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Abstract:-The interplay between free radicals and 

antioxidant has gained a greater research momentum 

owing to their implication in the pathophysiology of 

several pathologies. Even though these chemical species 

have high reactivity and cause damage, they are still 

essential components of certain biological processes that 

occur at molecular level including immune function. The 

functions of such chemical species in immunotoxicity; 

the beneficial and detrimental effects in immune 

response remain the central focus of this review. Nature 

has put in place a system for defense which if 

compromised will increase the susceptibility of the body 

to disease-causing agents. The mechanisms of selected 

free radicals that mediate immune function in a myriad 

of medical conditions is the subtheme in this short 

review.   
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I. INTRODUCTION 
 

The interplay between free radicals and antioxidant 

has gained a greater research momentum recently. Probably 

owing to their implication in the pathophysiology of several 

pathologies [48, 93, 13, 16, 42, 87, 62, 67, 65, 84]. Even with the growing 

interest on studies relating to oxidative stress and their 
implications in certain pathologies, it is worthy of note that 

free radical-induced damage may not necessarily be the 

primary cause of such diseases. Some believe also that free 

radicals are beneficial despite their implications in various 

metabolic dysfunctions. It therefore means there is a given 

threshold below or above which oxidative stress could either 

become beneficial or detrimental. Thus, the need for 

elucidating the mechanisms of action of the biochemical 

antidote agents-“antioxidants” for these agents continues to 

attract more attention every now and then. The damage to 

cellular macromolecules and tissues caused by free radicals 

is known as oxidative stress. Such damage can be 
effectively controlled by a functional antioxidant system that 

maintains a balanced redox state necessary for normal tissue 

homeostasis. Reactive oxygen species (ROS) is the 

collective term used to describe oxygen atom carrying 

charges and other oxygen atoms carrying no charges that 

can easily form free radicals and/or cause damage to cellular 

components and tissues. Examples of oxygen atoms 

carrying charges include hydroxyl (OH.) and superoxide 

anion (O2
-.); and the oxygen atoms carrying no charges 

include hydrogen peroxide (H2O2), and hypochlorous acid 

(HOCl). However, there are other groups that contain 

nitrogen atoms that have been shown to induce oxidative 
damage to cellular constituents as well [34]. The above listed 

are said to contain unpaired electron (s) in their outermost 

shell, thus named free radicals. Even though these chemical 

species have high reactivity and cause damage, they are still 

essential components of certain biological processes [75]. 

Free radicals modulate the sulphydry (SH) groups of 

antioxidant enzymes and other regulatory proteins [19, 70]. 

The biochemical processes taking place in the mitochondria, 

peroxisome and cytochrome P450 of a living cell lead to the 

formation of these chemical species [65]. Inability of the body 

system to scavenge these chemical species using its 

antioxidants potentiates the chemical imbalance known as 
oxidative stress [33], characterized by oxidative damage to 

cellular molecules. The extent to which ROS damage the 

cellular constituents depends on its concentration, cell type, 

and the time frame of the oxidative stress. At relatively low 

concentration, ROS activates mitogenic proliferation; high 

concentration of ROS can result in cellular necrosis or 

apoptosis; and growth arrest or senescence results at 

moderate concentration of ROS. However, a high 

concentration of oxygen atoms carrying charges does not 

induce cellular damage due to the intrinsic mechanisms that 

prevent and repair such damage, according to a hypothesis 
[84]. Weidinger and Kozlov [92] affirmed that reactions of free 

radicals can be reversed and such reactions are crucial for 

signaling within cells. Some antioxidants have no direct 

effect on these groups of atoms carrying charges and their 

activities within a living cell, but instead modulate some 

signaling pathways of cells [3]. There is variability in the 

mechanism and structure of antioxidant [84], and this is 

characterized by their different modulatory effects on 

disease as they tend to have ameliorative effect on some 

oxidative-stress induced diseases, while on others, they 

aggravate the condition. Sayin et al. [73] observed that 

antioxidants stimulate tumour growth and increase the risk 
of metastasis [63]. Low levels of free radicals might be the 

cause of diabetes mellitus and not oxidative stress itself [91], 

although others have reported the implication of oxidative 

damage in the disease [47, 10, 20, 46, 72]. Antioxidants that target 

mitochondrial-induced oxidative stress can decrease 

inflammation and damage of organ in a model of animal [45]. 

Agents that can neutralize the damaging effects of free 

radicals and other molecules capable of generating free 
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radicals via maintenance of tissue homeostasis are known as 

antioxidants [1]. The oxidative damage caused by ROS can 
be effectively controlled by a functional antioxidant system 

that maintains a balanced redox state necessary for normal 

tissue homeostasis [65]. A natural defense mechanism has 

evolved to mop up these free radicals in order to maintain 

chemical balance between antioxidants and free radicals [65, 

1]. Superoxide dismutase, glutathione, catalase, retinol, 

glutathione peroxidase/reductase, vitamin C, thioredoxin, 

vitamin E, etc. are antioxidants [65]. Many scientific works 

have reported the failure of these free radical-mopping up 

molecules to prevent some diseases despite the increased 

scientific interest in understanding the beneficial roles of 

antioxidants [84].  

