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Abstract:- This paper deals with the Bayesian estimation 

of a function of the unknown parameter 𝛉 of Modified 

Power Series distribution. These estimates have similar 

forms as the classical MVUE given by Gupta (1977), but 

are better than MVUV in the sense ,that they increase 

the range of estimation.The prior distribution for the 

unknown parameter 𝛉 varies from distribution to 

distribution, depending upon the range of 𝛉.On the part 

of loss functions, the Squared Error Loss Function 

(SELF) and two different forms of Weighted Squared 

Error Loss Function (WSELF) has been considered. 
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I. INTRODUCTION 
 

A discrete random variable X is said to have Modified 

Power Series distribution, if its probability mass function (p. 

m .f.) pθ(x) = P(X = x) is given by, 

 

pθ(x) = {
a(x){g(θ)}x

f(θ)
, if x ∈ S , θ ∈  A                        

0, Otherwise.                                           
     (1) 

 

Where, θ is unknown parameter of the 

distribution,A ⊆ ℛ (the set of real numbers), a(x) > 0, S is a 

subset of the set of non-negative integers, g(θ) > 0 and f(θ) 

is  a function of θ such that ∑ pθ(x) = f(θ)x∈S   

 

As mentioned by Gupta (1974) the p. m .f. given by 

(1) covers a wide range of discrete distributions. When 

g(θ) = θ , (1) coincides with the class of discrete 

distributions as given by Roy and Mitra (1957). 

 

Gupta (1977), has obtained MVUE  of ϕ(θ) = θr, r ≥
1.For values of r < 1 ,no unbiased estimator of  ϕ(θ) exists 

and hence no MVUE of ϕ(θ) exists. This is a serious 

limitation of this Classical estimator. In this paper, Bayes 

Estimator of ϕ(θ) = θr, r ∈ (−∞, ∞).Here the range of 

estimation is increased as we have taken r ∈ (−∞, ∞).  
 

On the part of loss functions, the usual Squared Error 

Loss Function (SELF)and two different forms of the 
Weighted Squared Error Loss Function (WSELF) have been 

taken. 

 

 

 

II. NOTATIONS AND RESULTS USED: 

 

Let X1, X2, X3,… XN be a random sample of size N from the 

p .m. f given by (1). 

Then, 

TN = ∑ Xi
N
i=1        (2) 

 

We shall use the following result as given by Abramowitz 

and Stegun (1964): 

Γ(x) = ∫ ux−1e−udu
∞

0
         (3) 

Γ(x)b−x = ∫ ux−1e−budu
∞

0
       (4) 

Γ(b−a)Γ(a)M(a,b,z)

Γ(b)
= ∫ ua−1(1 − 𝑢)b−a−1e−zudu

1

0
          (5) 

 

Where, M(a, b, z) is the Confluent Hypergeometric Function  

and has a series representation given by, 

M(a, b, z) = ∑
(a)nzn

(b)nn!
∞
n=0         (6)  

Where, (a)0 = 1 amd 

(a)n = ∏ (a + i − 1)n
i=1        (7) 

 

For observed value  t𝑁 = ∑ xi
N
i=1  of the statistic T𝑁 =

∑ Xi
N
i=1 , the likelihood function, denoted by L(θ), is given 

by, 

L(θ) = k{g(θ)}tN {f(θ)}−N    (8) 

Where, k is function of x1, x2, x3,… xN and does not contain 

θ. 

Let π(θ) be the prior probability density function of θ,then 

the posterior posterior probability density function of θ 

,denoted by π(θ /t𝑁  ),is given by, 

π(θ /t𝑁  ) =
L(θ)π(θ)

∫ L(θ)π(θ)dθA

        (9) 

 

Under the Squared Error Loss Function 

(SELF), L(ϕ(θ), d) = (ϕ(θ) − d)2,the Bayes Estimate of 

ϕ(θ),denoted by ϕ̂B is given by, 

ϕ̂B = ∫ ϕ(θ)π(θ /t𝑁 )dθ
A

        (10) 

 

Similarly, under the Weighted Squared Error Loss Function 

(WSELF), L(ϕ(θ), d) = W(θ)(ϕ(θ) − d)2, where, W(θ)  is 

a function of θ, the Bayes Estimate of ϕ(θ),denoted by ϕ̂𝑊 

is given by, 

ϕ̂𝑊 =
∫ W(θ)ϕ(θ)π(θ /t𝑁  )dθA

∫ W(θ)π(θ /t𝑁  )dθA

        (11) 
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We have taken two different forms of W(θ),as given below: 

(i). W(θ) = θ−2.The Bayes Estimate of ϕ(θ),denoted by 

ϕ̂M , is known as the Minimum Expected Loss (MELO) 

Estimate and is given by, 

ϕ̂M =
∫ θ−2ϕ(θ)π(θ /t𝑁 )dθA

∫ θ−2π(θ /t𝑁 )dθA

        (12) 

 

This loss function was used by Tummala and Sathe (1978) 

for estimating reliability of  certain life time distributions 

and by Zellner (1979) for estimating functions of parameters 
in econometric models. 

