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Abstract:- This paper gives an account of how power-law 

noise power spectral density can be deconverted to white 

noise power spectral density. The analysis is carried out 

both in the frequency domain using transfer function 

models as well as in the time domain using state-space 

models whereby a linear time-invariant model being used 

to generate approximate power-law noise from white noise 

after which this model is inverted directly and indirectly. 

Both direct (open-loop) model inversion and indirect 

(closed-loop) model inversion are simulated and discussed. 

It is through these simulations that the indirect model 

inversion performance is shown to increases with 

increasing feedback control gain. 
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INTRODUCTION 

 

Understanding the type of noise that underlies the data 

allows one to be able to devise appropriate means of filtering 
the particular noise that seems to be dominant. Power-law 

noise is a major contributor to the overall noise in many 

systems, including electronic resonators and oscillators [1], 

[2], [3], [4], quantum systems [5], [6], and sensors [7]. Most 

resonators and oscillators are affected by noise whose power 

spectral density 𝑆𝑦(𝑓) obeys the power-law as shown below,   

 

𝑆𝑦(𝑓) ∝ 𝑓𝜆     (1) 

where 𝑓 is the noise frequency in Hz. The exponent 𝜆 takes 

on different values depending on the kind of power-law 

noise involved. Some examples include white noise (𝜆 = 0), 

flicker noise (𝜆 = −1), random walk noise (𝜆 = −2), and 

random run noise (𝜆 = −4) [8]. In this paper, we present two 

ways of deconverting power-law noise into white noise 

through direct inversion as well as through feedback inversion 

of the power-law noise model. This means we begin by 

adopting a model generating some power-law noise and take 

its reciprocal in one case while in the other case we apply 

feedback control to convert the underlying power-law noise 

into white noise. The main reason for choosing white noise as 

a target or setpoint is because a lot of filtering algorithms 

work very well with white noise thus being able to deconvert 
any noise type into white noise would allow various tools 

optimized for white noise to be utilized for any noise. The 

model that we adopt for power-law noise generation is the 

model by Barnes and Jarvis, which is formed by a cascade of 

first-order filters [9]. 

 

The rest of this paper is organized as follows. Section II 

presents the Barnes-Jarvis model as a cascade of first-order 

filters in the frequency domain which gets converted to a 

state-space model. Section III presents the two ways of 

inverting the Barnes-Jarvis model with the aim of 

deconverting power-law noise to white noise. The first model 

inversion approach takes a direct reciprocal of the Barnes-

Jarvis transfer function while the second approach considers 

the feedback control scheme as a way of model inversion. 

Section IV presents and discusses the simulation results 
obtained from the Barnes-Jarvis model and its two inversion 

approaches. Section V concludes this paper with some major 

aspects of this work and some remarks and possible future 

work. 

 

BARNES-JARVIS MODEL 

 

2.1 Frequency Domain Model 

In this section, we consider a cascade model from the 

previous section and show its Bode diagram and power 

spectral density, which falls approximately as 1/𝑓 over a 

frequency interval dictated by the choice of 𝜏 and 𝛽𝑚. The 

transfer function 𝐺(𝑠) for this cascade model is shown below, 

 

𝐺(𝑠) = ∏
𝜏𝑠+𝛽𝑖

𝛼𝜏𝑠+𝛽𝑖
𝑚−1
𝑖=1     (2) 

The equation 𝛽𝛼
2

𝜆 = 1 fixes the relationship between 𝛼 

and 𝛽 where 𝜆 is the slope characterizing the power spectral 

density of the power-law noise. Theoretically, this slope can 

be estimated well in the frequency range [
𝛽0

2𝜋𝜏

𝛽𝑚

2𝜋𝜏
]. 

