
Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 247

Duplicate Image Detection and Comparison using
Single Core, Multiprocessing, and Multithreading

[1] Pranav Kapoor, [2] Pratham Agrawal, [3] Zeeshan Ahmad, [4] Dr. Narayanamoorthi M

[1] Student, School of Computer Science & Engineering, VIT Vellore
2] Student, School of Computer Science & Engineering, VIT Vellore
[3] Student, School of Computer Science & Engineering, VIT Vellore

[4] Associate Professor Grade 1, School of Computer Science & Engineering, VIT Vellore

Abstract:- We undoubtedly have a chunk of images on
our computer. The problem with having a lot of pictures
is that you tend to accumulate duplicates along the way.
It would be prudent to manage space efficiently.
Detecting duplicate images from a set of images is a time-
consuming task that can be automated, and duplicate
data can be removed to save space. As we use our phones
more, the number of unwanted duplicate photo and
picture files grows in the device at random, ideally in
every folder. Duplicate photos/pictures consume a lot of
phone memory and slow down the phone's performance.
Finding and removing them manually is difficult. Since
human visual ability is not well developed enough to
extract structure similarity from the naked eye, we
propose a novel approach based on structural
information degradation. As a practical solution to this
problem, we create a structural similarity index and
demonstrate it with a set of images from our database.
Finding similar and duplicate photos from these samples
can be a time-consuming task. Duplicate photo finders
come in handy in this situation. Finally, we will compare
the computation time and power required by processing
on multiple cores vs. single core threads, as well as
provide benchmarks and graphical representations for
each.

Keywords:- Single core ; Multithreading ; Multiprocessing;
RGB ; Luminance ; Contrast ; Structure ; Similarity Index.

I. INTRODUCTION

With the fast advancement of Internet technology and

the growing use of technical devices, people may easily take,
transfer, and share photos over the internet. Due to which
duplicate pictures make up a substantial percentage of the
image data. Duplicate image detection is the process of
detecting duplicate copies of a query picture from a set of
images efficiently and effectively.

Common devices like smartphones often duplicate

images in form of junk files which is not supported by any
security measures. These files are easily accessible to a non-
authorized user and the user is unaware of such files. These
files can contain important information which could be
exposed against the user's permission.

To provide a proper and effective solution to this

problem, we came up with measures that can detect and even
eradicate such files with user permission.

The reason we are implementing it with multiple cores

is that we want to compare it to sequential single-core
execution and write about our findings.

By running the script and comparing using different

cores, it will be possible to predict which solution is better for
which type of operation.

For example, Single-core or sequential algorithm may

be efficient for a small dataset consisting of just 5 images, as
it may take up less CPU power, whereas when the dataset
consists of 1000+ images, multi-processing might be efficient
in detecting the duplicate images from the dataset.

II. LITERATURE REVIEW

[1] Proposes a method for evaluating perceptual picture
quality that uses a range of known aspects of the human visual
system to calculate the numeric visibility of mistakes
(differences) between a deteriorated image and the original
image. We offer an alternative complementary paradigm for
quality evaluation based on the deterioration of structural
information, based on the notion that human visual ability is
highly adapted for obtaining structural information from a
scene. We build a Structural Similarity Index as an illustration
of this notion, demonstrating its promise with a set of intuitive
examples and comparisons to both subjective evaluations and
state-of-the-art objective approaches on a database of photos
compressed using JPEG and JPEG2000.

[2] For picture registration, a similarity measure based on
values from their respective Fourier Transforms is presented.
The method generates signatures based on image content
rather than image annotation and hence does not require
human intervention. It computes the final rank for measuring
similarity using both the real and complex components of the
FFT. Any reliable method must precisely represent all objects
in a picture, and different strategies may be required
depending on the size of the image data. This paper gives an
overview on how to use the Open-CV library to allow for the
creation of a rating scheme for finding the similarity and
further introducing a comparison metric based on the

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 248

intersection bounds of a covariance matrix of 2 images being
compared with normalized Magnitude and Phase spectrum
values. Using known methods of picture histogram
comparison, sample findings on a test collection are supplied
along with data. This strategy is particularly beneficial in
photographs with variable degrees of brightness, according to
the results.

[3] Introduces a method for edge identification in the image
based on OpenCV with computer vision and image processing
algorithms and algorithms for determining the exact number
of copper cores in the microwire. To begin, we photograph the
wire's interior structure with a high-resolution camera.
Second, we implement picture pre-processing using OpenCV
image processing methods. Finally, because morphological
opening and shutting processes blur image borders, we
employ them to segment images. Finally, contour tracking is
used to determine the exact amount of copper cores.
Experiments using Borland C++ Builder 6.0 reveal that
OpenCV-based picture edge detection methods are
straightforward, have a high level of code integration, and
have a high level of image edge positioning accuracy.

