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Abstract:- Mobile Adhoc Networks (MANETs) commonly 

use innovative technologies to improve Quality-of-Service 

(QoS) while transporting different data speeds. Due to 

variations in the node's proximity, this type of network has 

a significant forwarding latency and inefficient data 

transmission rates. To combat this challenge, an Extending 

Lifespan and QoS-Satisfied Multicast using Multiple 

Learned rate (ELQSSM-ML)-based routing protocol was 

suggested which reduces the energy usage and allocates the 

transmit energy in an adaptive manner. But, the dynamics 

of the buffer were not considered, which causes the data 

loss and latency. Hence, this article proposes an Extending 

Lifespan and Enhanced QSSM-ML (ELEQSSM-ML)-

based routing protocol to decrease the packet loss by 

applying an adaptive hop-aware buffer handling 

technique. First, the buffer size of all nodes in the network 

is partitioned into different segments according to the 

number of hops and QoS for multiple classes of packets. 

Then, the dimension of each segment is adaptively fine-

tuned based on the traffic load and reliability thresholds. 

Here, the reliability thresholds for each class of packet are 

optimized by using the Reinforcement Learning (RL) 

strategy to defend the packet loss. Further, the simulation 

outcomes show that the ELEQSSM-ML-based protocol 

achieves superior efficiency in multicast routing compared 

to the traditional protocols. 

 

Keywords:- Multi-rate MANET, Multicast routing, ELQSSM-
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I. INTRODUCTION 

 

MANETs are made up of multiple mobile nodes that 

have been established to communicate without the direction of 

a centralized infrastructure. Every node in the network can 
operate as a source or access point. These are very useful for a 

variety of applications, such as web servers, disaster relief, law 

enforcement, medical assistance, and so on. Scalable 

topological uncertainties such as energy demands, bandwidth, 

and latency often have an impact on total stability. The main 

problems in such topologies are collisions, traffic delays, and 

reliability threats. MANETs are being appropriately 

implemented by their requirements to overcome these 

problems and so boost dependability. 

 

Yet, a strong path identification technique is required to 

choose the efficient route in data transmission since standard 

path preferences cannot achieve QoS objectives [1]. Routing 
algorithms are created by taking into account each node's 

unique address while building a route from a source to a 

destination node with many relay nodes. These methods are 

either unicast or multicast in terms of data delivery. Unicast 

routing sends packets to a specific target at a time, while 

multicast routing sends packets to several targets at the same 

time. Multicast communication is formed at the physical, 

network, and application levels of MANETs [2-3]. This 

connectivity reduces throughput, node capability, power 

efficiency, and transfer delay. However, today's real-world 

MANETs include multicast communication solutions for data 

delivery [4]. To enable this, a multicast tree was built to deliver 
data from one source to several targets individually. These 

cases require the use of delay-sensitive multicast protocols 

when any delay conditions of the required multicast solutions 

are to be met with certain reliability bounds, i.e., a defined 

number of packets with the least amount of latency. 

 

Several latency-aware multicast routing techniques have 

been proposed over the decades to enhance system reliability. 

From this perspective, a Delay-Sensitive Multicast (DSM) 

protocol [5] was developed to improve performance in multi-

rate MANETs. A 1-hop delay has been calculated using the 
busy/idle rate of the distributed data. Following that, a 

multicast tree was developed to reduce the average of the 

entire relaying duration of the nodes and the complete 

blocking interval of the compromised nodes by utilizing 

adjacent information. Besides, the data rates of the nodes were 

properly tuned to reduce resource usage, allowing numerous 

flows to be activated in the MANETs. But, other QoS 

parameters were required to boost bandwidth utilization even 

more. 

 

To address this issue, the QoS-Satisfied Multicast using 
a Multiple rate-based (QSSM-M) protocol was developed, 

which reflects the throughput, packets lost, jitter and the delay 

estimated from each adjacent node for relaying [6]. After that, 

many QoS-satisfied multicast trees were created, with each 

tree ensuring a given set of QoS criteria. As a result, the 

cumulative delay and bandwidth usage were reduced while 

ensuring QoS for the intended flow and continuing flows. 

