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Abstract:- We introduce and define a theory of the B-

stochastic transition matrix other than the Markov 

stochastic transition matrix. We also define and explain 

the main assumptions and principles essential to its 

validity as well as its inherent characteristics. We compare 

the characteristics of matrices B and Markov matrix and 

show that both matrices can be real or imaginary and that 

their chains work in both real and imaginary spaces. In 

particular, matrix B has a striking advantage of being easy 

to formulate and simple to manage for 2D and 3D 

spatiotemporal diffusion problems with any arbitrary 

boundary conditions BC and any arbitrary configuration 

of source / sink terms such as case of Poisson and Laplace 

partial differential equations as well as heat diffusion PDE. 

Finally, we propose a modeling of the 16 vertices of the 4D 

hypercube in the cartisian space x, y, z, w by a super 

symmetrical matrix B of 16 inputs and 16 outputs. 

 

I. INTRODUCTION 

 

We have introduced and defined a B-stochastic transition 

matrix (2,4) other than the Markov stochastic transition matrix 

M ..  

The aim of this article is to further define and explain the 

theory and applications of the stochastic transition matrix B 

and to compare its main characteristics with the Markov 

matrix. 

 

Matrix B has a striking advantage that it is easy to 

formulate and simple to handle for a 2D and 3D spatio-
temporal scattering problem with arbitrary boundary 

conditions BC and an arbitrary configuration of the source / 

sink terms.In fact, the formulation of the matrix B follows 

from its geometry and the solution of the chains of the 

transition matrix B comes from the addition of the terms of its 

series of powers. 

 

In order to further study the theory and properties of the 

proposed matrix B and its chains, it is better to first present a 

brief investigation of the well-known Markov transition matrix 

chains. 
 

Originally, the real Markov transition matrix M i, j (nxn) 

where Mi, j are elements of R is defined by the following 

conditions i and ii, [1] 

 

 i-All its inputs M i, j are elements of  the closed interval [0,1] 

 ii- The sum of the entries Mi, j for all the rows / or all the 

columns is equal to 1. In ref [2], we have proposed another 

essential condition absent or complementary condition iii as 

follows, 

 

iii-The Markov matrix M  must be invertible or non-singular. 

 

Condition iii is absent from the original definition of the 

stochastic Markov transition matrix but it seems right and 
important to include it. 

 

Although  The third condition iii is extremely important, 

it  rarely discussed in the present literature. [2,3]. 

 

Concerning condition iii, if the Markov matrix A is not 

invertible, then it is impossible to handle it correctly in a 

classical or statistical manner. The Markov solution or steady-

state chain called the stationary probability eigenvector could 

diverge or converge towards erroneous results [2]. In other 

words, the unitary stationary probability eigenvector does not 
exist. 

 

Now consider the case where the Markov transition 

matrix is complex, i.e. one or more inputs of Mi, j is complex, 

[2], then the conditions i, ii and iii must also be fulfilled in one 

way or another. However, for condition i, it is obvious that a 

complex Mij = X + iY, is not an element of [0,1] but a 

possible compensation is that the norm [Mi, j] or Sqrt (X ^ 2 + 

Y ^ 2), must lie in the interval [0,1]. 

 

Moreover, one can easily show that if M is a Markov 

matrix of principal eigenvalue 1, then i M is also a Markov 
matrix of principal eigenvalue i where i is the imaginary unit 

SQRT (-1) 

 

However, the stochastic Markov matrix mainly concerns 

the treatment of the temporal evolution of a set of initial 

values in a closed system subjected to the conditions of 

transfer of pairs of probabilities of the inputs of M-Matrix 

which is Mi, j. 

 

It has the defect of not being able to take into account the 

boundary conditions of the  system BC or its  source / sink 
term S . 

 

This defect is one of the reasons for the introduction of 

the B-stochastic transition matrix theory and its applications 

which have been shown to be able to deal with many physical 

situations, including boundary conditions BC and source / sink 

terms S such as  those present in Laplace and Poisson PDEs as 

well as the heat diffusion equation [3,4]. 
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This is a consequence of the fact that the stochastic 

transition matrix B can replace the FUNCTIONAL 
DESCRIPTION of the boundary value problem..Itcan  replace 

the  spatio-temporal  PDE with arbitrary BC and IC . The 

required digital description of the spatio-temporal evolution of 

the PDE solution is found directly from this matrix 

representation. 

