficult to know the issues of righteousness.

Even with the right algorithm, it is difficult to prove why

it is correct. Proving that the selfish algorithm is right is

more art than science. Includes tons of art.

III. ARTIFICIAL BEE COLONY (ABC)

ALGORITHM

The Artificial Bee Colony (ABC) algorithm is an

optimization algorithm that mimics the performance of a bee

colony and was first proposed by Karaboga in 2005 to use

the actual parameter.In this mathematical example, our bee

colony is made up of three types of bees: Worker Bees,

which will work in collecting food in the hive at a specific

food source. Bees are called Onlooker Bees, which will

guard workers to ensure that a particular food source is no

longer suitable, as well as Scout bees, which will seek out

new sources of food.

In the ABC algorithm, the food source is defined as a

position in the search space (solution for the problem of

efficiency), and initially, the number of feed sources is equal

to the number of bees in the hive. The quality of the food

source is determined by the amount of objective activity in

that position (the amount of consistency).The emerging

behavior of bees can be summed up in a few steps:

• Bees start randomly exploring the environment in search

of good food sources (value).

• After finding a source of food, the bee becomes a worker

bee and begins to extract food from the discovered

source.

• The worker bee returns to the hive with nectar and

releases the nectar. After extracting the nectar, he can

return directly to his found domain directly or share

information about his source location by performing a

dance on the dance floor.

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 847

• When the food supply is exhausted, the worker bee

becomes a spout and begins randomly in search of a new

source of food.

• Observing bees waiting in the hive observe bees working

in the collection of their food source and select the

source among the most profitable sources.

• The choice of food source is equal to the quality of the

source (number of solids).

To do these things we can use the method of greed and

use Dynamic. So here is the definition of both algorithms.

And make it clear that Dynamic is better than stubborn.

IV. DYNAMIC TECHNIQUE

Dynamic planning can be a way to divide issues into

smaller issues and save results for future purposes so that we

don't have to re-calculate the results. The underlying

problems are designed to add a common solution is

understood as a good site for reconstruction. Excessive use

of a powerful system to open up performance problems.

Here, performance issues mean that if we are trying to find a

minimum or a great drag solution. A powerful system

ensures finding the right solution to drag when the answer is

available. The definition of a powerful system states that it

is a way to solve a posh problem by first logging into a set

of simple problems, solving each problem at once, and then

keeping their solutions to avoid duplicate calculations.

V. REVIEW OF LITERATURE

K. Lin et al [1] presented a remote sensor organization

(WSN) ordinarily works in a problematic remote climate

with energy limitations. Numerous specialists are

fundamentally intrigued by the energy mindfulness and

correspondence dependability of WSNs to amplify network

lifetime. Be that as it may, managing the clashing issues of

further developing energy proficiency and adaptation to

internal failure all the while is a difficult undertaking. Most

past investigations have shown that the two issues can be

drawn nearer by utilizing either information connection or

organization layer conventions. They present a cross-layer

convention, which incorporates a multipath steering

convention and an information interleaving strategy

dependent on the Reed-Solomon code. They define the issue

of choosing sensor transmission ways as a backpack issue

and tackle it by an avaricious calculation. Our multipath

directing convention then, at that point, empowers every

sensor to choose numerous transmission ways utilizing the

proposed streamlining calculation. Based on numerous

transmission ways, the method of information interleaving is

utilized by utilizing the Reed-Solomon code to give solid

information transmission. Reenactment results show that our

plan beats the current multipath directing conventions

concerning the organization's lifetime since it adjusts energy

utilization and advances correspondence unwavering

quality.