Further, a distributed system coding was used to discard 

superfluous packets, so that all targets received the unique 

coded packets via distinct paths. However, due to the 

utilization of multiple transfer zones, the transmission rate for 

the origin was not adequately determined.  
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So, a QSSM-ML routing strategy was developed with the 

aid of a Deep Convolutional Neural Network (DCNN) to 
determine an appropriate transmission rate for the sender [7]. 

Originally, the problem of determining the transmission rate 

for sources was viewed as a multiclass classification issue. 

Afterwards, several measures like frame payload size, path 

reliability and throughput for data transfer were assessed while 

maintaining the specified false positive rate. Additionally, the 

DCNN learned such parameters to forecast the appropriate 

data rate for the origin and accomplish successful routing. 

Despite greatly increasing network capacity, the network 

lifespan was not properly enhanced due to severe power usage. 

 

As a result, an ELQSSM-ML-based routing protocol was 
developed to minimize energy consumption and increase the 

lifetime of MANETs [8]. An optimization problem was 

presented in this ELQSSM-ML protocol to maximize the 

MANET's lifespan while preserving energy usage, residual 

energy and route stability. Then, an asymmetric transmit 

energy approach was created to assign transmit energy 

adaptively at both the origin and intermediary nodes. As a 

consequence, this method successfully decreases energy 

depletion and increases the MANET's lifetime. On the other 

hand, the dynamics of the buffer were not considered, which 

influences the data loss and latency. 
 

Therefore, in this paper, an ELEQSSM-ML-based 

routing protocol is proposed which integrates an adaptive hop-

aware buffer handling mechanism to avoid packet loss 

effectively. In this protocol, the buffer size of each node is 

partitioned into different segments according to the number of 

hops and QoS for multiple classes of packets. After that, the 

dimension of each segment is adaptively fine-tuned based on 

the traffic load and reliability thresholds. To avoid packet loss 

efficiently, the reliability thresholds for each class of packets 

are optimized by the RL strategy. Thus, this ELEQSSM-ML 

protocol can minimize packet loss, bandwidth usage, latency 
and increase the success rate significantly. The remainder of 

this manuscript is assembled as follows: Section II summarises 

previous research on buffer handling protocols in wireless 

networks. Section III describes the ELEQSSM-ML protocol in 

MANET, and Section IV shows how effective it is in 

modeling. Section V summarizes the entire study and makes 

suggestions for further improvements. 

 

II. LITERATURE SURVEY 

 

Aamir & Zaidi [9] presented a novel method of buffer 
management to control packet queues in MANETs for static 

and mobile nodes. In this method, efficient queuing in the 

buffer of a centrally interacting MANET node was achieved 

using an active queue management policy via allocating 

adaptive buffer space to each adjacent node in a fraction of the 

number of packets delivered by adjacent. But, its total 

processing overhead was high. Also, it needs to analyze its 

efficiency under high mobility and fluctuations of flow arrival 

rates. 

 

Subramaniam & Tamilselvan [10] designed an Efficient 
Buffer Management Protocol (EBMP) to transmit data in 

multicast groups. The continuous requested video data was 

buffered in the mid-nodes along the multicast tree from the 

origin to the targets. If data was delivered, it was split into real 
and non-real-time. The total weight of the data in the real-time 

buffer was measured according to the number of hops, 

deadline and waiting period. According to the measured 

weight range, transfer priorities were allocated. The buffer 

space was adaptively optimized based on the number of mid-

nodes along the multicast tree. But, its latency was high since 

the traffic density was high if the number of target nodes was 

high. 

 

Liu et al. [11] developed a common model for the 

appropriate throughput ability of a class of buffer-constrained 

MANETs with the 2-hop relay. Initially, an analysis was 
presented to know how the throughput ability of such a 

MANET was computed by its Relay-buffer Blocking 

Possibility (RBP). According to the embedded Markov chain 

theory and queuing theory, an enhanced theoretical model was 

designed to facilitate the RBP and closed-form expression for 

appropriate throughput ability to be derived. But, its 

computation burden was high. 

 

Petreska et al. [12] developed a delay-bound-based 

protocol to reduce the transmit energy and increase the 

network lifespan of multi-hop heterogeneous wireless 
systems. First, the minimum required to transmit energy was 

calculated at every hop such that a considered statistical 

latency limit was not violated. Then, the transmit energy 

among each source along the corresponding route were 

distributed such that the network lifespan was increased. But, 

it considers a single flow whereas it needs to analyze the 

multiple flows in networks. 