 

2.2 State Space Model 
The transfer function model in the previous section can 

be converted to a continuous-time state-space model and 

discretized. The corresponding discrete-time state-space 

model has the following form, 

 

𝒛𝑘+1 = 𝑨𝒛𝑘 + 𝑩𝑢𝑘    (3) 

𝑦𝑘 = 𝑪𝑻𝒛𝑘 + 𝑫𝑢𝑘    (4) 

where 𝑘 represents the 𝑘𝑡ℎ time instance at time 𝑡 =  𝑘𝑇 

for some sampling period 𝑇 and the discrete-time matrices are 

given by, 

 

𝑨 = 𝑒𝑨𝑐𝑇       (5) 

𝑩 = 𝑨𝑐
−1(𝑒𝑨𝑐𝑇 − 𝑰)𝑩𝑐      (6) 

 

 

 

http://www.ijisrt.com/


Volume 6, Issue 7, July – 2021                                              International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT21JUL514                                                                      www.ijisrt.com                     288 

The continuous-time matrices 𝑨𝑐, 𝑩𝑐 , 𝑪 and 𝑫 for 

model size 𝑚 =  4 are given by, 

 

𝑨𝑐 =

[
 
 
 
 
 
 

−𝛽0

𝛼𝜏
0    0        0

(𝛼−1)𝛽0

𝛼2𝜏

−𝛽1

𝛼𝜏
   0        0

(𝛼−1)𝛽0

𝛼3𝜏

(𝛼−1)𝛽0

𝛼4𝜏

(𝛼−1)𝛽1

𝛼2𝜏

(𝛼−1)𝛽1

𝛼3𝜏

−𝛽2

𝛼𝜏

(𝛼−1)𝛽2

𝛼2𝜏

0
−𝛽3

𝛼𝜏 ]
 
 
 
 
 
 

  (7) 

 

𝑩𝑐
𝑇 = [

1

𝛼1𝜏

1

𝛼2𝜏

1

𝛼3𝜏

1

𝛼4𝜏
]   (8) 

 

𝑪𝑇 = (𝛼 − 1) [
𝛽0

𝛼4

𝛽1

𝛼3

𝛽2

𝛼2

𝛽3

𝛼1
]   (9) 

 

𝑫 = [
1

𝛼4
]     (10) 

 

The next section gives an account of converting power-

law noise back to white noise through model inversion 
mechanisms. 

 

BARNES-JARVIS MODEL INVERSION 

 

3.1 Direct Inversion Transfer Function Model 

The direct model inversion is built on the idea of 

reversing the signal flow of the open-loop system presented in 

equation (2). That is, given 𝑢𝑘 (or 𝑢(𝑡)) and 𝑦𝑘 (or 𝑦(𝑡)) to be 

white noise input and power-law noise output respectively as 

per Barnes-Jarvis model 𝐺(𝑠) outlined in the previous section, 
we now reverse the signal flow and invert the model as 

follows, 

 

𝑈(𝑠) =
1

𝐺(𝑠)
𝑌(𝑠)     (11) 

with 𝑈(𝑠) and 𝑌(𝑠) as Laplace transforms of 𝑢(𝑡) and 𝑦(𝑡) 

respectively. This means that now we have power-law 

noise, 𝑦(𝑡) as input to our inverted model 𝐺(𝑠) and white 

noise 𝑢(𝑡) as output. This direct way of inversion is seldom 

done in control theory due to it being prone to instabilities 

arising from possible non-minimum phase zeros as well as it 
lacking the ability to reject disturbances from outside. In the 

case of the Barnes-Jarvis model, there are no non-minimum 

phase zeros since the numerator for each 𝑖𝑡ℎ cascade leads to a 

negative zero, (i.e. 𝑠 = 𝜏−1𝛽𝑖) hence the inverted model is 

both causal and stable. However, disturbance-rejection is not 

enhanced as shown next. 

 

Consider input disturbance 𝑖(𝑡) and output disturbance 

𝑜(𝑡) which are additively coupled to the inverted model as 

shown in Fig. 1 below. 
 

 
Fig. 1. Inverted Barnes-Jarvis model with input and output 

disturbances. 