X. Wang et al [2] proposed it is a generally expected

plan in the majority of the current geography plans of

remote sensor network that the bunch head hubs can speak

with a base station (BS) hub straightforwardly, which causes

that the group head hubs burn-through an excessive amount

of energy and become the bottleneck of organization

execution. Accordingly, a WSN geography calculation

dependent on avaricious most limited ways is proposed in

this paper. Right off the bat, choosing the spine hubs of the

organization and building the spine organization to send

messages, and permitting the spine hubs and group heads to

exist independently. Also, the spine hubs construct a solitary

source briefest way directing table dependent on the

covetous calculation and select the most appropriate most

limited way to send information as per the utilization of the

spine hubs. Thirdly, choosing the group heads is dependent

on the LEACH convention, in which the bunch heads are

answerable for gathering and packing the information,

choosing the closest spine hub to send the information. It is

shown by information estimation and investigation that the

proposed geography conspires in this paper have a more

steady transmission network structure, less weight, and less

remaking recurrence, and the group heads are just

answerable for moving the prepared information to the spine

organization. Also, the bunch head utilization and the

general organization utilization are altogether worked on

contrasted and LEACH.

Seyed Reza Nabavi et al [3] suggested due to the

widespread use of communication networks and the ease of

transmitting and collecting information about these

networks, WSN wireless networks are becoming

increasingly popular. The usability of any area without the

need for environmental monitoring and engineering of these

networks has led to its increasing use in various fields.

Moving data from a sensor node to a sink, so that the power

of the node is consumed uniformly and network life can be

reduced, is one of the most important challenges for wireless

sensor networks. Most wireless networks do not have the

infrastructure, and embedded sensor nodes have limited

power. Therefore, the initial term of the wireless node power

based on network messaging may disrupt the entire network

process. In this paper, the object is designed to determine

the correct path to WSN based on the multi-objective greed

method of the nearest route. The proposed model is

presented in this way to transfer sensor network information

to the base station of the desired applications. In this way,

the sensor nodes are identified as adjacent nodes based on

their distance. The power of all places is initially almost

equal, diminished by the transfer of information between

places. This way, when a node hears a message, it looks for

several data transfer objects in its nearby nodes and selects a

node with several larger objects such as the next hop.

Imitation results show that power consumption on network

grids is almost equally presented, and network life is

reduced by a small slope that provides optimal power

consumption to networks. Also, the packet transfer delay in

the network is up to 450 milliseconds of data transmission

between 15 nodes and 650 connections. Besides, network

penetration increases by about 97%. It also shows better

performance compared to other previous methods in terms

of testing.

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 848

Ahmed RedhaMahlous et al [4] presented they have

seen an expanding interest in creating and planning Wireless

Sensor Networks (WSNs). WSNs comprise an enormous

number of hubs, with remote correspondences and

calculation capacities that can be utilized in an assortment of

spaces. It has been utilized in regions that have direct

contact with observing and assembling information, to name

not many, wellbeing checking, military observation, land

checking (Earthquakes, Volcanoes, Tsunami), agribusiness

control, and some more. Be that as it may, the plan and

execution of WSNs face many difficulties, because of the

force limit of sensor hubs, arrangement, and confinement,

information directing and information collection,

information security, restricted data transmission,

stockpiling limit, and organization of the board. It is realized

that Operation Research (OR) has been broadly utilized in

various regions to take care of advancement issues, for

example, further developing organization execution and

amplifying the lifetime of framework. They present the

latest OR-based procedures applied to take care of various

WSNs issues: the hub booking issue, energy the executive's

issues, hubs apportioning issues, and other WSNs related

complex issues. Distinctive Operational Research methods

are introduced and examined in subtleties here, including

chart hypothesis-based procedures, direct programming, and

blended whole number programming-related methodologies.

Sadek et al [5] proposed one of the focal

correspondence frameworks of the Internet of Things (IoT)

is the IEEE 802.15.4 norm, which characterizes Low Rate

Wireless Personal Area Networks (LR-WPAN). To share

the medium genuinely in a non-signal empowered mode, the

standard uses Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). The idea of associated objects

concerning different asset limitations makes them powerless

against digital assaults. Quite possibly the most forceful Do

assaults is the voracious conduct assault which intends to

deny genuine hubs to admittance to the correspondence

medium. The covetous or egotistical hub might disregard the

appropriate utilization of the CSMA/CA convention, by

altering its boundaries, to take however much data

transmission as could be expected on the organization, and

afterward consume admittance to the medium by denying

real hubs of correspondence. In light of the examination of

the contrast between boundaries of ravenous and authentic

hubs, they propose a technique dependent on the limit

system to distinguish avaricious hubs. The recreation results

show that the proposed component gives a recognition

proficiency of 99.5%.