 

Capone et al. [13] investigated the problem of transfer 

scheduling and routing to reduce the end-to-end latency under 

the Signal-to-Interference and Noise-Ratio (SINR) framework 

for multi-hop networks. Initially, the classical scheduling 
scheme was modified by analyzing end-to-end latency and 

discarding the limitation of frame periodicity. Then, this 

scheme was extended by featuring collaborative transmission 

and forward interference removal. But, it has high 

computational complexity and delay. 

 

Wang et al. [14] formulated a service function chain 

mapping challenge, also known as the multicast-oriented 

virtual network function localization challenge. The objective 

function was determined by considering end-to-end delay, 

resource usage with bandwidth demands. To solve this issue, 
a 2-step method was presented. Initially, Dijkstra’s algorithm 

was adopted to create the multicast tree. Then, a new 

estimation of distribution algorithm was designed to map a 

considered service function chain over the multicast tree. On 

the other hand, it needs to consider other QoS metrics to 

increase network efficiency. 

 

Rana & Harsoor [15] developed a new traffic controlling 

framework for effectively controlling the routing overhead in 

MANET. Initially, the network traffic was determined by the 

probable node-link life to suggest the traffic controlling 
procedure. Depending on the node-link life, this framework 

can estimate how long the link was functioning and recreation 
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was applied to reduce the overhead. A queue manager was 

designed to execute the traffic detection at each node and a 
mobility prediction method was derived to estimate the node-

link life. But, the routing overhead was still high. 

 

Cao et al. [16] considered a multiple Unmanned Aerial 

Vehicles (UAV) forwarding wireless network where Buffer-

Aided UAVs create a Multi-hop aerial Forwarding (BAMF) 

network to offer stable wireless transfer facilities for ground 

terminals where a direct transfer connection was not available. 

The mean throughput was increased according to the buffer 

limits, the path choice restraints, the transfer energy restraints 

and the UAV mobility restraints. Moreover, an iterative 

algorithm was presented to effectively acquire the suboptimal 
solution. But, it has a high computation difficulty due to the 

use of mixed-integer non-convex programming. 

 

III. PROPOSED METHODOLOGY 

 

In this section, the ELEQSSM-ML-based protocol is 

explained briefly. Initially, the multi-rate MANET structure is 

built wherein all nodes are equipped with an Omni-directional 

antenna and have related radio configurations. Consider 𝑁 

number of relay nodes that are randomly distributed between 
the origin and target nodes. All nodes maintain a unique 

communication channel and disseminate the control packets at 

a specified rate of 1Mbps. Also, the data is broadcast at a rate 

which is greater than the direct communication rate between 

an origin to the target nodes. The broadcasted data packets are 

then categorized depending on the various conditions: (i) data 

group (Real-Time (RT) or Non-RT (NRT)) and (ii) number of 

hops 𝑀 that the data traversed between its origin and a mid 

node. 

 

When 𝐻 = 1, … , 𝑚 is the arbitrary parameter represents 

the number of hops from origin to the target, the expected 

number of hops 𝐸[𝐻] that the data traversed from its origin to 

the target is defined as 𝐸[𝐻] = √𝑀
log 𝑀⁄ , where 𝑚 denotes 

the highest amount of hops in the network. According to the 

data group, the range of 𝑀and 𝐸[𝐻], this arriving data at the 

mid nodes is categorized as: (i). Extended Hop RT (EHRT) or 

Group-1 when 𝑀 ≥
𝐸[𝐻]

2
, (ii). Narrow HRT (NHRT) or Group-

2 when 𝑀 <
𝐸[𝐻]

2
, (iii). Extended HNRT (EHNRT) or Group-

3 when 𝑀 ≥
𝐸[𝐻]

2
 and (iv). Narrow HNRT (NHNRT) or 

Group-4 when 𝑀 <
𝐸[𝐻]

2
. 