(ii). W(θ) = θ−2e−aθ−1
.The Bayes Estimate of 

ϕ(θ),denoted by ϕ̂E , is known as the Exponentially 

Minimum Expected Loss EW(MELO) Estimate and is given 

by, 

ϕ̂E =
∫ θ−2e−aθ−1

ϕ(θ)π(θ /t𝑁 )dθA

∫ θ−2e−aθ−1
π(θ /t𝑁 )dθA

        (13) 

 

This type of loss function was used by the author (1977) for 

the first time in his work for D.Phil. 

Now, we shall some special cases of the p. m. f. given by (1) 

and obtain corresponding Bayes Estimate of ϕ(θ) = θr, r ∈
(−∞, ∞), in each case. 

 

III. GENERALIZED NEGATIVE BINOMIAL 

DISTRIBUTION (GNBD) 

 

If we take a(x) =
nΓ(n+βx)

Γ(x+1)Γ(n+βx−x+1)
, g(θ) =  θ(1 −

θ)β−1, f(θ) =  (1 − θ)−n,  
S = {0,1,2 … ∞}, A = (0,1),β ≥ 0, θβ ∈ (−1,1),n being a 

positive integer, the corresponding discrete random variable 

X is said to have Generalized Negative Binomial 
distribution. 

 

In this case, 

L(θ) = kθtN(1 − θ)tN(β−1)+nN      (14) 

 

Since, in this case,0 < θ < 1,we have taken two different 

prior distributions, namely, π1(θ) and π2(θ)  as given 

below: 

  π1(θ) =

{
θp−1(1−θ)q−1

B(p,q)
, if p > 0, q > 0 ,0 < θ < 1                       

0, Otherwise.                                                                          
 (15) 

And, 

π2(θ) =

{
e−bθθp−1(1−θ)q−1

B(p,q)M(p,p+q,−b)
, if p > 0, q > 0 ,0 < θ < 1 , b ≥ 0                          

0, Otherwise.                                                                                                
 

(16) 

Where, 

B(p, q) =
Γ(p)Γ(q)

Γ(p+q)
                                        (17) 

 

The posterior p. d .f. of θ , corresponding to the prior π1(θ), 

denoted by π1(θ /tN),is given by, 

 

π1(θ /tN) =

 {
θtN+p−1(1−θ)tN(β−1)+nN+q−1

B(tN+p,(β−1)tN+nN+q)
, if p > 0, q > 0 ,0 < θ < 1                       

0, Otherwise.                                                                                                         
 

(18) 

 

Similarly, posterior p. d .f. of θ , corresponding to the prior 

π2(θ), denoted by π2(θ /tN),is given by 

π2(θ /tN)

=  {
e−bθθtN+p−1(1 − θ)tN(β−1)+nN+q−1

K
, if p > 0, q > 0 ,0 < θ < 1, b ≥ 0                  (19)                                                                                      

0, Otherwise.                                                                                                                                                                                                                        

 

Where, 

 K = B(tN + p, (β − 1)tN + nN + q)M(tN + p, p + q +
βtN + nN, −b)                             (20) 

 

Under the SELF  and corresponding to the posterior 

distribution given by (18), Bayes Estimate of ϕ(θ) = θr 

,denoted by θ̂1B
t  is given by, 

θ̂1B
t =

B(tN+p+r,(β−1)tN+nN+q)

B(tN+p,(β−1)tN+nN+q)
     (21) 

 

Similarly, under the WSELF, when W(θ) = θ−2  and 

corresponding to the posterior distribution given by (18), the 

MELO Estimate of ϕ(θ) = θr ,denoted by θ̂1M
t  is given by, 

θ̂1M
t =

B(tN+p+r−2,(β−1)tN+nN+q)

B(tN+p−2,(β−1)tN+nN+q)
     (22) 

 

Under the WSELF, when W(θ) = θ−2e−aθ−1
  and 

corresponding to the  posterior distribution given by (18), 

the EWMELO Estimate of ϕ(θ) = θr ,denoted by θ̂1E
t  is 

given by,  

θ̂1E
t =

B(tN+p+r−2,(β−1)tN+nN+q)M2

B(tN+p−2,(β−1)tN+nN+q)M1
     (23) 

Where, 

 M1 = M(tN + p − 2, p + q +  βtN + nN − 2, −a)                        

(24) 

M2 = M(tN + p + r − 2, p + q +  βtN + nN + r − 2, −a)            

(25) 

 