J. P. Mohanty et al [6] presented in the specially

appointed remote organization, there is no predefined

framework. In this way, hubs speak with one another

through peer interchanges. For powerful correspondence, an

associated overwhelming set (CDS) can be utilized as a

virtual spine for the organization. Notwithstanding, building

a base-associated ruling set is an NP-Complete issue. In the

writing, numerous estimation calculations have been

accounted for. In this paper, they propose a conveyed three-

stage insatiable guess calculation. In our calculation, the

hubs just store one-jump neighborhood data to track down

the following dominators. They likewise propose an

approach to lessen the CDS size by minimizing a portion of

the current dominators after the development of CDS. The

reproduction result shows that our CDS development

conspire beats every one of the current CDS development

calculations as far as CDS size for arbitrarily dispersed

hubs. Our calculation holds the presentation proportion of

(4.8 + ln5)opt + 1.2 and time intricacy of O(D), where pick

being the size of the ideal CDS and D is the measurement of

the organization.

Q. Q. Shi et al [7] suggested geographic directing

conventions for remote sensor organizations (WSNs) have

gotten more consideration lately and ravenous sending

calculation is the primary part of geographic steering. They

research the sending models in ravenous sending

calculations and present an eager steering calculation

utilizing another basis joining the qualities of both distance-

based rule and course-based rule. Reenactment is given to

contrast the exhibition of our calculation and those of the

calculation with the distance-based model and the

calculation with the heading-based standard. The outcomes

show that our proposed calculation is a favored choice as far

as the compromise between change postponement and

energy utilization in the steering.

Y. Xin et al [8] presented in the utilization of remote

sensor organizations (WSN), the equilibrium of energy

utilization assumes a significant part in broadening the

existing pattern of WSN. Focus on the energy utilization of

remote sensors organization, a powerful group put together

directing convention-based for the avaricious calculation

(GDP). In the convention, hubs run for the group head as per

the energy and area. The chosen group head has an ideal

worth of energy and area. At the point when the group is

framed, the sink hub starts the solicitation of directing

foundation; the bunch heads pick the hubs that send the

bundle as the upper hubs as per energy and bounces build-

up to the sink hub. After a time of the organization working,

then, at that point, pick hubs as indicated by the energy

worth and distance as the bunch head indeed to stay away

from network disappointment as a result of one hub

disappointment. The convention adjusts the energy

utilization of the organization's impact and expands the

existing pattern of the whole organization.

S. Bousnina et al [9] proposed Virtual Sensor

Networks (VSNs) imagine the making of universally useful

remote sensor networks which can be effortlessly adjusted

and arranged to help multifold applications with

heterogeneous prerequisites, interestingly, with the

traditional methodology of remote sensor networks upward

enhanced on one explicit undertaking/administration. The

actual heart of VSNs' vision is the capacity to powerfully

distribute shared actual assets (handling power, data

transmission, stockpiling) to various approaching

applications. In this unique circumstance, they tackle the

issue of ideally dispensing shared assets in VSNs by

proposing a proficient avaricious heuristic that intends to

expand the complete income out of the sending of different

simultaneous applications while thinking about the intrinsic

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 849

limits of the common actual assets. The proposed heuristic

is tried on reasonable organization occasions with

remarkable exhibitions as far as execution time while

keeping the hole as for the ideal arrangement restricted

(beneath 5% in the tried conditions).