 

A. Buffer Partitioning using Reliability Thresholds 

Once the data is categorized, this protocol allocates each 

group into its Virtual Segment (VS), where 𝑄𝑔 is the VS range 

of 𝑔𝑟𝑜𝑢𝑝_𝑛. The range of all segments is adaptively adjusted 

regarding the traffic load of all groups. This is the major 
operation of the Queue Controller (QC). The QC handles the 

VS of the buffer using lend and move-away policies. The 

lending policy shifts free space from specific VS with the 

Highest Free Space (HFS) to the other. It is performed if there 

is available or unutilized space in the buffer. The move-away 

policy discards data when there is no more residual space in 

each VS. For this purpose, two thresholds such as 𝑇1  and 𝑇2  
are represented to be the protection for the VSs of EHRT and 

NHRT, correspondingly. Additionally, the threshold 𝑇 is 

represented to be the protection for the EHNRT and NHNRT. 

According to the threshold ranges, this protocol moves data 

from a VS and the creating space emerges to the other VS. As 

a result, these threshold ranges should be properly selected by 

the RL algorithm. 

 

Figure 1 depicts the decision task of the QC when the 

arriving data packet belongs to Group-1, Group-2, Group-3 or 

Group-4 packets. 
 

B. Reinforcement Learning Algorithm for Threshold 

Selection 

The standard learning structure of RL involves a 

mediator, a surrounding, a limited state space 𝑆, a collection 

of offered tasks𝐴 for the mediator and a bonus value: 𝑆 × 𝐴 →
𝑅. The main idea of RL is to learn the mediator for offering 

good solutions by trial-and-error practices with the 

surrounding. During all interval 𝑡, the mediator accounts for a 

task 𝑎𝑡based on the search of the current state 𝑠𝑡  in the 

surrounding. Once the task is performed, the state of the 

surrounding will change to a fresh state 𝑠𝑡+1. 

 

Concurrently, the mediator will accept a bonus 𝑟𝑡  that 

reflects the range of state changes. This kind of mediator-

surrounding practice is a periodic task. The RL mediator is a 

long-sighted decision-maker, therefore its intention is to 

maximize its projected joint bonus over an interval: 

𝔼[∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 ], where 𝛾 ∈ (0, 1] is a variable concession on 

forthcoming bonus. Its plan is achieved by learning a policy 

that guides the mediator on how to choose proper tasks at 

multiple states. Q-learning is a popular RL model that does not 

need modeling. It does not require any prior knowledge about 

the network, such as the possibility of state transition. It can 

try to make sensible predictions based on experiences. 

 

The mediator holds a Q-factor (𝑄(𝑠, 𝑎)) for all state-task 

sets, which portrays the projected long-term bonus whilst 

taking 𝑎at 𝑠. According to this value, the mediator can 

recognize the projected Q-factor for each task at the ongoing 

state. Besides, the mediator decides which tasks have to be 

taken for collecting the greatest joint bonus in the long run. 

Each interval when practice occurs, the Q-factor is adjusted 

iteratively as: 
 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∗ [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗

max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]   

   (1) 

 

In Eq. (1), 𝛼 ∈ (0, 1] is the learning ratio, 𝑟(𝑠𝑡 , 𝑎𝑡) is the 

bonus collected by taking 𝑎𝑡  in 𝑠𝑡  and 𝛾 is the discount %. The 

Q-learning approach typically defines the Q-factor in tabular 

form. However, it is unsuitable for dealing with complex 

control concerns involving several states and actions. This RL 

utilizes the Deep Neural Network (DNN) to create the 

correlation between all state-activity pairings and their 

associated Q-factor to address this challenge. In addition, a 
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deep Q-learning model based on the core DNN is being built 

to decide on optional activities for the mediator. Figure 2 

illustrates the RL processes in the mediator-surrounding 

interface network. 
 

 

 
Fig 1. Decision Task of the Queue Controller for ELEQSSM-ML Protocol 

 

 
Fig 2. Schematic Overview of RL with DNN Framework 
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 Training Stage 

For all solution intervals 𝑡𝑗  for 𝑗𝑡ℎdata, the DRL mediator 

executes a task 𝑎𝑗based on the ongoing state 𝑠𝑗 . After obtaining 

the direct bonus𝑟𝑗  and the successive state 𝑠𝑗+1, the transfer 

summary(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) is added into replay memory ∆ with 

facility 𝑁∆. All intervals during fine-tuning the Q-learning, 

weight and bias variables (𝑤, 𝜃) of the DNN are updated by 

the mini-batch which has a predetermined number of random 

samples 𝑆∆from ∆. To reduce the time complexity, such an 

updating could exist every 𝑈solution interval(𝑈 ≥ 1). 

