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Abstract:- We divide this article into two parts. In part 

1, we introduce a complex Markov matrix, propose and 

validate a statistical technique to its solution called the 

complex stationary eigenvector of Markov chains. We 

show that statistical techniques are more efficient and 

more precise than the classical algebraic method of 

solving a linear system of algebraic equations of the 

homogeneous Markov system. The statistical solution 

fails only when the Markov matrix is not invertible. In 

this case, the classic solution also fails. 

 

In part 2, we introduce a stochastic transition 

matrix B other than the Markov transition matrix. The 

transition matrix B can be real or complex as well as the 

Markov matrix. Likewise, we propose and validate a 

statistical solution to complex B-Matrix transition 

chains.nThe proposed B-Matrix (nxn) and its B-Matrix 

chains is valid for any 2D and 3D configuration for any 

arbitrary number of free nodes n. In addition, we extend 

the validity of the hypothesis principle applied for real 

B-Matrix chains to the case of complex B-Matrix chains: 

[For a positive symmetric physical matrix, the sum of 

their powers at the eigenvalues is equal to the eigenvalue 

of their sum of the series of powers of the matrix]. In the 

current article, we provide a numerical validation of this 

principle by comparing the eigenvalue of the sum of the 

series of powers of the matrix B with the sum of the 

series of infinite powers of the eigenvalues of the B-

matrix itself. 

 

I. INTRODUCTION 
 

By complex Markov matrix we mean that one or more 

of its inputs are complex or contain imaginary numbers. 

 

A complex number is a number which can be 

expressed as X + i Y, where X and Y are real numbers, and i 

is called the imaginary unit, and satisfying the equation  i ^ 

2 = -1. 

 

Although no physical quantity is complex in nature, 

complex numbers have the advantage of describing the 

physical quantity by two real numbers, for example one for 
the amplitude and the other for the phase.The most common 

example is applied to linear pulse vector and alternating 

current (AC) circuits to describe complex potential V and 

complex current I as well as their complex product for 

active and reactive power ... etc. 

 

In addition, complex numbers are convenient for the 

mathematical description of waves. This is because of 

Euler's famous formula: Ae ^ iϕ = Acosϕ + iAsinϕ. with the 

real quantity A serving as amplitude and the also real 

number ϕ in radians, its phase.In a way, complex numbers 

and complex matrices are the extension of real numbers and 

real matrices. 

 

We have discussed in previous articles real Markov 

matrix chains and real B matrix chains [2,4]. In the current 
article, we answer the question, what if the Markov 

transition matrix or the transition B-matrix  is complex, 

which is the subject of this work. For this target, this paper 

presents a complex Markov matrix Ac as well as a complex 

transition matrix Bc and examines the stochastic behavior 

for both. 

 

II. THEORY 

 

For convenience, we divide this article into two parts, 

part 1 for complex Markov chains and part 2 for complex B 

matrix chains. 

 

PART 1 

 

Complex Markov matrix chains 
The real Markov transition matrix A (nxn) is defined 

by two conditions i and ii, [5] 

i-All its entries a i, j are elements of the closed interval [0,1] 

ii- The sum of the entries for all rows / or all columns is 

equal to 1. 

We add a complementary condition iii, 

iii-The matrix A must be invertible or not singular. 
Condition iii is not present in the original definition of the 

stochastic Markov transition matrix but it seems right and 

important to add it as the third condition rarely discussed 

before [4]. 

 

Regarding condition iii, if the Markov matrix A is not 

invertible, the steady-state solution of the Markov chain 

could diverge or converge to erroneous results.[4] 

 

Now consider the case where the Markov transition 

matrix is complex: 

Conditions i, ii and iii should also be fulfilled in one way or 
another. 

 

However, for condition i, it is obvious that a complex 

aij is not an element of [0,1] but a possible compensation is 

that the norm [ai, j] or Sqrt (X ^ 2 + Y ^ 2 ) should fall in the 

interval [0,1]. 
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To be precise and not to go into much detail, here we 

present an arbitrarily chosen  complex Markov matrix  Ac 
(6X6), 

Ac = 

{.4, 0, .2-.3i, .1, .2 + .3i, .1}, 

{.3, .2, .2, 0, .3, 0}, 

{0, .6, .1, .1, .2, 0}, 

{.1, .3, 0, .3, .1, .2}, 

{0, .1, .2, .3, 0, .4}, 

{.2, 0, .1, 0, .2, .5} 

Note that Ac satisfies conditions i, ii and iii. 