 

For this objective, we first define the B-stochastic 

transition matrix through four rigorous statistical assumptions 

[4] and two essential hypothesis.Hereafter, the 4 assumptions 

or statistical conditions that the inputs of the statistical 

transition matrix  (Bi, j) must satisfy in the configuration space 

of the Cartesian coordinates 2D and 3D: 
 

i- The sum of B i, j = 1 for all the rows far from the borders 

and the sum B i, j <1 for all the rows adjacent to the borders 

meaning that the probability of the whole space = 1. 

ii- B i, j = 1/4 for i adjacent to j .. and B i, j = 0 otherwise in a 

2D geometry while Bi, j = 1/6 for i adjacent to j in 3D 

geometry. 

 

Condition ii formulates the principle of an equal a periori 

probability and that the probability of the whole sampling 

space = 1. 
 iii- B i, i = RO, i.e. the main diagonal is made up of constant 

inputs RO. 

Obviously 0<=RO<=1. 

RO has great importance and is most significant in describing 

the transition matrix B and its applications. 

 

For example, in the heat diffusion equation, RO can take 

any value in the closed interval [0,1] depending on the 

coefficient of thermal conductivity a [3], while for Laplace 

and Poisson PDE, RO = 0. 

 

That is to say that B is a null principal diagonal matrix in 
the problems of electrostatic tension which corresponds to the 

assumption of a null residue after each time step dt for all the 

free nodes. 

 

.iv- B i, j = B j, i, for all i, j.  

 

The matrix B is essentially symmetrical to conform to 

the physical principle of detailed balance and the symmetry of 

laws of nature itself. 

 

Obviously, the stochastic matrix B is very different from 
the Laplacian mathematical transfer matrix A explained in 

numerous articles on numerical methods for solving a linear 

system of algebraic equations [6] and also different from the 

stochastic transition matrix of Markov M. 

 

The statistical and physical significance of the nature of 

B is clear from conditions i-iv, as it is not a pure mathematical 

transition of mathematical variables or states such as Markov 

but rather a transition in space and time (x, t) of physical 

quantities such as scalar energy density in heat and voltage 

problems. 
 

II. THEORY 

 

Actually, matrix B by itself does not support the solution 

by itself, but it is the core of the matrix solution and must be 

processed to produce the transfer matrices E and D which are 

the solution as explained in the following  section.  

 

The partial differential heat diffusion equation  and Poisson's 

PDE can be formulated as follows: 

dU / dt) partial = a Nabla ^ 2 U +S.. . . . . . . (1) 

 
subject to the boundary conditions of Dirichlet or Neumann 

BC and to the initial conditions IC. 

 

U is the thermal energy density or voltage potential energy 

expressed in J / m ^ 3 

S is the energy density source/sink term.. 

In the solution of the statistical matrix B chains, Eq.1 is 

deleted and the spatiotemporal 

functional description of U is replaced by the description of 

the transition matrix B and its power series. 

 
The theory of the B-stochastic transition matrix contains two 

main Hypothesis : 

I: For each 2D and 3D geometrical configuration, there exists 

a stochastic transition matrix B such that the following 

recurrence relation is valid, 

U ^ N + 1 (x, t + dt) = B. (U ^ N + b + S)  + B ^ N .U (x, 0) ......... 

(2) 

where N is the number of iterations. 

b is the vector BC arranged in the proper order. 

U (x, 0) are the initial conditions IC. 

 

Hypothesis II: 
The eigenvalue of the symmetric matrix B called evB satisfies 

the following relations, 

(evB) ^ 2 = ev (B ^ 2) 

(evB) ^ 3 = ev (B ^ 3) 

. . . . . . . . . . . . . 

(evB) ^ N = ev (B ^ N). . . . . . . . . . . . . . . . . . . (3) 

 

where ev (B ^ N) is the eigenvalue of the matrix B raised to 

the power N. 

Moreover, Hypthesis I and II suggest Principle I stated as 

follows: 
[For a positive symmetric stochastic  matrix, the sum of  their 

eigenvalue powers is equal to the eigenvalue of their sum of 

the series of powers of the matrix] Principle I. 

Principle 1 suggests the definition of the transfer matrix of 

power series E and D as follows: 

E(N) = B ^ 0 + B + B ^ 2..  . . . + B ^ N.. . . . . . . . . . . . . . (4) 

Equation 4 define the statistical transfer matrix E by the series 

of powers of the matrix B, 
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with B ^ 0 = I, 

And the matrix D is defined as, 
D = E-I. . . . . . . . . . . . . . . . . . . . . . . . . (5) 

 

In other words, the transition matrix B defined by the 

conditions i-iv is the kernel or the starting point to obtain the 

time-dependent transitory solution of the diffusion problem, 

for the finite value of N at t = Ndt or the steady state 

equilibrium solution when N goes to sufficiently large values. 