L. Ban-teng et al [10] suggested Remote Sensor

Networks(WSN) are a problem area of the examination of

remote organizations right now, the key to accomplishing a

proficient transmission business is to control hub energy and

further develop the organization lifetime in remote sensor

organizations. The paper first uses Boolean detecting model

dependent on Poisson direct interaction toward recognize

the capacity of the pace of inclusion and the hub thickness

in-unit region and afterward computes the all outnumber of

hubs in the locale, next utilize the avaricious technique of

the Prim calculation to discover a traversing tree with the

most extreme weight, and builds a surmised answer for the

base associated ruling set. To control the upheavals of the

hubs, make the hubs in the crossing tree work, and different

hubs are in a rest state. Finally, further examination of the

connection between the number of hubs in associated

overwhelming and the inclusion sweep.

H. A. Hamzah et al [11] presented accuracy cultivating

as a cultivating the board idea dependent on noticing,

estimating, and reacting to the shifting harvests' necessities.

For this examination, Wireless Sensor Network (WSN) is

proposed to be carried out inaccuracy cultivating to go about

as a choice emotionally supportive network for the ranchers.

Notwithstanding, WSN customary framework specifically

the Direct Transmission (DT) convention experiences high

energy utilization, decreasing the observing capacity of the

ranchers because of the quick energy-exhausting sensor

hubs. Recognizing this issue, analysts had created numerous

conventions, for example, Quality of Service (QoS), Low

Energy Adaptive Clustering Hierarchy (LEACH), Location-

based, and Power-Efficient Gathering in Sensor Information

System (PEGASIS). For this exploration, PEGASIS is

chosen for its high energy proficiency and similarity with

the proposed framework. As distances influence

significantly energy utilization, Particle Swarm

Optimization (PSO) is created to supplant ravenous

calculation in PEGASIS to diminish the distances of

information transmission. From the tests, PSO can diminish

the absolute chain distance (TCD) by dependent upon 7.69%

in contrast with the insatiable calculation.

Djahel et al [12] proposed while the issue of ravenous

conduct at the MAC layer has been broadly investigated

with regards to the remote neighborhood, its review for

multi-bounce remote organizations is still just about a

neglected and unexplained issue. Without a doubt, in a

remote neighborhood, a passageway for the most part

advances bundles sent by remote hubs over the wired

connection. For this situation, a voracious hub can

undoubtedly get more transmission capacity share and starve

any remaining related battling hubs by astutely controlling

the MAC layer boundaries. In any case, in a remote

specially appointed climate, all bundles are communicated

in a multi-bounce style over remote connections.

Consequently, if a ravenous hub acts correspondingly as in

the WLAN case, attempting to starve its neighbors, then, at

that point, its next bounce sending hub will likewise be

forestalled to advance its traffic, which prompts a start to

finish throughput breakdown. In this paper, they show that

to have a more helpful insatiable conduct in remote specially

appointed organizations, a hub should embrace an

unexpected methodology in comparison to WLAN to

accomplish its very own superior exhibition streams. They

present a technique to dispatch a particularly insatiable

assault in a proactive directing based remote specially

appointed organization. Through the broad reproductions,

the acquired outcomes show that by applying the proposed

calculation, a ravenous hub can acquire more data

transmission than its neighbors and keep the start to finish

throughput of its streams profoundly sensible.

Tzu-Chiang et al [13] suggested with the benefit of

remote organization innovation, there are assortments of

portable applications which make the issue of remote sensor

networks a well-known exploration region lately. As the

remote sensor network hubs move self-assertively with the

geography quick-change highlight, portable hubs are

frequently defied with the void issue which will start parcel

losing, retransmitting, rerouting, extra transmission cost, and

force utilization. When sending parcels, they would not

foresee void issues happening ahead of time. Consequently,

how to work on geographic steering with void evasion in

remote organizations turns into a significant issue. In this

paper, they proposed a covetous topographical void steering

calculation to take care of the void issue for remote sensor

organizations. They utilize the data of the source hub and

void region to attract two digressions to shape a fan scope of

the current void which can declare void keeping away from

the message. Then, at that point, they use source and

objective hubs to define a boundary with a point of the fan

reach to choose the following sending neighbor hub for

directing. In a unique remote sensor network climate, the

proposed ravenous void staying away from calculation can

be additional efficient and more proficient to advance

bundles and work on the current geological void issue of

remote sensor organizations.