[4] On astronomical data processing, proposes parallel

processing techniques for multicore processors. Astronomers
who prefer Python as their scripting language and utilized
PyRAF/IRAF for data processing are the target audience.
Three issues of varying difficulty were analyzed on three
distinct types of multicore processors to show the benefits of
undergoing parallelizing data processing activities in terms of
execution time. The parallel code can be implemented rather
easily thanks to Python's native multiprocessing module. The
3 multiprocessing approaches Pool/Map, Process/Queue,
and Parallel Python were also compared.

[5] The paper states about the popularity of Python among
numeric groups, because of its easy-to-use number-crunching
modules such as [NumPy], [SciPy], [Dask], [Numba], and
others.
To use all of the available CPU cores, these modules often use
multi-threading for efficient multi-core parallelism. However,
when utilized jointly in a single application, their threads can
interfere with one another, resulting in overhead and
inefficiency.

[6] Presents a revolutionary robotics middleware and
programming environment that is deeply entrenched. It runs a
multithreaded, publish-subscribe design paradigm for
microcontroller applications and provides a Unix-like
software interface. By giving a modular and standards-
oriented platform, we improve on the embedded open-source
systems. The system architecture is based on a POSIX
application programming interface and a publish-subscribe
object request broker.

[7] Proposes a framework for Image inpainting is a technique
for guessing missing pixel values in an image by combining
pixel value information from nearby pixels with prior
knowledge gained through learning the object class. We
present an agile image inpainting method that is very accurate

and is based on subspace similarity in this work. In the
learning phase, the suggested method generates the subspace
from a chunk of images related to the object class, then
estimates the null or missing pixel values of the provided
image belonging to the same object class in the inpainting step
to maximize the similarity between the image which is given
as input and the subspace.

[8] Gives specifics of picture capture, address segmentation,
and recognition, which are crucial techniques in automatic
letter sorting machines, as well as the applications of pattern
recognition technology to postal automation in China. Letter
sorting machines with pattern recognition technology are
frequently employed in mail processing centers to
mechanically sort mail. Since the 1990s, approximately 100
letter sorting devices have been implemented throughout
China. Siemens (previously AEG), NEC, Solystic (formerly
Actel-Bell), and SRI (Shanghai Research Institute of Postal
Science, China Post Group) were among the companies that
produced these machines.

[9] Proposes an approach for extracting distinguishing
invariant elements from photos that can be used to match
multiple views of the same object or scene reliably. The
features are invariant to the rotation of the image and its
scaling, and they've been shown to give reliable matching
across a long range of affine distortion, 3D perspective
change, noise addition, and lighting change. The features are
extremely distinctive in the sense that a single feature may be
accurately matched against a vast database of features from
multiple photos with a high likelihood. It also explains how to
apply these traits to object recognition. Individual features are
matched to a collection of features from known objects using
a fast nearest-neighbor technique, then a Hough transform is
used to identify clusters belonging to a single item, and
finally, a least-squares solution is used to verify consistent
posture parameters.

[10] Presents an area-level visual consistency verification
scheme for partial-duplicate search to determine whether there
is visually consistent region (VCR) pairs between images. The
possible VCRs are created by mapping the regions divided
from candidate pictures to a query image using the attributes
of the matched local features to handle the issue of identifying
partial-duplicate images from non-partial-duplicate images
following the local feature matching.

III. ALGORITHM USED

 Serial execution Algorithm

A sequential algorithm, also named a serial algorithm, is
a computer program that is run sequentially, rather than
concurrently or in parallel, from beginning to end.

Most conventional computer algorithms are sequential

algorithms, even if they aren't explicitly labeled as such
because sequential is a background assumption.

Concurrency and parallelism are two different notions in

general, although they frequently overlap (many distributed
algorithms are both concurrent and parallel), hence the term

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 249

"sequential" is used to contrast the two without specifying
which is which. If you need to distinguish between them,
utilize the opposing pairings sequential/concurrent and
serial/parallel. The term "sequential algorithm" can also apply

 PyCharm

IV. PLATFORMS USED

to a decoding technique for a convolutional code.

 Parallel execution Algorithm

In parallel programming, the divide and conquer
technique is applied. Separate and Conquer This technique
can be broken down into three sections:

Divide: This entails breaking the problem down into smaller
chunks.

Conquer: Call the subproblem recursively until the
subproblem is solved.

Combine: The Subproblem is Solved so that we may find an
answer to the problem.