 

The transfer function relating the input disturbance i(t) 

to the output u(t) is given by, 
 
𝑈(𝑠)

𝐼(𝑠)
=

1

𝐺(𝑠)
     (12) 

This means the input disturbance 𝑖(𝑡) is on equal footing 

with our input 𝑦(𝑡) hence the setup offers no input 

disturbance rejection or suppression relative to the desired 

input 𝑦(𝑡). Looking at the output disturbance 𝑜(𝑡) we can see 

that it proceeds to the output unattenuated at all, hence there is 

no output disturbance rejection either. The next section state-

space representation of this direct inversion model. 

 

3.2 Direct Inversion State Space Model 

The transfer function of the inversion model can be 

converted into a continuous-time state-space model and 

discretized. The corresponding discrete-time state-space 

model has the following form, 

 

𝒛𝑘+1 = 𝑬𝒛𝑘 + 𝑭𝑢𝑘    (13) 

𝑢𝑘 = 𝑴𝑻𝒛𝑘 + 𝑵𝑢𝑘    (14) 

 

whereas before, 𝑘 represents the 𝑘𝑡ℎ time instance at 

time 𝑡 =  𝑘𝑇 for some sampling period 𝑇 and the discrete-

time matrices are obtained using the same procedure as in the 

case of equation (5 - 6). The rest of the variables are 𝑦𝑘 as the 

input flicker noise, 𝑢𝑘 as the estimated output white noise, 𝑧𝑘 

as the state vector and the continuous-time matrices 𝑬𝑐, 𝑭𝑐, 𝑴 

and 𝑵 for model size 𝑚 =  4 are given by, 

𝑬𝑐 =

[
 
 
 
 
 
 

−𝛽0

𝜏
       0      0 0

−𝛽1

𝜏

(1−𝛼)𝛼0𝛽0

𝜏
0 0

−𝛽2

𝜏

−𝛽3

𝜏

(1−𝛼)𝛼0𝛽1

𝜏

(1−𝛼)𝛼0𝛽2

𝜏

(1−𝛼)𝛼1𝛽0

𝜏

(1−𝛼)𝛼1𝛽1

𝜏

0
(1−𝛼)𝛼2𝛽0

𝜏 ]
 
 
 
 
 
 

 (15) 

𝑭𝑐
𝑇 = [

𝛼0

𝜏

𝛼1

𝜏

𝛼2

𝜏

𝛼3

𝜏
]    (16) 

𝑴𝑇 = (1 − 𝛼)[𝛼3𝛽0 𝛼2𝛽1 𝛼1𝛽2 𝛼0𝛽3] (17) 

𝑵 = [𝛼4]     (18) 

 
The next section considers a feedback control loop approach 

for model inversion. 

 

3.1 Indirect Inversion Transfer Function Model 

Consider a feedback control loop applied to Barnes-

Jarvis 

model as shown in Fig. 2 below. 

Fig. 2. Feedback control loop as an indirect inversion 

approach. 
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The transfer function relating our power-law noise input 

𝑦(𝑡) to the white noise output 𝑢(𝑡) is given as, 

 
𝑈(𝑠)

𝑌(𝑠)
=

𝐾(𝑠)

1+𝐾(𝑠)𝐺(𝑠)
     (19) 

 

with 𝐾(𝑠) as the controller. Notice that for a large value 

of control gain 𝐾(𝑠) the transfer function approaches the 

direct inversion model presented in the previous section. 

Hence by tuning the control gain one can get the same results 

as those of the direct inversion model outlined above. 
 

3.1 Indirect Inversion State Space Model 

In this section, we consider full state feedback (as 

opposed to output feedback) and we proceed to close the loop 

by making the following setting on the open-loop Barnes-

Jarvis model in equations (3 - 4) 

 

𝑢(𝑡) = 𝑲(𝒚(𝑡) − 𝒛(𝑡))    (20) 

with 𝑦(𝑡)  =  𝑲𝒚(𝑡) from the input power-law noise and 𝑢(𝑡) 

being the white noise resulting from the indirect inversion of 

𝑦(𝑡). This leads to the following discrete-time state-space 

model, 

 

𝒛𝑘+1 = 𝑷𝒛𝑘 + 𝑸𝑢𝑘    (21) 

𝑢𝑘 = −𝑲𝒛𝑘 + 𝑦𝑘     (22) 

with 𝑷 and 𝑸 obtained in the same way as the discrete-time 

transition and input matrices in equation (5 - 6). The 

next 
section presents flicker noise simulation results for the 

Barnes-Jarvis model and the two inversion approaches. 