 

We can apply the statistical solution described in [2,4] 

to find the complex eigenvector Vc called the stationary 
probability solution of the Markov transition matrix which 

satisfies the equality, 

Vc=Vc . Ac 

where Vc is given by, 

Vc = Ac ^ N.. . . . . (1) 

For N a sufficiently large number. 

 

We used a simple double precision algorithm to 

calculate Vc using Equation 1 and the resulting steady state 

probability vector for Ac or its complex eigenvector Vc = X 

+ iY was found numerically as follows: 
Vc = 

.1787-.0020138 i, 

.17074-.031571 i, 

.13959-.053815 i, 

.11896 + .0096896 i, 

.17148 + .041237 i 

.22051 + .036466 i 

 

It is simple to verify that Vc is the precise complex 

eigenvector of the complex matrix Ac represented above 

and is associated with the real eigenvalue of the unit. 

In other words, we have checked the equation, 
Vc. Ac = Vc. . . . . (2) 

and found it to be accurate to 5 decimal places. 

 

It is important to note here that the above Markov 

matrix is an RHS matrix and not an LHS matrix. 

It is also important to note that the sum of the real 

parts of X in Vc above is 0.99998 (close to unity) and the 

imaginary parts of Y add to -8E- (6) (close to zero ) which 

shows: 

i-The high precision of the statistical method proposed to 

solve complex Markov chains. 
ii- Complex Markov transition matrix chains are useful as a 

conservative solution in a closed system for the temporal 

evolution of a complex initial state vector. 

 

The conclusion is that a real  Markov matrix A is 

practical to describe the temporal evolution of scalar 

quantities such as the number of particles or objects or the 

energy density field in real space R and the complex matrix 

of Markov Ac is also useful to describe the temporal 

evolution of a set of complex numbers or quantities 

expressed both in amplitude and in phase. 

 

 

PART 2 

 

B-Matrix chains 

The real and / or complex transition matrix B is 

different in inputs and digital processing from the real and / 

or complex Markov transition matrix A and both operate 

under different specific statistical and physical conditions. 

 

The formulation and processing of the complex form 

of the transition matrix B and its time chains are analogous 

to those followed for the real matrix B explained in [1,2,3] 

except that the probability rate coefficients bij 

are complex. The digital spatio-temporal diffusion equation 

for the energy density U (x, y, z, t) in matrix form is given 
by the recurrence relation of B-Matrix, 

UN + 1  i, j, k,  = B. (b + S) N  i, j, k + B ^ N  .U (0). . . . . . . . (3) 

b is the vector of the boundary conditions, S is the term of 

the source / sink vector and U (0) is the initial conditions. 

It is obvious that b and S can be complex numbers in this 

case. 

 

It has been shown [1, 2, 3] that the interactions of b 

and S with the adjacent free nodes are the same as the 

interaction between two adjacent free nodes (bi, j = 1/6 for 

the 3D configuration) as on Fig 1 and Fig.2. 
 

Here is a correct formulation of the complex matrix Bc 

(8X8) corresponding to the free nodes of figure 1, which is 

the simplest 3D geometry. It shows the geometric 

configuration and the geometry of the boundaries. 

 

Note that the unconventional statistical method used to 

numerically solve the heat diffusion equation and the 

Laplace and Poisson equations is more stable and accurate 

than the Mat Lap or the conventional finite difference FDM 

methods widely used in the numerical solution of such 

equations with partial derivatives [9]  
 

Fig.1. 8 free nodes and 24 Dirichlet Boundary conditions 

(reduced to 8 BC) 
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Fig.2.27 free nodes and 54 Dirichlet boundary conditions 

(reduced to 27) 

 

With regard to figure 1, we describe a direct statistical 

method to find the steady-state solution for U (X) when the 
time t = Ndt tends to a large infinite number in three precise 

consecutive steps similar to that followed for the matrix B 

real. 

 

Step 1 

Formulate the complex matrix Bc (8X8) and the vector of 

Dirichlet boundary conditions vector b arranged in the 

correct order. 