VI. IMPLEMENTATION OF GREEDY

ALGORITHM

Greedy algorithms can be classified as blind. In its

simplest way, it looks always for the future and doesn’t look

back to the past. All that Greedy is trying to achieve is to try

to collect the best benefit from the solutions in hand,

regardless of whether some other solutions can be more

beneficial at another moment of time in the future.

Greedy Algorithm for a Optimisation Problem

Defined a class for item,with its name, value, and cost

class Itm(object):

 def __init__(self, name, val, cost):

 self.name = name

self.val = val

self.cost = cost

 def getvalue(self):

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 850

 return self.val

 def getcost(self):

 return self.cost

 def __str__(self):

 return self.name

Defining a function for building a List

which generates list of items that are

available at supermart

def buildlist(names, values, costs):

 menu = []

 for i in range(len(names)):

menu.append(Itm(names[i], values[i], costs[i]))

 return menu

Implementation of greedy algorithmto choose one of the

optimum choice

def greedy (items, maxcal, keyfunction):

itemscopy = sorted(items, key = keyfunction, reverse =

True)

 result = []

totalval = 0

totalcal = 0

 for i in range(len(items)):

 if (totalcal + itemscopy[i].getcost() <= maxcal):

result.append(itemscopy[i])

totalval = totalval + itemscopy[i].getvalue()

totalcal = totalcal + itemscopy[i].getcost()

 return (result, totalval,totalcal)

Main Function# All values are random

names = ['Ball', 'Gloves', 'Notebook', 'Bagpack', 'Charger',

'Pillow', 'Cakes', 'Pencil']

values = [89,90,95,100,90,79,50,10]

costs = [123,154,25,145,365,150,95,195]

Itemrs = buildlist(names, values, costs)

maxcost = 500 # maximum money he have to spend

taken, totvalue,totalcal = greedy(Itemrs, maxcost,

Itm.getvalue)

print('Total value taken : ', totvalue,totalcal)

Printing the list of item slected for optimum value

for i in range(len(taken)):

 print(' ', taken[i])

Output: Total value taken : 374 , 447

Dynamic-Programming Algorithm

 Dynamic programming (DP) is different from greedy

in the way in which the optimized solution is selected. As

mentioned earlier, greediness always seeks the maximum

available profit without looking for the future or the past.

DP generates all feasible solutions from the solutions in

hand, then iterates again through all of them to select the

best solution.

class Item:

 def __init__(self,weight,value):

self.weight = weight

self.value = value

 def getWeight(self):

 return self.weight

 def getValue(self):

 return self.value

 def __str__(self):

 return str(self.weight)+" , "+ str(self.value)

 def getData(items):

 w = []

 v = []

 for ob in items:

w.append(ob.weight)

v.append(ob.value)

 return (w,v)

def buildItem(W,V,keyfunction,reverse):

 items = []

 for i in range(len(W)):

ob = Item(W[i],V[i])

items.append(ob)

 return items

def dynamic(maxWeight,items):

weight,value = Item.getData(items)

 n = len(value)

 S = [[0 for x in range(maxWeight+1)] for k in range(n+1)]

 for x in range(1, maxWeight+1):

 for k in range(1, n+1):

 S[k][x] = S[k-1][x]

 if weight[k-1] <= x andS[k-1][x-weight[k-1]]+value[k-

1]>S[k][x]:

 S[k][x] = S[k-1][x-weight[k-1]] + value[k-1]

 data = list()

 for i in range(len(S)-1,-1,-1):

arr = S[i]

maxNum = max(arr)

 #print("\n>>> M >> ",maxNum)

 if maxNum not in S[i-1] and maxWeight> weight[i-1]:

data.append((weight[i-1],value[i-1]))