Because the interface replay policy allows the mediator to train 

from random shift samples rather than series interfaces, the 

link between learning data is lost, resulting in a reduction in 

the difference of fine-tuned variables. Further, the utilization 
of learning data is substantial since each sample is potentially 

picked more than once to fine-tune variables. 

 

To avoid additional divergence and volatility in DNN 

variables during learning phases, two DNNs: target and 

analysis networks are used concurrently. These two networks 

have a similar design but different variables. While fine-tuning 

Q-learning, the target network is used to create desirable Q-

factors. One distinguishing feature of a target network is that 

it is briefly frozen. Its variables are copied from the analysis 

network on a regular basis. In contrast, the analysis network 
keeps the new variables and is used to forecast Q-factors. 

 

Thus, the threshold values are optimized for each group 

of data to allocate them into the appropriate VS. Moreover, the 

allocator computes which data will be served depending on the 

significance of the data and 𝑄𝑔of 𝑔𝑟𝑜𝑢𝑝_𝑛, 𝑛 = 1, … ,4. 

 

Algorithm: 

Input: Overall buffer size (𝐵) and effective arrival rate 
(𝜆) of group 𝑛 at any node  

Output: Optimal threshold ranges 𝑇1 , 𝑇2 and 𝑇 

Begin 

 

Initialize 𝛼, 𝛾, learning rate 𝛽, initial training period 𝜏, 

mini-batch 𝑆∆, replay time 𝜂; 

 

Initialize ∆with 𝑁∆; 
 

Initialize analysis and desired activity-Q with random 

variables, 𝑤and 𝜃; 

𝒇𝒐𝒓(𝐵 𝑎𝑛𝑑 𝜆 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒)  

 

Randomly select an activity; or else, 𝑎𝑗 =

argmax
𝑎

𝑄(𝑠𝑗 , 𝑎; 𝑤, 𝜃); 

 

Train 𝑗 according to 𝑎𝑗 , receive incentive 𝑟𝑗  and observe 

state shift at consecutive decision period 𝑡𝑗+1 with a new state 

𝑠𝑗+1; 

Accumulate shift (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1)in ∆; 

𝒊𝒇(𝑗 ≥ 𝜏 𝑎𝑛𝑑 𝑗 ≡ 0 mod 𝛽)  

𝒊𝒇(𝑗 ≡ 0 mod 𝜂)  

Set �̂� = 𝑄; 

𝒆𝒏𝒅 𝒊𝒇  

Randomly choose samples 𝑆∆from ∆; 

𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑠ℎ𝑖𝑓𝑡(𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1) 𝑖𝑛 𝑆∆)   

𝑡𝑎𝑟𝑔𝑒𝑡𝑘 = 𝑟𝑘 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

�̂�(𝑠𝑘+1, 𝑎′; 𝑤′ , 𝜃′); 

Fine-tune DNN variables 𝑤, 𝜃 with a loss value of 

𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − 𝑄(𝑠𝑘 , 𝑎𝑘 ; 𝑤, 𝜃)2; 

𝒆𝒏𝒅 𝒇𝒐𝒓  

𝒆𝒏𝒅 𝒊𝒇  

𝒆𝒏𝒅 𝒇𝒐𝒓  

Return Optimal values of thresholds; 

 

Allocate and serve the data packets by comparing the VSs 

size with threshold values; 

 

End 

 

IV. SIMULATION RESULTS 

 

In this section, the effectiveness of ELEQSSM-ML 

routing protocol is assessed by modeling it in Network 

Simulator version 2.35 (NS2.35) and discussed with the 
conventional protocols: EBMP [10], BAMF [16] and 

ELQSSM-ML [8] regarding different network metrics. Table I 

provides the model specifications. 