The complex transition matrix Bc of figure 1 is given in a 

similar way to the real transition matrix B [1,3] but 

replacing 1 by the imaginary unit i as follows, 

 
Bc = 

{RO, i / 6-RO / 6, i / 6-RO / 6, 0, i / 6-RO / 6, 0, 0, 0}, 

{i / 6-RO / 6, RO, 0, i / 6-RO / 6, 0, i / 6-RO / 6, 0, 0}, 

{i / 6-RO / 6, 0, RO, i / 6-RO / 6, 0, 0, i / 6-RO / 6, 0}, 

{0, i / 6-RO / 6, i / 6-RO / 6, RO, 0, 0, 0, i / 6-RO / 6}, 

{i / 6-RO / 6, 0, 0, 0, RO, i / 6-RO / 6, i / 6-RO / 6, 0}, 

{0, i / 6-RO / 6, 0, 0, i / 6-RO / 6, RO, 0, i / 6-RO / 6}, 

{0, 0, i / 6-RO / 6, 0, i / 6-RO / 6, 0, RO, i / 6-RO / 6}, 

{0, 0, 0, i / 6-RO / 6, 0, i / 6-RO / 6, i / 6-RO / 6, RO} 

 

It is proposed that the main diagonal entry RO be constant 
over the entire main diagonal and that it has special 

statistical physical significance . 

 

Consider the complex transition matrix Bc for RO = 0 is 

given by, 

Bc = 

{0, i / 6, i / 6, 0, i / 6, 0, 0, 0}, 

{i / 6, 0, 0, i / 6, 0, i / 6, 0, 0}, 

{i / 6, 0, 0, i / 6, 0, 0, i / 6, 0}, 

{0, i / 6, i / 6, 0, 0, 0, 0, i / 6}, 

{i / 6, 0, 0, 0, 0, i / 6, i / 6, 0}, 
{0, i / 6, 0, 0, i / 6, 0, 0, i / 6}, 

{0, 0, i / 6, 0, i / 6, 0, 0, i / 6}, 

{0, 0, 0, i / 6, 0, i / 6, i / 6, 0} 

 

It is clear that the complex eigenvalue of Bc for RO = 0 , is 

evBc = i / 2 . . . . . . . . . . . . (4) 

step 2Find the matrix I-Bc, where I is the unit matrix, hence 

I-Bc is expressed below by, 

I-Bc= 

{1, -i / 6, -i / 6, 0, -i / 6, 0, 0, 0}, 

{-i / 6, 1, 0, -i / 6, 0, -i / 6, 0, 0}, 

{-i / 6, 0, 1, -i / 6, 0, 0, -i / 6, 0}, 
{0, -i / 6, -i / 6, 1, 0, 0, 0, -i / 6}, 

{-i / 6, 0, 0, 0, 1, -i / 6, -i / 6, 0}, 

{0, -i / 6, 0, 0, -i / 6, 1, 0, -i / 6}, 

{0, 0, -i / 6, 0, -i / 6, 0, 1, -i / 6}, 

{0, 0, 0, -i / 6, 0, -i / 6, -i / 6, 1} 

 

Step 3 

Find the complex transfer matrix Ec by inverting the I-Bc 

matrix which is guaranteed to be non-singular and unique, 

Ec = (I-Bc) ^ - 1 .. . . . . . . . . . . . (5) 

 
The origin of the matrix Ec is in fact the power series of the 

transition matrix Bc, i.e. 

Ec = Bc ^ 0 + Bc ^ 2 + Bc ^ 3 +. . . . . . . . . . + Bc ^ N.. . . . . 

. . . . (6) 

With Bc ^ 0 = I 

 

In other words, Ec satisfies both equations 5 and 6.Now it is 

simple to find the Eigenvlue for Ec like 

evEc = .8 + .4i. . . . . . . . . (7), 

 

Therefore, we can advance, to find the complex steady-state 

transfer matrix Dc given by the equality, 
Dc = Ec - I.. . . . . . (8) 

 