On the other hand, under the SELF  and corresponding to 

the posterior distribution given by (19), Bayes Estimate of 

ϕ(θ) = θr ,denoted by θ̂2B
t  is given by, 

θ̂2B
t =

B(tN+p+r,(β−1)tN+nN+q)M4

B(tN+p,(β−1)tN+nN+q)M3
      (26) 

Where, 

 M3 = M(tN + p, p + q +  βtN + nN, −b)                        

(27) 

M4 = M(tN + p + r, p + q +  βtN + nN + r, −b)            

(28) 

 

Similarly, under the WSELF, when W(θ) = θ−2  and 

corresponding to the posterior distribution given by (19), the 

MELO Estimate of ϕ(θ) = θr ,denoted by θ̂2M
t  is given by, 

θ̂2M
t =

B(tN+p+r−2,(β−1)tN+nN+q)M6

B(tN+p−2,(β−1)tN+nN+q)M5
     (29) 

Where, 

 M5 = M(tN + p − 2, p + q +  βtN + nN − 2, −b)                        

(30) 

M6 = M(tN + p + r − 2, p + q +  βtN + nN + r − 2, −b)            

(31) 
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Finally, under the WSELF, when W(θ) = θ−2e−aθ−1
  and 

corresponding to the  posterior distribution given by (19),the 

EWMELO Estimate of ϕ(θ) = θr ,denoted by θ̂2E
t  is given 

by,  

θ̂2E
t =

B(tN+p+r−2,(β−1)tN+nN+q)M8

B(tN+p−2,(β−1)tN+nN+q)M7
     (32) 

Where, 

 M7 = M(tN + p − 2, p + q +  βtN + nN − 2, −(a + b))                        

(33) 

M2 = M(tN + p + r − 2, p + q +  βtN + nN + r − 2, −(a +
b))            (34) 

 

Remark (1): The MVUE of θr is 0 if z < r (z = tN) which 

is a serious limitation of the MVUE, in this case. The Bayes 

Estimates on the other hand, are 0 if r < 0 is such that tN +
p < −r, p + q +  βtN + nN < −r, tN + p − 2 < −r, p +
q +  βtN + nN − 2 < −r depending on various loss 
functions and two posterior distributions. 

 

SPECIAL CASE: Since, for β = 1 ,the GNBD coincides 

with the Negative Binomial Distribution (NBD), all results 

as derived above  give, Bayes Estimate of θr for the NBD 

when β = 1. Additionally ,when  β = 1 and n=1,we get 

Bayes Estimate of θr for the Geometric distribution. When 

β = 0, we get Bayes Estimate of θr for the Binomial  
distribution. 

 

IV. GENERALIZED LOGARITHMIC SERIES 

DISTRIBUTION (GLSD) 

 

If we take a(x) =
Γ(βx)

Γ(x+1)Γ(βx−x+1)
, g(θ) =  θ(1 −

θ)β−1, f(θ) =  −ln (1 − θ),  
S = {1,2 … ∞}, A = (0,1),β ≥ 0, θβ ∈ (0,1),n being a 

positive integer, the corresponding discrete random variable 

X is said to have Generalized Logarithmic Series 

distribution. 

 

Since in this case, 0 < θ < 1 ,we take π3(θ) as the p. d. f. 

of Negative Log Gamma distribution given by 

π3(θ) =

{
(k+1)N+1(1−θ)k{−ln(1−θ)}N

Γ(N+1)
, if k > 0, ,0 < θ < 1               

0, Otherwise.                                                                                                     
(35)  

 

Where, N, a positive integer is same as the size of the 

random sample. 

 

The posterior p. d .f. of θ ,denoted by π3(θ /tN)  , is given 

by 

π3(θ /tN) =

 {
θtN(1−θ)tN(β−1)+k

B(tN+1,(β−1)tN+k+1)
, if k > 0, ,0 < θ < 1                                                       

0, Otherwise.                                                                                                         
  

(36) 

 

Under the SELF  and corresponding to the posterior 

distribution given by (36), Bayes Estimate of ϕ(θ) = θr 

,denoted by θ̂B
t  is given by, 

θ̂B
t =

B(tN+r+1,(β−1)tN+k+1)

B(tN+1,(β−1)tN+k+1)
     (37) 

 

Similarly, under the WSELF, when W(θ) = θ−2  and 

corresponding to the posterior distribution given by (36), the 

MELO  Estimate of ϕ(θ) = θr ,denoted by θ̂M
t  is given by, 

θ̂M
t =

B(tN+r−1,(β−1)tN+k+1)

B(tN−1,(β−1)tN+k+1)
     (38) 

 

Under the WSELF, when W(θ) = θ−2e−aθ−1
  and 

corresponding to the  posterior distribution given by (36), 

the EWMELO  Estimate of ϕ(θ) = θr ,denoted by θ̂E
t  is 

given by,  

θ̂E
t =

B(tN+r−1,(β−1)tN+k+1)M10

B(tN−1,(β−1)tN+k+1)M9
     (39) 

Where, 

 M9 = M(tN − 1, βtN + k, −a)                        (40) 

M10 = M(tN + r − 1, βtN + r + k, −a)            (41) 

 

Remark (2): The MVUE of θr is 0 if z < r , (z = tN)  which 

is a serious limitation of the MVUE, in this case. The Bayes 

Estimates on the other hand, are 0 if r < 0 is such that tN +
1 < −r,tN − 1 < −r  βtN + k < −r,  depending on various 

loss functions. 
 