 #print(data)

maxWeight-= weight[i-1]

 if maxWeight==0:

 break

 return data

maxWeight = 500

w = [100,90,79,89,90,95,50,10]

v = [145,365,150,123,154,25,95,195]

itemList1 = buildItem(w,v,Item.getWeight,False)

result = dynamic(maxWeight,itemList1)

print(result)

wSum = 0

vSum = 0

for it in result:

wSum += it[0]

vSum += it[1]

print("Total Weight : " , wSum," Price : ",vSum)

Output:[(145, 100), (25, 95), (154, 90), (123, 89)]

Total Weight: 447 Price: 374

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 851

Test Cases for Dynamic vs Greedy

Test 1 : maxcost = 500 # maximum spending

values = [89,90,95,100,90,79,50,10]

costs = [123,154,25,145,365,150,95,195]

According Greedy:Weight:374 , Price : 447

According Dynamic:Weight:447,Price: 374

In this test find the maximum weight and minimum

price. The greedy test gives the weight 374 and price 447

which is not an accurate result. When implement with the

dynamic test then get the weight 447 and price is 374 which

is an accurate result. So the dynamic test gives the

maximum weight and minimum price.

Test 2:maxcost = 600 # maximum spending
values = [89,90,95,100,90,79,50,10]

costs = [123,154,25,145,365,150,95,195]

According Greedy:Weight:453,Price: 597

According Dynamic:Weight:597,Price: 453

In this test find the maximum weight and minimum

price. The greedy test gives the weight 453 and price 597

which is not an accurate result. When implement with the

dynamic test then get the weight 597 and price is 453 which

is an accurate result. So the dynamic test gives the

maximum weight and minimum price.

Test 3:maxcost = 400 # maximum spending
values = [10,20,15,12,14,10,12,16,14,18,12,12,10,12,23]

costs = [67,78,45,34,12,78,56,45,23,12,45,67,89,34,32]

According Greedy:Weight:99,Price: 337

According Dynamic:Weight:143,Price: 371

In this test find the maximum weight and maximum

price. The greedy test gives the weight 99 and price 337

which is not an accurate result. When implement with the

dynamic test then get the weight 143 and price is 371 which

is an accurate result. So the dynamic test gives the

maximum weight and minimum price.

Minimum and Maximum Path Using Greedy and

Dynamic Technique

Node.py

class Node:

 def __init__(self,name):

 self.name = name

self.next = None

 def setConnectedNodes(self,lst):

 if type(lst) is list:

self.next = lst

 else:

 raise Exception("Node list is required !")

 def getName(self):

 return self.name

 def getConnectedNodes(self):

 return self.next

Greedy.py

from node import Node

def findMax(wl):

 #print(">>> ",wl)

 key = None

 weight = None

 for data in wl:

 if key is None:

 key = data.get('key')

 weight = data.get('weight')

 else:

 if data.get('weight') > weight:

 key = data.get('key')

 weight = data.get('weight')

 return {'key':key , 'weight' : weight}

def findMin(wl):

 #print(">>> ",wl)

 key = None

 weight = None

 for data in wl:

 if key is None:

 key = data.get('key')

 weight = data.get('weight')

 else:

 if data.get('weight') < weight:

 key = data.get('key')

 weight = data.get('weight')

 return {'key':key , 'weight' : weight}

def greedy(source,destination,isMinimum=True):

 path = {'key': source.getName() , 'weight' : 0}

nd = source

 while True:

 if nd.getConnectedNodes() is None and nd.getName() is

not destination.getName():

 raise Exception("Destination Node Not Found !")

elifnd.getConnectedNodes() is None and nd.getName() is

destination.getName():

 return path

 else:

 if len(nd.getConnectedNodes())==1:

 node = nd.getConnectedNodes()[0]

newkey = path.get('key') + node.get('node').getName()

newweight = path.get('weight') + node.get('weight')

path.update({'key':newkey,'weight':newweight})

nd = node.get('node')

 else:

weightlst = []

 for nodelist in nd.getConnectedNodes():

 node = nodelist.get('node')

 weight = nodelist.get('weight')

weightlst.append({'key':node,'weight':weight})

 if isMinimum:

 final = findMin(weightlst)

 else:

 final = findMax(weightlst)

newkey = path.get('key')+ final.get('key').getName()

newweight = path.get('weight')+ final.get('weight')

path.update({'key':newkey,'weight':newweight})

nd = final.get('key')