Fig1-Source:https://www.studytonight.com/data-
structures/merge-sort

PyCharm is an integrated development atmosphere
(IDE) utilized in Computers for programming, specifically for
the Python language. it's developed by the Czech company
JetBrains. It helps in tasks such as code analysis, a graphical
computer program, an integrated unit tester, and further also
supports internet development with Django likewise as
knowledge Science with boa. PyCharm is cross-platform, with
Windows, macOS, and UNIX operating system versions.

 Visual Studio Code

Visual Studio Code is a free source-code editor created
by Microsoft for Windows, UNIX system, and macOS.
options embrace support for debugging, syntax lightness,
intelligent code completion, snippets, code refactoring, and
embedded stinker. Users can make amendments to the theme,
keyboard shortcuts, preferences, and install extensions that
add further practicality.

 OpenCV

OpenCV (Open source Computer Vision Library) is a
library of programming functions principally geared toward
period laptop vision. The library is cross-platform and free to
be used underneath the ASCII text file BSD license.

 Multiprocessing

Multiprocessing may be a package that supports
spawning processes using an API the same as the threading
module. Due to this, the parallel processing module permits
the technologist to fully leverage multiple processors on a
given machine. It runs on each UNIX as well as Windows.
The parallel processing module conjointly introduces APIs
that don't have analogs within the threading module.

 Threading

This module constructs higher-level threading interfaces
on high of the lower level _thread module. This module
provides low-level primitives for operating with multiple
threads (also referred to as lightweight processes or tasks)
multiple threads of management sharing their world
knowledge area. For synchronization, easy locks (also
referred to as mutexes or binary semaphores) are provided.
The threading module provides a better-to-use and higher-
level threading API designed on high of this module.

V. PROPOSED APPROACH

We have created an operating Script to observe

duplicate pictures that identify duplicate pictures recursively
using the data multiprocessing library of python. To cipher the

Similarity Index, 1st introduced by Wang et al. in their 2004
paper, Image Quality Assessment: From Error Visibility to
Structural Similarity. This technique is already enforced
within the scikit-image library for the image process.

The trick is to determine how we will verify specifically

wherever, in terms of (x, y)- coordinate location, the image

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 250

variations occur in the area unit.
In a comparison of every image, we are going to notice

the structural similarity between every image, and therefore
the formula will observe the image with 100% similarity and
take into account it as a duplicate or a copy.

check that our system has Python, OpenCV, scikit-image, and
imutils.

Serial formula Vs Parallel formula

1. Sequential
 Compare 2 pictures by their RGB values and notice image

similarity victimization cv2 library consecutive.

2. Multiple-Processors
 Compare 2 pictures by their RGB values and notice image

similarity victimization cv2 library by spawning processes
victimization data processing library API.

3. Threading
 By forwarding each comparison to a different thread, you

may compare two images based on their RGB values and
detect image similarity using the cv2 library.

Multithreading on the C-Python interpreter does not

support full multi-core execution. Python does, however,
include a Threading library.

So, what's the point of utilizing the library if we can't

(allegedly) leverage many cores? Many programs, especially
those involving network programming or data input/output
(I/O), are network- or I/O-bound.

This indicates that the Python interpreter is waiting for

the outcome of a function call that manipulates data from a
"remote" source, such as a network address or a hard disk.

Reading from local memory or a CPU cache is far faster
than this.

As a result, if several data sources are being visited, one

way to speed up such code is to create a thread for each data
item that needs to be retrieved.

Consider a Python script that scrapes a large number of

web URLs. Given that each URL will have a download time
that exceeds the computer's CPU processing power, a single-
threaded approach will be heavily I/O bound.

Time of execution and CPU consumption for sequential,

multi-processing, and multi-threading are compared and
visualization is created by examining and evaluating all of the
above ways.

The script can install multiple data sources in parallel

and collect the results after each installation by creating a new
thread for each installed resource.

This means that each subsequent download is not

waiting on the download of earlier web pages. In this case, the

program is now bound by the bandwidth limitations of the
client/server(s) instead. The same is the case for searching an
image directory.

For Smaller Sample Thread works better but on the

creation of too many threads then comes context switch in
play which acts as a barrier.

But Creating a Thread is a cheap process when creating

a limited number of threads as they all are sharing the same
resources and hence quite faster than Multiple Processing at
that time.

Multiple Processors have their resource bucket, they are

GIL safe and can work parallelly because of this reason with
an increase in data they worked better than threading.

VI. ARCHITECTURE / BLOCK DIAGRAM

Most Image quality assessment techniques rely on

quantifying errors between a reference and a sample image.