 

In all cases, the matrix solution of Eq. 1, that is, the 

search for B, D and E, for a given geometry, must be 

processed in 3 precise consecutive steps to produce the 

transfer destination matrix D as follows: 
 

1- First, we discretize the 2D or 3D domain into n 

equidistant free nodes, and find the appropriate stochastic 

transition matrix B (nxn) through using the conditions i-iv 

above. 

 

The solution follows from the successive application of 

the recurrence formula: U (N + 1) = B (U N + b + S) where N = 

0,1,2, ... N. 

That is to say that the solution U (x, t) at iteration N or at 

time = N dt is given by: 
 

 U N = (B^ 0 + B + B ^2 + ..... + B^ N)  .(b + S) + B ^ N .U (0, 

x). . . . . (6) 

Expressed in power series of matrix B. 

 

U (x, 0) is the initial conditions IC and converges to zero for 

large N when B ^ N itself converges to zero. 

 

Obviously, all the entries of the matrix B ^ N converge 

towards zero when N tends towards an infinitely large number 

which is a necessary condition for the convergence of the 

matrix E itself. At the limit where N tends to an infinitely 
large number, the term IC = U (x, 0). B ^ N disappears and the 

matrix E and D become stationary. 

 

We seek to arrive at a simple formula for the required steady 

state solution described by Eq. 4, i.e .: 

 

U (N) = D (N) (b + S) …………. (7) 

b is the vector of the boundary conditions arranged in the 

proper order and S is the source / sink vector located at the 

free nodes. S = 0 in LPDE. 

 
U (N) (x, t) is the spatiotemporal solution vector of the 

situation described by Poisson PDE (1). N represents the 

number of jumping steps in time dt or the number of iterations 

N. 

 

 

 

 

2- In a second step, we define b which is the vector of the 

boundary conditions by arranging  BC in the right order and 
calculate the source / sink term vector in energy density J / m 

^ 3 rather than the voltage in volts or the temperature in 

degrees Kelvin (for the case of the heat diffusion equation). 

 

Note that BC and S are treated  the same in the B-Stochastic 

transition matrix chain procedure. 

 

3-In a third step, calculate the transfer matrix E and the 

destination transfer matrix D as follows: 

E (N) = B ^0 + B + B^ 2 +. . . . + B^ N  . . . .. . . . . (8) 

and  the destination or solution matrix D as, 

 
D(N) = E(N)-I. . . . . . .  . . . . . . . . . . (9) 

 

In fact, it is not complicated to calculate the matrix E 

from equation 4 by adding the power series for a finite number 

of time steps N and the solution U (x, t) will be the transient or 

time dependent  PDE solution[2,3] . Alternatively ,E can be 

calculated by using equality, 

 

E = (I-B) ^ - 1 . . . . .  .  .. (10) 

 

which is valid for sufficiently large values of N and the 
solution U (x) represents the steady-state equilibrium solution. 

The simplicity and precision of the proposed numerical 

statistical method of matrix B are quite striking, 

 

There is no need to mathematically manipulate the 

matrix or use a known MATLAP to find the solution as it is 

inherent in the B-Matrix itself, which contains all the required 

information. 

 

 It suffices first to build the matrix B from where the 

transfer matrix E and D are found. The boundary condition 

vector b is calculated according to the geometric configuration 
of the problem and the source / sink term corresponding to the 

free nodes is calculated according to its actual values and 

placed correctly in its spatial nodes. then finally to calculate 

the matrix solution by Eq. (7) 

 

In order not to worry too much about the details of  the 

theory, let's go right into 2D and 3D illustrative applications. 

 

Applications are divided : Application A includes 

imaginary B-chains, Application B presents cases of 

symmetry and supersymmetry of matrices B and D, and 
Application C presents a prediction model for the hypercube. 
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III. APPLICATIONS 

 
III-A . IMAGINARY B-MATRIX 

The use of the imaginary word to describe the 

coefficients of the matrix is rather unfortunate. This gives the 

impression that imaginary numbers are sort of fictitious 

entities. But they are,in many cases, as "real" as any other type 

of number. 

