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Abstract:- Small lifting time of pusher’s rod used as a 

drive gear in vehicles and machinery is one of the key 

factors of their reliable operation, and increasing the 

productivity and durability. In its turn, the push rod 

lifting time depends on both electromagnetic characteris-

tics of pusher’s electromagnet and on those mechanical 

or hydraulic resistances that are predetermined by 

design features of the pusher. One of the reasons of push 

rod lifting time increment is the resisting force of work 

fluid extrusion situated between the armature-piston and 

the electromagnet core. In order to make the magneto 

hydraulic pusher design even more perfect it is desirable 

to determine armature-piston attraction time taking hyd-

raulic resistance into account. In the work there is 

established time distribution of pressure in work fluid 

area, is calculated the work fluid resistance when arma-

ture-piston attracts to the core and there is determined 

attraction time with consideration to hydraulic 

resistance. 
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I. INTRODUCTION 

 

Different kinds of pushers find manifold use in many 

industry branches, where there is a necessity of electric pro-
cesses transformation into mechanic ones, in particular into 

rectilinear translation movement [1]. Push rod movement ti-

me when lifting is the important technical characteristic of 

the pusher.     

 

In magneto hydraulic pushers (MHPs) of any design a 

MHP electromagnet switches on right after the electric ener-

gy supply to pushers, and when electromagnet armature (in 

membrane MHP) or armature-piston (in membraneless 

MHP) completely attracts to the electromagnet core, it squ-

eezes out the work fluid (oil) situated between them, forces 

it into the push rod sub-piston area and lifts push rod by 
working stroke value.   

 

In case of complete attraction of armature or armature-

piston they fit tightly by upper flat ring-shape butt-end 

surface to flat ring-shape butt end of the core and stay in this 

position unless electricity supply to MHP cuts off.       

When two flat surfaces approach each other in the di-

rection of their normal, a thin liquid layer located between 

these surfaces acts as a shock-absorber, that’s why a certain 

time is necessary for liquid extrusion. In case of heavy thick-
ness of a liquid layer located between these two surfaces, 

when these two surfaces approach each other, a resistance to 

their motion is sufficiently small and these two surfaces 

quickly approach each other, while reduction of liquid layer 

thickness causes increase in the liquid extrusion resistance 

force and the approach velocity of these two surfaces re-

duces.   

 

In case of membrane magneto hydraulic pusher elabo-

rated by us [2], when the armature of pusher’s electromagnet 

attracts to the core, causing the extrusion of a working fluid 

located between ring-shaped faces of armature and core, if 
the liquid layer thickness is small, a liquid pressure on the 

ring surface circles of maximum and minimum radius is 

equal to the magnitude of work chamber pressure. In all 

other MHPs elaborated by us [3-7], when armature-piston 

attracts to the core a liquid is extruded through holes of their 

ring-shape faces. That’s why, in case of liquid extrusion the 

fluid pressure at the minimum-radius circles of the ring-

shape faces equals to the pressure value in the work cham-

ber, i.e. to the minimum pressure in the liquid to be ex-

truded. In its turn, a liquid pressure at the maximum-radius 

circle of the ring-shape face equal to the maximum pressure 
in the liquid to be extruded.          

 

We set a goal to determine the movement time of ar-

mature-piston during attraction, taking into account liquid 

extrusion resistance force.   

 

II. MAIN RESULTS 

 

When armature-piston attracts to the core, the pressure 

P  in the liquid located between them can be described by 

the equation [8] 

 
2 2

2 2 3

12P P dh

dtx y h

 
  

 
,          (1) 

 

where   – is an process fluid viscosity; h  – armature 

stroke value; t  – movement time during armature attraction.  
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The following boundary conditions will take place  

 

1r
P P


 ,   (2) 

 

2R
P P

 
 ,         (3) 

 

where the following notation is used  

1 min

2 max

,

,

P P

P P




 

 

  is a polar radius, r  and R  are the small and big radiuses 

of the ring. If we use polar coordinates:  

cos ,

sin ,

x

y

 

 





 

 

Equation (1) is written in the following form:  
2 2

2 2 2 3

1 1 12P P P dh

dth



   

  
   

 
.   (4) 

 

In order to solve the Dirichlet boundary problem (2), 

(3), (4) we note that the general solution of equation is a sum 

of general 
0P  solution of Laplace equation, i.e. 

corresponding homogenous equation and particular solution 

P  of Reynolds non-homogenous equation. As is known the 

solution of Laplace equation in the collar neighborhood has 

to be sought in the following form:       

 

    0 0

1

cos sin

n

n n

n

P A A n B n
R


 





 
   

 
  

 

 
1

cos sin ln

n

n n o

n

r
C n D n C  







 
   

 
 .    (5) 

 
Using a direct verification we will make sure that we can 

take 

2

3

12

4

dh

dth

 
 in the role of P

. 