 

II. ROLE OF IMMUNE SYSTEM IN CENTRAL 

DEFENSE 

 

The human body has been naturally built to protect 

itself from dangerous external and internal agents [52]. 

Several components which unite in protecting man against 

harmful substances make up the immune system [52]. The 

immune system works together with endocrine, nervous, and 

cardiovascular systems [52]. The intrinsic capacity of an 

immune system enables it to discern cells of the body from 
those which are foreign [5, 80, 52]. The viral disease, acquired 

immune deficiency syndrome (AIDS) clearly illustrates the 

importance of an effective immune system. An immune 

response is often elicited by a stimulus, and such response 

leads to a cascade of different reactions. A typical 

illustration of such is the immune response elicited by the 

specific binding of antigens to immune receptors [2]. In the 

same way, any agitation in other systems of the body affects 

the immune system. Leukocytes and other cells of common 

origin bring about immunity. In addition to cells, immune 

system comprises the lymphoid organs. Protective immunity 

is mediated by the various cells of the spleen, the largest 
lymphoid organ [15]. The spleen can generate, and store 

immune cells that drive humoral and cellular responses [82]. 

An immune response may be innate or acquired. The first 

line of protection against foreign agents is the innate 

immunity [2, 43]. The immune response elicited during a re-

encounter with a particular foreign substance is the acquired 

immunity [66, 37].  

 

The humoral and cellular immune systems are the two 

complementary systems of the immune response. Humoral 

immunity protects the body against disease-causing agents 
and it is mediated by soluble proteins which mark and 

destroy such pathogens [82, 15]. On the other hand, cell-

mediated immunity is carried out by various T-cells [2, 28]. T-

cells occupy a central position in the regulation of immune 

response. Cells of the T-lymphocytes are the master 

regulators of the immune response. The assessment tests for 

possible immunotoxicants stemmed from interaction of T-

cells.  

 

For further knowledge of the relevance of T-cells in 

tumour surveillance, transplantation rejection, among others, 
see the reviews of Gerloni and Zanetti [22], Hayakawa and 

Smyth [24] and Romero et al. [69]. Cytokines (tumour necrosis 

factor-alpha, interferon-gamma and interleukins) which are 

cellular messengers required for the modulation of immune 
response become increased in aflatoxin B1-induced 

oxidative stress [41, 44]. Cytokines are specific cell recruiting 

messengers. Some cytokines stimulate the production of 

immunoglobulins whereas others inhibit such production to 

prevent damage of host tissue. The production of cytokines 

is in relatively low concentration and their activity is at the 

site of production [40]. The largest immune cells called 

macrophages are involved in the phagocytosis and ingestion 

of foreign pathogens during inflammation [98]. Various types 

of cancer cells including other infected cells are destroyed in 

vitro by another group of lymphocytes known as natural 

killer cells [69, 21, 27]. T-cells play crucial role in protection 
against certain pathogens during which respiratory burst that 

releases free radicals takes place [71, 39]. 

 

III. THE IMPLICATION OF OXIDATIVE STRESS 

IN IMMUNOTOXICITY 

 

The adverse effect to which the immune system is 

subjected when exposed to harmful agents is termed 

immunotoxicity [31].  Immunotoxicity is charcterized either 

by a suppressed immune response, or an upregulated 

immune response [8]. Immunotoxicity takes place due to 
hypersensitivity,autoimmunity, and immunosuppression 

arising from the damaging effects of substances that 

modulate the physiologic activities of the immune system. 

The administration of immunosuppressive drugs during 

transplant is another form of immunotoxicity. High 

morbidity and mortality are associated with the continuous 

exposure to such immunotoxicants, making them a high risk 

to human health [56]. The extensive review by Rodney [68] 

highlighted some risk factors of immunotoxicity. 

Immunotoxicants bring about bioactivation of cytochrome 

P450, induction of lipid peroxidation, formation of DNA 

adducts, inhibition of ATP production, apoptosis of 
haematopoietic stem cells and immune cells, alteration in 

immunoglobulins and alteration of cell cycle [77]. A typical 

immunotoxicant such as aflatoxin B1 brings about 

dysregulation of Nrf2 signaling pathway [89, 90] as a result of 

its ability to form free radicals, cause cell death in humans 

and other animals [77]. Chemicals disrupt immune functions 

through several mechanisms. Oxidative stress, alteration in 

homeostasis of calcium, and programmed cell death are 

some mechanisms through which chemicals disrupt immune 

functions [78]. Atrazine is one chemical which induces 

immunotoxicity via Fas-mediated apoptosis among 
splenocytes [99]. Two week treatment of mice with atrazine 