 

The same goes for the stochastic Markov transition 

matrix where the conditions i, ii can be replaced by, 

 i-All its inputs M i, j are elements of the closed interval [0,i] 

ii- ii- The sum of the entries Mi, j for all the rows / or all the 

columns is equal to i. 
 

In a previous article [2], we discussed the possibility of 

extending the chains of matrix B to imaginary space where the 

whole  probability space is assumed equal to i instead of 1 in 

real space and we obtained the result for the eigenvalue of the  

complex matrix D as evDC = 0.2 + 0.4 i for RO = 0. 

 

Here we extend the calculations to different  imaginary  

values of  RO in the interval [0, i] 

 

That is 0,0.2i,0.4i etc . 
 

As an example of calculation, consider the case of the 3D cube 

of 8 free nodes in figure 4 when RO = 0.4 i 

We calculate the complex matrices B(8x8)and D(8x8) as 

follows, 

Bc={0.4i, i / 6-0.4i / 6, 0, i / 6-0.4i / 6, i / 6-0.4i / 6, 0, 0, 0}, 

{i / 6-0.4i / 6, 0.4i, i / 6-0.4i / 6, 0, 0, i / 6-0.4i / 6, 0, 0}, 

 {0, i / 6-0.4i / 6, 0.4i, i / 6 -0.4i / 6, 0, 0, i / 6-0.4i / 6, 0}, 

 {i / 6-0.4i / 6, 0, i / 6-0.4i / 6, 0.4i, 0, 0, 0, i / 6-0.4i / 6}, 

 {i / 6-0.4i / 6, 0, 0, 0, 0.4i, i / 6-0.4i / 6, 0, i / 6-0.4i / 6}, 

{0, i / 6-0.4i / 6, 0, 0, i / 6-0.4i / 6, 0.4i, i / 6-0.4i / 6, 0}, 

 {0, 0, i / 6 -0.4i / 6, 0, 0, i / 6-0.4i / 6, 0.4i, i / 6-0.4i / 6}, 
 {0, 0, 0, i / 6-0.4i / 6, i / 6-0.4i / 6, 0, i / 6-0.4i / 6, 0.4i} 

 

The eigenvalue of the complex matrix B above is ,, 

evBc = 0.7 i. . . . . . . (11) 

And the complex transfer matrix Ec = (I-Bc) ^ - 1  , is given by, 

 

Ec=({0.85169 + 0.32431 * i, -0.054549 + 0.061945 * i, -

0.0070239-0.013303 * i, -0.054549 + 0.061945 * i, -0.054549 

+ 0.061945 * i, -0.0070239-0.013303 * i, 0.0041669-

0.00044040 * i, -0.0070239-0.013303 * i}, 

 {-0.054549 + 0.061945 * i, 0.85169 + 0.32431 * i, -0.054549 
+ 0.061945 * i, -0.0070239- 0.013303 * i, -0.0070239-0 , 

013303 * i, -0.054549 + 0.061945 * i, -0.0070239-0.013303 * 

i, 0.0041669 -0.00044040 * i}, 

 {-0.0070239-0.013303 * i, -0.054549 + 0.061945 * i, 0.85169 

+ 0.32431 * i, -0.054549 + 0.061945 * i, 0.0041669-0, 

00044040 * i, -0.0070239 -0.013303 * i, -0.054549 + 

0.061945 * i, -0.0070239-0.013303 * i}, 

 {-0.054549 + 0.061945 * i, -0.0070239-0.013303 * i, -

0.054549 + 0.061945 * i, 0.85169 + 0.32431 * i, -0.0070239 -

0 , 013303 * i, 0.0041669-0.00044040 * i, -0.0070239-

0.013303 * i, -0.054549 + 0.061945 * i}, 
{-0.054549 + 0.061945 * i, -0.0070239-0.013303 * i, 0, 

0041669-0.00044040 * i, -0.0070239- 0.013303 * i, 0.85169 + 

0, 32431 * i, -0.054549 + 0.061945 * i, -0.0070239-0.013303 

* i, -0, 054549 + 0.061945 * i}, 

 {-0.0070239-0.013303 * i, -0.054549 + 0.061945 * i, -

0.0070239- 0.013303 * i, 0.0041669-0, 00044040 * i, -0.05 

4549 + 0.061945 * i, 0.85169 + 0.32431 * i, -0.054549 + 

0.061945 * i, -0.0070239-0.013303 * i}, 

 {0.0041669-0.00044040 * i, -0.0070239-0.013303 * i, -

0.054549 + 0.061945 * i, -0.0070239 -0.013303 * i, -

0.0070239-0 , 013303 * i, -0.054549 + 0.061945 * i, 0.85169 

+ 0.32431 * i, -0.054549 + 0.061945 * i}, 
 {-0.0070239-0.013303 * i, 0, 0041669-0.00044040 * i, -