 

TABLE I.  SPECIFICATIONS OF NETWORK MODEL 

Variables Value 

Simulation area 1000×1000m2 

No. of nodes 100 

MAC category IEEE 802.11 

Channel category Wireless channel 

Antenna Omni-directional 

Propagation category Two ray ground 

Required bandwidth 500 kbps 

Packet’s header length 10 bytes 

Packet’s payload length 512 bytes 

Batch size for randomized network 

coding 

32 

Multiplying variable 1.2 

Queue size 64 packets 

Traffic category Constant Bit Rate 

(CBR) 

𝑄𝑓𝑖𝑥 to generate multicast trees 0.3 

Timeframe between 2 successive 

tree refreshes 

4 

Data rate 11 Mbps 

Transmit energy 0.0316 W 

Simulation interval 200 sec 

Control packet 

length 
ℎ𝑒𝑙𝑙𝑜 160 bytes 

𝑡𝑎𝑏𝑙𝑒_𝑞𝑢𝑒𝑟𝑦 10 bytes 

𝑡𝑎𝑏𝑙𝑒_𝑟𝑒𝑝𝑙𝑦 1500 bytes 

𝑟𝑜𝑢𝑡𝑒_𝑞𝑢𝑒𝑟𝑦 10 bytes 

𝑟𝑜𝑢𝑡𝑒_𝑓𝑜𝑢𝑛𝑑 20 bytes 

 

A. l-Hop Latency 

It is the time required to disseminate a data from every 

node to the other. 

 

𝑙𝑛 = 𝑀𝐴𝐶_𝑙𝑛 × 𝐸𝑥𝑝_𝑑𝑎𝑡𝑎𝑛   (2) 
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Where 𝑀𝐴𝐶_𝑙𝑛 = (𝐸𝑥𝑝_𝑏𝑓_𝑠𝑙𝑜𝑡𝑛 × (1 +
𝑏

𝑛_𝑟𝑎𝑡𝑒𝑛

) +

𝐸𝑥𝑝_𝑠𝑙𝑜𝑡𝑛) × 𝐸𝑥𝑝_𝑒𝑓𝑓𝑜𝑟𝑡𝑛   (3) 

 

(
𝑏

𝑛
)

_𝑟𝑎𝑡𝑒𝑛

𝑓

=
𝑏_𝑠𝑙𝑜𝑡𝑛+𝑏_𝑠𝑙𝑜𝑡_𝑜𝑐𝑐𝑝𝑓

𝑛_𝑠𝑙𝑜𝑡𝑛−𝑏_𝑠𝑙𝑜𝑡_𝑜𝑐𝑐𝑝𝑓
   (4) 

 

In Eq. (2), 𝑙𝑛 is the 1-hop latency of 𝑛𝑡ℎ node, 𝑀𝐴𝐶_𝑙𝑛 

is the MAC access latency of a data disseminated from 𝑛 and 

𝐸𝑥𝑝_𝑑𝑎𝑡𝑎𝑛 is the expected amount of data in the MAC queue 

of 𝑛 at a stable period. In Eq. (3), 𝐸𝑥𝑝_𝑏𝑓_𝑠𝑙𝑜𝑡𝑛 is the 

expected amount of backoff duration slots of 𝑛 at a stable 

period, 
𝑏

𝑛_𝑟𝑎𝑡𝑒𝑛

 is the busy/free channel ratio obtained by 𝑛 at a 

specified period, 𝐸𝑥𝑝_𝑠𝑙𝑜𝑡𝑛 is the expected amount of period 

slots essential for 𝑛 to disseminate the data at a specified 

period and 𝐸𝑥𝑝_𝑒𝑓𝑓𝑜𝑟𝑡𝑛 is the expected amount of broadcast 

attempts by 𝑛 at a specified period. In Eq. (4), (
𝑏

𝑛
)

_𝑟𝑎𝑡𝑒𝑛

𝑓

 is the 

busy/free channel ratio obtained by 𝑛 in a specified period with 

a required traffic/packet (𝑓) agreed, 𝑏_𝑠𝑙𝑜𝑡𝑛 is the amount of 

busy period slots noticed by 𝑛 in a specified period, 𝑛_𝑠𝑙𝑜𝑡𝑛  is 

the amount of free period slots noticed by 𝑛 and 𝑏_𝑠𝑙𝑜𝑡_𝑜𝑐𝑐𝑝𝑓 

is the amount of busy period slots occupied by 𝑓. 