Therefore, the complex transfer matrix Dc is given by, 

Dc= 

{-.07027, .14054i, .14054i, -.043243, .14054i, -.043243, -

.043243, -.021622i}, 

{.14054i, -.07027, -.043243, .14054i, -.043243, .14054i, -

.021622i, -.043243}, 

{.14054i, -.043243, -.07027, .14054i, -.043243, -.021622i, 

.14054i, -.043243}, 

{-.043243, .14054i, .14054i, -.07027, -.021622i, -.043243, -
.043243, .14054i}, 

{.14054i, -.043243, -.043243, -.021622i, -.07027, .14054i, 

.14054i, -.043243}, 

{-.043243, .14054i, -.021622i, -.043243, .14054i, -.07027, -

.043243, .14054i}, 

{-.043243, -.021622i, .14054i, -.043243, .14054i, -.043243, 

-.07027, .14054i}, 

{-.021622i, -.043243, -.043243, .14054i, -.043243, .14054i, 

.14054i, -.07027} 

 

We can easily show that the complex eigenvalue of Dc, i.e. 
evDc calculated from the matrix above, is given by, 

evDc = -0.2 + 0.4 i. . . . (9) 
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The importance of the matrix Dc is that it gives  the 
steady-state equilibrium solution vector to the complex 

potential field U (x) for  sufficiently large number of jumps 

or time steps N>>1. 

U N + 1
  i, j, k = Dc. (b + S) N  i, j, k + Bc ^ (N + 1) .U (0). . . . . . . 

. (10) 

 

Equations 5, 6 and 10 are valid for real and complex B-

Matrix chains. 

b is the vector of the boundary conditions arranged in the 

correct order, S is the source / sink complex term and U (0) 

is the initial conditions. 

 
It has been shown [1,2,4] that the interactions or 

probability rate coefficients of BC and S with the adjacent 

free nodes are the same as the interaction between two 

adjacent free nodes bi, j (bi, j = 1 / 6 for 3D configuration) 

as shown in Fig. 1 and Fig. 2. 

 

III. VALIDATION OF NUMERICAL RESULTS 

 

The validation of the numerical results is carried out 

first of all for the complex eigenvalue of the matrix Dc 

(evDc)then for the solution of the complex vector U (x) by 
applying the matrix Dc defined by  Eq. 8. 

 

III-A. Validation of the eigenvalue evDc 
The complex eigenvalue of the matrix Dc turned out to be, 

evDc = -0.20000 + .0.40000 i. . . . . . . . .. (9) 

 

The matrix Bc being a statistical physical matrix, it follows 

that: 

 

If the eigenvalue of the matrix Bc is ev1 and the eigenvalue 

of the matrix Bc ^ 2 is ev2, that of the matrix Bc ^ 3 is ev3. . 

. etc, 
then, we have: [1,2,3] 

ev2 = ev1 ^ 2 

ev3 = ev ^ 3. 

. . .......... . . 

evN = ev ^ N .... 

 

Note that when N approaches an infinitely large 

number, evN approaches zero, which is a necessary 

condition for the convergence of the Ec and Dc matrices in 

equations 5 and 10. 

 
The hypothesis explained in the previous articles states that 

:, [1,2,3] 

[For a positive symmetric physical matrix, the sum of their 

powers at the eigenvalues is equal to the eigenvalue of their 

sum of the matrix power series]. . . . . . Principle 1. 

 

Principle 1 is valid for the real transition matrix B as 

well as for the complex transition matrix B. 

 

In other words, if the matrix Dc is expressed as a power 

series of the transition matrix Bc, 
Dc=Bc+Bc^2+Bc^3 + . . . . . . . . . +Bc^N 

 then the eigenvalue of Dc can also be expressed as a power 

series of the eigenvalues of Bc in a similar way, i.e. 
evDc=evBc+evBc^2 +evBc^3 +. . . . . . . . .+evBc ^N 

 

For N sufficiently large. “ Principal 1” 

 

In other words,The mathematical formulation of 

principle 1 consists of the following two equations, 

Dc = Bc + Bc ^ 2 + Bc ^ 3. ... + Bc ^ N.. . . . . (11) 

Then, 

evD = evB + evB ^ 2 + evB ^ 3 +. . . . . . . + evB ^ N.. . (12) 

 

Equations 11 and 12 are valid for N sufficiently large 

number. 
 In Eq. 11 and 12, evBc and evDc are replaced by evB and 

evD so as not to overload the equation.Therefore, using 

equations (4 and 12), we can find an alternative numerical 

calculation for evD as, 

evD = i / 2 + (i / 2) ^ 2 +. . . . . . . . + (i / 2) ^ N.. . . . . . . (11) 

 

As N goes to infinite large number. 