0.0070239- 0.013303 * i, -0.054549 + 0.061945 * i, -0.054549 

+ 0 , 061945 * i, -0.0070239-0.013303 * i, -0.054549 + 

0.061945 * i, 0.85169 + 0.32431 * i}) 

 

Clearly, the transfer destination matrix Dc is equal to E-I 

and has a complex eigenvector evDc equal to i and its 

eigenvector Vc is given by, 

{0.67114 + 0.46980 * i}, 

 

In exact agreement with the sum of the powers 
that is: 

0.7i + (0.7i) ^ 2 ++ (0.7i) ^ 3 +. . . . . . . + (0.7i) ^ N 

= evDc=0.67114 + 0.46980 ,for N sufficiently large. 

 

The imaginary admitted values of RO are between 0 and 

i and we can find the corresponding eigenvalue of the complex 

destination matrix D (evDc) and compare with the power 

summation of equations 8 and 9 which is alternately equal to 

the formula, 

 

evDc = 1 / (1-evBc) -1. . . . . . . . 12 

 When we continue we get the results for the complex 
eigenvalues of BC (evBc),and the  the corresponding 

eigenvalues of DC (evDc) .The resuts  are presented in Table I. 

TABLE I. 

 

RO       0.    0.2 i   0.4i      0.6 i      0.8i       0.999 i    (RO is the 

main diagonal entry of Bc) 

 

evBC    0.      5i      0.6i     0.7i       0.8i         0.9i       0.9995 

 

evDC 0.8 +0.4i ,0.735 + 0.4412i ,0.6098 + 0.4898i, 0.5525 + 

0.4525i, 0.50050,.0.499999i 
Table I shows that, 

evBC = 0.5i + RO / 2 

and validate, 

evDC = Sum of power series: evBc +: evBc ^ 2 +: evBc ^ 3 

+. . . . . . . +: evBc^N, for infinitely large N. 

 

In accordance  with the results obtained for the case of  

real matrix B [3,4,5] 
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III-B SYMMETRIC  AND SUPERSYMETRIC MATRIX B 

 
All B-stochastic transition matrices are symmetric but 

not all B matrices will be super symmetric. 

 

The notion of super symmetric matrix B will be useful to 

describe the 4D hypercube by a super symmetric matrix B of 

16 inputs and 16 outputs as illustrated in section III-C- 

The super symmetric matrix B is a special case of the 

symmetric matrix B where more restrictions or conditions on 

the spatial geometry of the matrix B and therefore on the 

conditions i-iv are imposed. 

 

In all cases,for super symmetric matrix ,call it Bs, the 
following conditions are satisfied: 

I-The sum of the entries Bi,j for all the rows is equal to 

1/2 ,for super symmetric B matrix. 

II-The sum of the entries Bi,j for all the columns is equal to 

1/2,for super symmetric B matrix. 

III-IiiThe sum of the entries Di,j for all the rows is equal to 

1,for super symmetric D matrix. 

IV-The sum of the entries Di,j for all the columns is equal to 

1,for super symmetric D matrix. 

 

. The super symmetry  of matrix B  results in super symmetry 
of matrix E and its destination transfer matrix D . 

Fig.1,2,3,4 illustrate symmetry vs super symmetry. 

Fig.1 symmetic B-Martix 9x9 For 9 equidistant free nodes in 

2D space. 

 

 
Fig.2 super- symmetric B-Martix 4x4 For 4 equidistant free 

nodes in 2D space. 

 

 
Fig.3 symmetric B-Martix 27x27 For 27 equidistant free nodes 

in 3D space. 

 

 
Fig.4 super-symmetric B-Martix 8x8 For 8 equidistant free 

nodes in 3D space. 
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III-C HYPERCUBE MODELLING IN 4D 
CONFIGURATION SPACE 

 

A hypercube is a four-dimensional cube in x, y, z, w 

Cartesian coordinates as opposed to our ordinary cube which 

is three-dimensional Cartesian coordinates x, y, z. 