 

Thus, the general solution of (4) equation is sought in 

the following form   
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1
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n

n n
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1
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2
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3
ln

h
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
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In order that the pressure value in the hydrosystem 

would satisfy boundary conditions (2), (3), the following 

ratios have to be observed based on (4)  
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0A , 
0C  coefficients are determined from the system:   

2

2

0 0 1 13

0

3 1
ln

2

h
A C r r Pd P

h








    ,      (7) 

 
2

2

0 0 2 23

0

3 1
ln

2

h
A C R R P d P

h





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
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If we subtract (7) from (8) we obtain that   

 

   2 2

0 2 13

3
ln ln

h
C R r R r P P

h
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from where 

 2 2

2 1 3

0

3

ln ln

h
P P R r
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R r

 
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

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and taking (7) into account  

 

 2 2

2 1 3
2
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3
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hhA P r r
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
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nA , nB , nC  and nD  coefficients are determined by the equ-

ations  
2

1

0

2
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2

1
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2

2

0
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From these four latter ratios we obtain that  

 

0n n n nA B C D    . 

 

Thus, the solution of Dirichlet problem for Reynolds 
equation will be of the following form  
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which we re-write as follows  

 
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 2 2

3

3 h
r
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


  .               (11) 

 

(11) shows the time distribution of pressure along the radius 

(from r to R) in the process fluid area to be extruded.  

 

In the dimensionless form the (11) equation will be 

written as follows 
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The resistance F of the displaced process fluid, when 
the armature approaches the core, is calculated via the ring 

D  D pressure integration  

D

F P dx dy  . 

 

In polar coordinates we will have  

D

F P d d    . 

 

If we move to multiple integrals, we obtain 
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Note that when using the partial integration formula 
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Taking (13) into account, from (12) we obtain 
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i.e. in dimensionless form   
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Now let us re-write (15) in the following form 
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from where 
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Via integration of (16) equation we obtain a ratio 
between time and armature stroke. If armature-piston will 

move from ho to h1, when time changes from to to t1 then  
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Note that the armature attraction force F with an 

adequate accuracy can be considered as a constant one for 

sufficient small h. Based on this fact. 
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As 
0h  we have to take that thickness, in case of which 

the resistance to movement becomes so sufficient that 

armature’s retarded motion starts. 

 

III. CONCLUSION 

 

In magneto hydraulic pushers [3-7], for the case of 

direct current electromagnet armature-piston attraction to the 

core, a resistance force of working fluid extrusion located 
between them is established. Taking this force into account, 

the armature-piston movement time when pusher’s 

electromagnet armature-piston attracts to the core is 

determined. This fact can be used afterwards, when 

projecting magneto hydraulic pushers design in order to 

improve their characteristics, in particular, for push rod 

lifting time reduction.    

 

REFERENCES 

 

[1]. M. P. Aleksandrov, Brakes of carrying and lifting 
machines. Mashinostroenie, 1976. 

[2]. О. S. Ezikashvili and S. G. Bitsadze, Magneto 

hydraulic pusher. Authorship certificate № 582188, 

USSR, 1977. 

[3]. S. Bitsadze and R. Bitsadze, Magneto hydraulic 

pusher. Patent of invention P5536, Georgian Patent, 

2012. 

[4]. S. Bitsadze and R. Bitsadze, Magneto hydraulic 

pusher. Patent of invention P5869, Georgian Patent, 

2013. 

[5]. S. Bitsadze and R. Bitsadze, Magneto hydraulic 

pusher. Patent of invention P6572, Georgian Patent, 
2016. 

[6]. S. Bitsadze and R. Bitsadze, Magneto hydraulic 

pusher. Patent of invention P6744, Georgian Patent, 

2017. 

[7]. S. Bitsadze and R. Bitsadze, Patent of invention P2019 

6975B, Georgian Patent, 2019. 

[8]. N. P. Petrov et al., Hydrodynamic theory of 

lubrication. State Technical and Creative Publisher, 

Moscow, 1934. 

 

 

http://www.ijisrt.com/

	REFERENCES