via oral route was reported to be immunotoxic as 

characterized by a significant increase in CD8+ T-cells and a 

concurrent reduction in spleen with respect to its mass, its 

cells and overall mass of the thymus [30]. Atrazine-induced 

immunosuppression is of great concern because it increases 

the risk for contracting disease [78]. Another typical pesticide 

known to induce oxidative stress, neurotoxicity and 

immunotoxicity is endosulfan [29, 58]. Endosulfan at 8 and 

16mg/kg doses significantly suppressed interferon (IFN-

gamma) and cytokine (IL-4) levels [58]. 
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A correlation has been shown to exist between free 

radical-induced damage and a compromised immune 
response based on animal studies [23]. Sies et al. [79] opined 

that oxidative stress is not only a pathophysiological process 

in inflammatory response that damages cellular 

macromolecules, but also a vital biological process that 

enhances immune system to handle pathogens and cell 

signaling. The formation of free radicals is an essential 

process in immune response because they are used to 

destroy foreign particles and adsorbed contaminants by 

phagocytes. The oxidative burst due to formation of free 

radicals is a mechanism utilized by innate immune cells for 

defense against disease-causing agents [17, 50, 57, 35, 85]. The 

activity of phagocytes is measured by the level of ROS 
generation. ROS despite their damage promoting effects 

have however been shown to be an emerging central 

signaling molecule in recent studies [9]. Mitochondria 

perform crucial function in ROS signaling, apoptotic 

process, and innate immunity [76]. Mitochondria modulate 

the fission and fusion activities necessary for the 

development of T-cells towards memory or effector 

phenotypes [7]. T-cells utilize oxidative phosphorylation and 

ROS for their activation [9], and they can either use oxidative 

phosphorylation or glycolysis for proliferation. Upregulated 

autophagy, decreased ATP and impaired redox homeostasis 
have been observed in rheumatoid arthritis [96, 97]. Increased 

cardiolipin has been reported in multiple sclerosis [88]. 

Monocyte activation and adhesion was upregulated by the 

expression of intercellular adhesion molecule which results 

from a compromised integrity of mitochondria within the 

endothelial cells secreting pro-inflammatory cytokines [11]. 

Abnormal generation of nitric oxide (NO) from monocytes 
[51] correlates with the elevated ROS production in systemic 

lupus erythematosus [21]. The substantial downregulation of 

ROS during hepatitis B virus infection is due to the 

concentration of various cellular processes on mitochondria 
[9]. Cells of the epithelium are metabolized when under 
stress via the binding of specific receptors that prevent 

mitochondrial damage and apoptosis of such cells, a process 

mediated by innate immunity [81]. ROS triggers 

inflammation through binding with specific receptors [74]. 

Such binding is necessary for the immune cells to ward off 

disease-causing agents or elicit inflammation. ROS 

induction via NADPH oxidase complex is common with the 

most abundant circulating white blood cells known as 

polymorphonuclear leukocytes (PMNs) [38, 50]. The 

phagocytic effect of PMNs on opsonized bacteria enhances 

the production of ROS [54]. The cytosolic domain of NADPH 
oxidase gains electrons from NADPH to form superoxide 

anion by transferring the electrons across the membrane [14, 

55, 60, 18]. Infections by the bacterium, Staphylococcus aureus 

can be effectively killed by phagocytes [12, 83]. This 

phagocytosis is enhanced by the different free radicals 

generated by leukocytes. These reactive species modulate 

the macromolecules of cells causing defective growth [94], 

which the bacterium now easily evades. NADPH oxidase 

and myeloperoxidase (MPO) mediate the functioning of 

neutrophil, a phagocyte against S. aureus. The activity of 

MPO during oxidative burst forms special traps of 
neutrophils [59, 61]. Defective ROS generation favours 

bacterial survival and repetitive colonization of different 

types of tissue [4, 26, 86, 25, 36, 95]. The generation of free 

radicals may probably account for their downstream 
antibacterial activities, and not necessarily the damage 

caused by reactive species directly [49]. Binding of 

intercellular adhesion molecule-1 to β2 integrin during the 

movement of neutophils is inadequate to generate free 

radicals [32], illustrating the involvement of other factors in 

regulating NADPH oxidase in disease conditions. Nauseef 
[53] observed that the release of granule protease facilitates 

neutrophil migration and it is also partially involved in the 

activity of neutrophil and other enzymes against microbes. 

The oxidative burst during inflammation is potentiated by 

the formation of singlet oxygen anion radical and nitric 

oxide. Neurotransmission and immunity are some of the 
biological processes where the reactive nitrogen species, 

nitric oxide plays crucial roles as signaling molecule [6].  

 

IV. CONCLUSION 

 

One of the ways of inducing immunotoxicity is free 

radical-induced stress and its implication herein is not 

always detrimental. Some of the free radicals being 

generated confer beneficial roles in their fight against 

foreign invaders depending on their concentration. It 

therefore becomes necessary to further elucidate the 
particular threshold above or below which supplementary 

antioxidants should be used to ameliorate immunotoxicity 

potentiated by oxidative stress. 
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