SPECIAL CASE: Since, for β = 1 ,the GLSD coincides 

with the Logarithmic Series Distribution (LSD), all results 

as derived above  give, Bayes Estimate of θr for the LSD 

when β = 1.  

 

V. GENERALIZED POISSON DISTRIBUTION 

(GPD) 

 

If we take a(x) =
λ1(λ1+λ2x)x−1

Γ(x+1)
, g(θ) =  θe−θλ2, f(θ) =

 e−θλ1,  
S = {0,1,2 … ∞}, A = (0, ∞),, λ2 ∈ (−1,1), λ1 > 0,the 

corresponding discrete random variable X is said to have 

Generalized Poisson distribution. 

 

Since in this case, θ > 0 ,we take π4(θ) as the p. d. f. of 

Gamma distribution given by 

π4(θ ) =

 {
cαθα−1e−cθ

Γ(α)
, if c > 0, α < 0, θ > 0                                                                     

0, Otherwise.                                                                                                         
  

(42) 

 

The posterior p. d .f. of θ ,denoted by π4(θ /tN)  , is given 

by 

π4(θ /tN) =

 {
(λ2tN+Nλ1+c)tN+αθtN+α−1e−θ(λ2tN+Nλ1+c)

Γ(tN+α)
, if θ > 0                                                  

0, Otherwise.                                                                                                                 
  

(43) 
 

Under the SELF  and corresponding to the posterior 

distribution given by (43), Bayes Estimate of ϕ(θ) = θr 

,denoted by θ̂B
t  is given by, 

θ̂B
t =

Γ(tN+α+r)

Γ(tN+α)(λ2tN+Nλ1+c)r     (44) 
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Similarly, under the WSELF, when W(θ) = θ−2  and 

corresponding to the posterior distribution given by (43), the 

MELO  Estimate of ϕ(θ) = θr ,denoted by θ̂M
t  is given by, 

θ̂M
t =

Γ(tN+α+r−2)

Γ(tN+α−2)(λ2tN+Nλ1+c)r     (45)      

 

Under the WSELF, when W(θ) = θ−2e−aθ−1
  and 

corresponding to the  posterior distribution given by (43), 

the EWMELO  Estimate of ϕ(θ) = θr ,denoted by θ̂E
t  is 

given by,  

θ̂E
t =

Γ(tN+α+r−2)

Γ(tN+α−2)(λ2tN+Nλ1+c+a)r     (46) 

 

Remark (3): The MVUE of θr exists as long z ≥ r , (z = tN) 

and is 0 if z < r which is a serious limitation of the MVUE, 

in this case. The Bayes Estimates on the other hand, are free 

from such restrictions between tN and r  as far as  r ≥ 1. 
This is another advantage of Bayesian Estimation over 

MVUE. However, if r < 0 ,Bayes Estimates are 0, if tN +
α < −r in (44) and tN + α − 2 < −r,  in (45) and (46) 

respectively depending on various loss functions. 

 

SPECIAL CASE: Since, forλ1  = 1 and λ2 = 0,the GPD 

coincides with the Poisson Distribution. So putting λ1  = 1 

and λ2 = 0  , equations (44),(45) and (46) respectively  give, 

Bayes Estimate of θr for the Poisson Distribution as 

follows:.  

θ̂B
t =

Γ(tN+α+r)

Γ(tN+α)(N+c)r     (47) 

 

Similarly, under the WSELF, when W(θ) = θ−2  and 

corresponding to the posterior distribution given by (43), the 

MELO  Estimate of ϕ(θ) = θr ,denoted by θ̂M
t  is given by, 

θ̂M
t =

Γ(tN+α+r−2)

Γ(tN+α−2)(N+c)r     (48)      

 

Under the WSELF, when W(θ) = θ−2e−aθ−1
  and 

corresponding to the  posterior distribution given by (43), 

the EWMELO  Estimate of ϕ(θ) = θr ,denoted by θ̂E
t  is 

given by,  

θ̂E
t =

Γ(tN+α+r−2)

Γ(tN+α−2)(N+c+a)r     (49) 
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