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 852

Dynamic.py

from node import Node

def findMax(wl):

 #print(">>> ",wl)

 key = None

 weight = None

 for data in wl:

 if key is None:

 key = data.get('key')

 weight = data.get('weight')

 else:

 if data.get('weight') > weight:

 key = data.get('key')

 weight = data.get('weight')

 return {'key':key , 'weight' : weight}

def findMin(wl):

 #print(">>> ",wl)

 key = None

 weight = None

 for data in wl:

 if key is None:

 key = data.get('key')

 weight = data.get('weight')

 else:

 if data.get('weight') < weight:

 key = data.get('key')

 weight = data.get('weight')

 return {'key':key , 'weight' : weight}

def dynamic(source,destination,isMinimum=True):

 path = []

nd = source

 while True:

 if nd.getConnectedNodes() is None and nd.getName() is

not destination.getName():

 raise Exception("Destination Node Not Found !")

elifnd.getConnectedNodes() is None and nd.getName() is

destination.getName():

 return {'key':nd.getName(),'weight':0}

 else:

weightlst = []

 for nodelist in nd.getConnectedNodes():

 node = nodelist.get('node')

 nm = dynamic(node,destination)

 #print(nm)

 name = nd.getName() + nm.get('key')

 weight = nodelist.get('weight') + nm.get('weight')

weightlst.append({'key':name,'weight':weight})

 if len(nd.getConnectedNodes())==1:

 final = weightlst[0]

 else:

 if isMinimum:

 final = findMin(weightlst)

 else:

 final = findMax(weightlst)

 #print(source.getName() , " final : " , final)

 return final

Find Minimum Path Using Greedy and Dynamic

Technique

Greedy Result: {'weight': 34, 'key': 'ABEHK'}

Dynamic Result: {'key': 'ADGJK', 'weight': 19}

In this graph find the minimum path using the greedy

and dynamic techniques. When finding the minimum path

using the greedy technique get that path ‘ABEHK’ and

weight is 34. When finding the path using the dynamic

technique get that path ‘ADGJK’ and weight is 19. So here

the dynamic technique gives the minimum path which is 19.

So the dynamic technique is best as compared to the greedy

technique.

Find the Maximum path using Greedy and Dynamic

Technique.

Greedy Result:{'key': 'ADGJK', 'weight': 19}

Dynamic Result: {'weight': 36, 'key': 'ACFIK'}

In this graph find the maximum path using the greedy

and dynamic techniques. When finding the maximum path

using the greedy technique get that path 'ADGJK' and

weight is 19. When finding the path using the dynamic

technique get that path ‘ACFIK’ and weight is 36. So here

the dynamic technique gives the maximum path which is 36.

So the dynamic technique is best as compared to the greedy

technique.

VII. CONCLUSION

In this paper, a comparative study of the Greedy and

Dynamic techniques has been done. This study is done by

taking a graph. On which who uses the short and long path

to go from the source to the destination. When we studied

then we came to know that Dynamic Technique is better

http://www.ijisrt.com/

Volume 6, Issue 10, October – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21OCT450 www.ijisrt.com 853

than Greedy Technique, because when we search short path

then Greedy Technique using this 'ABEHK' path gives us 34

as result, while Dynamic Technique Using this 'ADGJK'

path gives us 19 as the result, which is the best result.

Similarly, when we search for longer paths, the Greedy

technique gives us 19 as a result of using this 'ADGJK' path,

while the Dynamic technique gives us 36 as a result of using

this 'ACFIK' path. This is a long path. In this way, we can

say that the dynamic technique is best than the greedy

technology.