Using a simple, double-precision algorithm, we evaluated 

the power series sum of equation (11) as follows: 

evD = -0.20000 + 0.40000 i. . . . . . (12) 

 
Which exactly is the numerical result of equation 9. 

This means that if we inspect the digital result of Eq. 12, we 

find it in perfect agreement with Eq. 9 which numerically 

validates the correctness of the chains of the complex matrix 

Bc and of the chains of power series Dc and also validates 

Principle 1 for complex stochastic transition chains. 

 

B-Validation by vector solution 
TThe steady-state solution of Eq. 10 for zero initial 

conditions, (S (0) = 0) will be column vectors with complex 

inputs given by: 

Uc = b. Dc. . . . . . . . . . . (13) 
 

It is simple to find the vector of boundary conditions b, 

real or complex, and to multiply it by the complex matrix 

Dc above. 

 

The following numerical results are obtained for 

certain arbitrary boundary conditions chosen. 

a) = {1, 1, 1, 1, 1, 1, 1, 1} 

Uc = (- 0.20000 + 0.40000 * i, -0.20000 + 0.40000 * i, -

0.20000 + 0.40000 * i, -0.20000 + 0.40000 * i, -0.20000 + 

0.40000 * i, -0.20000 + 0.40000 * i, -0.20000 + 0.40000 * i, 
-0.20000 + 0.40000 * i} 

 

Here, in case a), we find an interesting numerical 

result. Although all of the system inputs, BC and / or S are 

real, the resulting voltage distribution is complex, i.e. if the 

Input voltage on BC or S = 1 cos wt 

 

The voltage distribution for all free nodes would be -02 cos 

wt + 0.4 sin wt 

the imaginary unit i changes the function cos wt to sin one. 

b) b = {i, i, i, i, i, i, i, i} 
Uc = ({{- 0.40000-0.20000 * i, -0.40000-0.20000 * i, -

0.40000-0.20000 * i, -0.40000-0.20000 * i, -0.40000-
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0.20000 * i, -0.40000-0.20000 * i, -0.40000- 0.0000 * i, -

0.40000-020000 * i} 
c) b = {1, 0, 0, 0, 0, 0, 0, 0} 

Uc = 

(-0.07027, 0.14054 * i, 0.14054 * i, -0.043243, 0.14054 * i, 

-0.043243, -0.043243, -0.021622 * i} 

d) b is identical to zero but S = 2 in voltage units placed at 

the cube corner  free node point 4 

S = {0, 0, 0, 2, 0, 0, 0, 0} 

Uc = {- 0.086486, 0.28108 * i, 0.28108 * i, -0.14054, -

0.043244 * i, -0.086486, -0.086486, 0.28108 * i} 

and so on for any real or complex boundary condition 

chosen arbitrarily and for the source term S. 

Note that BC and S are treated the same. 

 

IV. CONCLUSION 

 

In part 1, it is shown that the proposed statistics 

 

The solution for complex Markov chains is fast, stable 

and precise. 

 

If the Markov matrix is singular or not invertible, there 

is no stable convergence towards the equilibrium state and 

the new method fails as well as the other classical methods 
based on the resolution of a homogeneous system of 

algebraic equations. 

 

In part 2, the application of the hypothesis known as 

principle 1 used in the previous articles [1,2,3] leads to a 

new formula for series of infinite powers, 

 

namely the sum [(i / 2) ^ N] is equal to -0.2 + 0.4 i, 

which numerically proves the correctness of the hypothesis 

itself. It validates in fact the proposed principle: [For 

positive symmetrical physical matrix, the sum of their 

eigenvalues powers is equal to the eigenvalue of their sum 
of the series of the powers of the matrix]. 

 

In short, Markov  matrix chains and B transition 

matrix chains can be complex and the proposed statistics 

work with precision and efficiency. The complex transfer 

matrix Dc yields correct solution for the complex 3D 

voltage domain. 

 

N.B. All calculations in this article have been 

produced with the author's double precision algorithm to 

ensure maximum precision, as followed by Ref. 8 for 
example 
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