 

4. SIMULATION RESULTS 

4.1 Approximating 1/f Noise With Barnes-Jarvis Model  

Fig. 3 below shows the power spectral density plot of a 

flicker noise data (as reference) and the above Barnes-Jarvis 

discrete-time state-space model simulation output with 𝑇 =
 12 𝑚𝑠, 𝜆 = −1, 𝜏 =  3 𝑠, 𝛼 =  3 and 𝛽 =  9. 

 

Fig. 3. Barnes-Jarvis discrete-time state-space model 

simulation. 

 

In Fig. 3 above it can be seen that the Barnes-Jarvis 

model is approximating the flicker noise reasonably well for 

the first two decades. Theoretically, it is expected that the 

model will deviate from the expected flicker/pink noise 

profile towards the edges of the following frequency range, 

[
𝛽0

2𝜋𝜏

𝛽𝑚

2𝜋𝜏
] = [53 𝑚𝐻𝑧 348 𝐻𝑧]. 

4.1 Low Feedback Control Gain  

Fig. 4 below shows the results of directly and indirectly 

inverting the Barnes-Jarvis model under similar settings (i.e. 

with 𝑇 =  12 𝑚𝑠, 𝜆 = −1, 𝜏 =  3 𝑠, 𝛼 =  3 and 𝛽 =  9) 

presented in the previous section. In this case, the control gain 

matrix for indirect inversion is 𝐾 =  [2 1 6 5]. 

 

Fig. 4. Power spectral densities for both direct and indirect 

model inversion of the Barnes-Jarvis model under low 

feedback control gain. 

 

It can be seen that the direct inversion approach can 
convert the flicker noise to white noise better in low 

frequencies compared to higher frequencies. The indirect 

inversion approach seems to be unable to perform well across 

the shown frequency spectrum. The next section presents the 

same simulation with the control gain increased by a factor of 

100. 

 

4.1 High Feedback Control Gain  

Fig. 5 below shows the simulation results under similar 

settings as in the previous section with the only exception that 

here the control gain matrix is increased to 𝐾 =

 [200 100 600 500].  

 

Fig. 5. Power spectral densities for both direct and indirect 

model inversion of the Barnes-Jarvis model under high 

feedback control gain. 

 

While the direct inversion approach remains the same, 

the indirect inversion approach seems to be performing well 

over a much wider frequency spectrum than the direct 

inversion approach. These inversion approaches show that it is 

possible to deconvert power-law noise to white noise which 

can then be processed further using well-known tools. In the 
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case whereby the signal of interest is expected to be near zero 

(i.e. laser detuning from some atomic transition), the signal 

fluctuations will be mostly due to power-law noise which can 

be deconverted to white noise can be filtered out using 

common white noise filtering techniques. 

 

CONCLUSIONS 

 

In this paper, we presented two ways of inverting the 

power-law noise model such that the resulting inverted 

models can decompose the input power-law noise into white 

noise which is easier to filter. Barnes-Jarvis model was set up 

to adaptively track and estimate the reference flicker noise in 

the frequency band [53 𝑚𝐻𝑧 348 𝐻𝑧]. The two inversion 
models successfully inverted part of the reference flicker 

noise spectrum back into white noise while the other part of 

the spectrum was not well-converted back to white noise. The 

indirect inversion, using feedback control with high gain, 

appeared to be able to convert a wider spectrum of flicker 

noise than the direct inversion approach. However, under law 

gain setting the indirect inversion was performing poorly 

across the whole spectrum. The indirect inversion approach is 

much more robust and easier to implement than the direct 

inversion approach especially in cases whereby the underlying 

noise is a weighted aggregation of different power-law noise 

types, which is more likely to be the case in practice.  
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