 

 
Fig 3. 1-hop Latency vs. Simulation Period 

 
Fig 3 shows 1-hop latency (in sec) of EBMP, BAMF, 

ELQSSM-ML, and ELEQSSM-ML protocols under different 

simulation periods (in sec). It signifies that when increasing 

the simulation period, the ELEQSSM-ML-based routing 

protocol can decrease 1-hop latency compared to other 

protocols, i.e., 1-hop latency of ELEQSSM-ML for simulating 

100sec is 23.81% less than the EBMP, 18.64% less than the 

BAMF and 7.69% less than the ELQSSM-ML protocols. 

 

 

 

 
 

 

 

 

 

 

B. End-to-end Latency 

It is the time needed to disseminate the data between an 
origin to the multiple targets. 

 

 
Fig 4. End-to-end Latency vs. Simulation Period 

 

Fig 4 depicts the end-to-end latency (in sec) of EBMP, 

BAMF, ELQSSM-ML, and ELEQSSM-ML protocols under 

varied simulation period (in sec). It indicates that when 

increasing the simulation period, the ELEQSSM-ML can 

decrease the end-to-end latency compared to the other 

protocols, i.e., the end-to-end latency of ELEQSSM-ML for 

simulating 100sec is 48.57% lower than the EBMP, 43.75% 

lower than the BAMF and 21.74% lower than the ELQSSM-

ML protocols. 
 

C. Success Rate 

It is the proportion of amount of data delivered 

effectively at the target to the amount of data disseminated 

from an origin.Fig 5 displays the success rate of EBMP, 

BAMF, ELQSSM-ML, and ELEQSSM-ML protocols using 

different amount of nodes. It addresses that the ELEQSSM-

ML can increase the success rate than all other protocols, i.e., 

the success rate of ELEQSSM-ML for 100 nodes is 21.54% 

greater than the EBMP, 16.18% greater than the BAMF and 

5.33% greater than ELQSSM-ML algorithms. 
 

 
Fig 5. Success Rate vs. Number of Nodes 
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D. Admittance Rate 

It is the ratio of the amount of accepted multicast traffic 
to the amount of preferred multicast traffic. 

 

 
Fig 6. Admission Rate vs. Number of Nodes 

 

Fig 6 depicts the admission rate of EBMP, BAMF, 

ELQSSM-ML, and ELEQSSM-ML protocols for varying 

number of nodes. It indicates that when increasing the number 

of nodes in the MANET, the ELEQSSM-ML can maximize 

the admission rate compared to the other protocols, i.e., the 

admission rate of ELQSSM-ML for 100 nodes is 67.86% 

greater than the EBMP, 51.61% greater than the BAMF and 

11.9% greater than the ELQSSM-ML protocols. 

 

E. Control Byte Overhead 

It is the amount of control bytes transmitted per data. 
 

 
Fig 7. Control Byte Overhead vs. Number of Nodes 

 

Fig 7 portrays the number of control bytes of EBMP, 

BAMF, ELQSSM-ML, and ELEQSSM-ML protocols with 

different number of nodes. It observes that the ELEQSSM-ML 

can decrease the number of control bytes considerably than all 

other protocols, i.e., the amount of control bytes for 

ELEQSSM-ML using 100 nodes is 47.32% less than the 

EBMP, 35.74% less than the BAMF and 24.6% less than the 
ELQSSM-ML protocols. 

 

 

 

 

 

V. CONCLUSION 

 
In this paper, the ELEQSSM-ML-based routing protocol 

was developed for applying the adaptive hop-aware buffer 

handling method into the ELQSSM-ML protocol. Initially, 

each node’s buffer size was split into multiple segments 

depending on the hop count and QoS for various categories of 

data packets. After that, every segment’s size was adaptively 

adjusted according to the traffic load and reliability thresholds 

for different categories of data packets. Such thresholds were 

decided by the RL strategy which helps to avoid the packet 

dropping. At last, the simulation results concluded that the 

ELEQSSM-ML-based protocol has the maximum success and 

admittance ratio, the minimum 1-hop and end-to-end latencies 
than the other classic protocols for multicast routing in multi-

rate MANETs. 
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