REFERENCES

[1]. K. Lin, P. Wang and T. Hong, "A greedy algorithm in

WSNs for maximum network lifetime and

communication reliability," 2015 IEEE 12th

International Conference on Networking, Sensing and

Control, 2015, pp. 87-92, doi:

10.1109/ICNSC.2015.7116015.

[2]. X. Wang, J. Zhao, J. Hou, X. Tang, H. Wu and P. He,

"Research on WSN Topology Algorithm Based on

Greedy Shortest Paths," 2020 39th Chinese Control

Conference (CCC), 2020, pp. 5215-5220, doi:

10.23919/CCC50068.2020.9189355.

[3]. Seyed Reza Nabavi, NafisehOsatiEraghi, Javad Akbari

Torkestani, "WSN Routing Protocol Using a

Multiobjective Greedy Approach", Wireless

Communications and Mobile Computing, vol. 2021,

Article D 6664669, 12 pages, 2021.

https://doi.org/10.1155/2021/6664669

[4]. "Operation Research Based Techniques in Wireless

Sensors Networks" written by Ahmed RedhaMahlous,

Mohamed Tounsi, published by Communications

and Network, Vol.9 No.1, 2017

[5]. Sadek, F.S.; Belkadi, K.; Abouaissa, A.; Lorenz, P.

Identifying Misbehaving Greedy Nodes in IoT

Networks. Sensors 2021, 21, 5127.

https://doi.org/10.3390/s21155127

[6]. J. P. Mohanty and C. Mandal, "A distributed greedy

algorithm for construction of minimum connected

dominating set in wireless sensor network," 2014

Applications and Innovations in Mobile Computing

(AIMoC), 2014, pp. 104-110, doi:

10.1109/AIMOC.2014.6785527.

[7]. Q. Q. Shi, H. Huo, T. Fang and D. R. Li, "A Modified

Greedy Distance Routing Algorithm for Wireless

Sensor Networks," 2008 China-Japan Joint Microwave

Conference, 2008, pp. 197-200, doi:

10.1109/CJMW.2008.4772405.

[8]. Y. Xin, X. Guang-hua and C. Xiao-jun, "The Research

on Routing Protocol of Sense Wireless Network Based

on the Greedy Algorithm," 2009 International

Conference on Networks Security, Wireless

Communications and Trusted Computing, 2009, pp.

558-561, doi: 10.1109/NSWCTC.2009.159.

[9]. S. Bousnina, M. Cesana, J. Ortín, C. Delgado, J. R.

Gállego and M. Canales, "A greedy approach for

resource allocation in Virtual Sensor Networks," 2017

Wireless Days, 2017, pp. 15-20, doi:

10.1109/WD.2017.7918108.

[10]. L. Ban-teng, C. You-rong, Z. Kai and J. Hua, "The

Research of Wireless Sensor Networks Optimization

Algorithm Based on the Energy Control," 2010 Third

International Symposium on Information Processing,

2010, pp. 420-422, doi: 10.1109/ISIP.2010.83.

[11]. H. A. Hamzah, N. Tuah, K. G. Lim, M. K. Tan, L. Zhu

and K. T. K. Teo, "Data Transmission in Wireless

Sensor Network with Greedy Function and Particle

Swarm Optimization," 2019 IEEE 7th Conference on

Systems, Process and Control (ICSPC), 2019, pp. 172-

177, doi: 10.1109/ICSPC47137.2019.9068052.

[12]. Djahel, Soufiene&Naït-Abdesselam, Farid & Turgut,

Damla. (2010). An Effective Strategy for Greedy

Behavior in Wireless Ad hoc Networks. 1 - 6.

10.1109/GLOCOM.2009.5425412.

[13]. Tzu-Chiang, C., Jia-Lin, C., Yue-Fu, T. , Sha-Pai, L..

"Greedy Geographical Void Routing for Wireless

Sensor Networks". World Academy of Science,

Engineering and Technology, Open Science Index 78,

International Journal of Computer and Information

Engineering (2013), 7(6), 769 - 777.

http://www.ijisrt.com/

	Test Cases for Dynamic vs Greedy