 

Equation 7 suggests that, matrix theory of B predicts a 

numerical description of the hypercube as 16 outputs (U 

vector) on the 16 free nodes or 16 corners (vertices) 

corresponding to 16 source / sink inputs placed at the 16 

vertices, (vector b). 

 
We propose a 16x16 super symmetric matrix B to 

represent a super symmetric 4D hypercube of 12 faces and 16 

corners (vertices) corresponding to 16 free nodes. The super-

symmetric matrix B is symmetrical with respect to the two 

diagonals, the principal and the LHS diagonal  in addition to 

satisfying the conditions of super-symmetryi-iv  exposed in 

III-B.  

 

The matrix B 16x16 is used  to manipulate and calculate 

for the source / sink vector and BC represented by the vector 

16 elements b on the 16 free nodes used as 16 inputs as well as 
the 16 outputs are the values of the solution vector U = D. ( B 

+ S). 

 

Hereafter are  numerical results: 

 

Computation example: 

I- Super symmetric matrix I-B (16x16) ,For RO=0 

{1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 

0, -1/16, 0}, 
 {0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 

0, -1/16, 0},  

{0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 

0, -1/16, 0}, 

 {0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -1/16, 

0, -1/16, 0},  
{0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -1/16, 

0, -1/16, 0}, 

 {0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 0, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -1/16, 

0, -1/16, 0}, 

 {0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 1, -

1/16, 0, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 
1, -1/16, 0}, 

 {0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -

1/16, 1, -1/16}, 

 {-1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 0, -1/16, 

0, -1/16, 1}) 

 

Destination super symmetric transfer matrix D(16x16) =(I-

B)^-1- I 

({{1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333}, 

{0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 
0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667}, {0.041667, 

0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333}, {0.083333, 0.041667, 

0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667}, {0.041667, 0.083333, 0.041667, 

0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333}, {0.083333, 0.041667, 0.083333, 0.041667, 
0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

0.041667}, {0.041667, 0.083333, 0.041667, 0.083333, 

0.041667, 0.083333, 1.0417, 0.083333, 0.041667, 0.083333, 

0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333}, {0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 1.0417, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

0.041667}, {0.041667, 0.083333, 0.041667, 0.083333, 
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0.041667, 0.083333, 0.041667, 0.083333, 1.0417, 0.083333, 

0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 
0.083333}, {0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 1.0417, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

0.041667}, {0.041667, 0.083333, 0.041667, 0.083333, 

0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

1.0417, 0.083333, 0.041667, 0.083333, 0.041667, 0.083333}, 

{0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

1.0417, 0.083333, 0.041667, 0.083333, 0.041667}, {0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 1.0417, 

0.083333, 0.041667, 0.083333}, {0.083333, 0.041667, 
0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 1.0417, 

0.083333, 0.041667}, {0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 1.0417, 

0.083333}, {0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 0.041667, 

0.083333, 0.041667, 0.083333, 0.041667, 0.083333, 

1.0417}})D(16x16) 

 

As a computational example consider the Input S Vector, 
  

S=(0,0,,0,0,0,0,1000,1000,0,0,0,0,0,0,0)T units 

 

The output or Solution vector U = D . S will be, 

(1162,126.9 ,, 

126,9,126,9,126,9,126,9,126,9,126,9,126,9,126,9,126,9,126,9,

126,9,126,9, 

126,9,1126) 

 

Display of the supersymmetry of the vertices and faces of the 

hypercube. 

 

IV. CONCLUSION 

 

We introduce and define a B-stochastic transition matrix 

other than the stochastic Markov transition matrix and explain 

the main features of both. We show that the matrices B and M 

can be real or imaginary and their chains work in both real and 

imaginary spaces. 

 

Matrix B is easy to formulate and handle for a 2D and 

3D spatiotemporal scattering problem with arbitrary boundary 

conditions BC and an arbitrary source / sink term 
configuration S such as Poisson and Laplace partial 

differential equations as well than PDE of heat diffusion. 

 

In fact, the solution of the transition matrix B is inherent 

in its structure and can be solved by direct statistical iteration 

without the need for classical methods of solving the system 

of algebraic linear equations or the use of MATLAB 

algorithms. 

 

Finally, we use the properties of B-Matrix to provide a 

description of the supersymmetry of the 4D hypercube in a 
16x16 supersymmetric B stochastic transition matrix of 16 

inputs and 16 outputs. 

 

N.B. All the calculations in this article must have been 

carried out using the Author double precision algorithm to 

ensure maxium precision as followed by Ref.7,8 for example. 
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