 A common metric is to quantify the difference in the
values of each of the corresponding pixels between the
sample and the reference images (By using, for example,
Mean Squared Error).

 The Human visual system is highly capable of identifying
structural knowledge from a scene and hence identifying
the minute and minuscule differences between the
information extracted from a reference and a sample scene.
Hence, a measurement that mirrors this behavior will
perform better on tasks that involve finding the difference
between a sample and a reference image.

The Structural Similarity Index (SSIM) metric extracts 3

key features from an image:

1. Luminance
2. Contrast
3. Structure

Fig 2: The Structural Similarity Measurement System.
Source: https://www.cns.nyu.edu/pub/eero/wang03-

reprint.pdf

The comparison between the two images is performed
based on these 3 features.

This system calculates the Structural Similarity Index
between 2 given images which is a value between -1 and +1.

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 251

A value of +1 indicates that the 2 given images are
very similar or the same while a value of -1 indicates the 2
given images are very different. Often these values are
adjusted to be in the range [0, 1], where the extremes hold
the same meaning.

Luminance: Luminance is measured by averaging over all the

 given
below

Fig 3: Where xi is the ith pixel value of

the image x. N is the total number of
pixel values.

Source:https://www.cns.nyu.edu/pub/eer
/wang03-reprint.pdf

Contrast: It is measured by taking the standard deviation
(square root of variance) of all the pixel values. It is denoted by

 (sigma) and represented by the formula below,

Fig4-Source: https://www.cns.nyu.edu/pub/eero/wang03-
reprint.pdf

Structure: The structural comparison is performed using a
consolidated formula (more on that later), but in essence, we
divide the input signal by its standard deviation, resulting in a
result with unit standard deviation, allowing for a more robust
comparison.

Fig5-Source: https://www.cns.nyu.edu/pub/eero/wang03-
reprint.pdf

VII. RESULT

DETECT DUPLICATE IMAGES VIA SINGLE AND MULTI-
PROCESSING

Fig 6 Generating duplicate images and the similarity

percentage

Time is taken for single-core execution: --

33.2 sec

Fig 7 Generating duplicate images and the similarity
percentage

Time is taken for multi-process and multi-thread

execution: --11.6 sec which is far less than that of single-
core execution

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 251

Fig8 : Source:https://www.jesusdaily.com/can-you-spot-the-
difference-in-these-two-mona-lisa-pictures-there-are-4-total

CPU USAGE

Fig 9: Thread Number analysis where the x-axis is Image
count and the y-axis is Time in seconds

Fig 10: Duplicate detection in single-core execution where the
x-axis is Image count and the y-axis is Time in seconds

Fig 11: Duplicate detection in multi-thread execution where
the x-axis is Image count and the y-axis is Time in seconds

Fig 12: Duplicate detection in multi-thread execution where
the x-axis is Image count and the y-axis is Time in seconds

Here we are having this pattern because each core had

an equal amount of work divided, now they all merging their
chunked worked output which is creating this wave-like
pattern.

It is observable this line graph can be broken down into

chunks of the group of 8 cores generating output together for
their particular work.

We can clearly observe here that the Time Taken for

Single Core, Single Threaded applications increase
exponentially with Time.

But for Multiprocessing and Multithreading, it increases

with a little slope value.

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 252

Fig 13: Duplicate detection in all 3 execution where the x- axis
is Image count and the y-axis is Time in seconds

An addition to the observation is the fact that
Multiprocessing Library is beating the thread as data is
increased this is because Multiprocessing is resource
extensive and so takes higher time to start its processing but
then it processes the data like a charm whereas Thread have
interrupts which are continuously degrading the performance
of the application and it is not able to perform any better.

 Here we see that serial execution of the processes takes up
exponential time to process the code while on the other hand
multithreading and multiprocessing both take up very little
time for the execution.

Another thing that we found is that multiprocessing works

slowly at first because the generation of threads is faster than
the generation of processors but later on since every processor
has its own GIL so parallelization is observed in a real-time
scenario.

HOW IS CPU INFLUENCED?

 CPU Utilization becomes 88% for both Multiprocessing

and Multithreading (depends upon the Hardware
sometimes a 100%) .

 CPU utilization remains lower and around 26% which is
normal for Single Processing and Single-Threaded
application.

Fig 14: Analyzing the CPU usage in MultiProcessing

Fig 15: Analyzing the CPU usage in Single core Processing

VIII. CONCLUSION

The use of Threading is enough and more suited in
-

intensive, Both Multiprocessing and Multithreading have
similar performance in I/O bound operations.

Since most online servers provide single-core only so

threaded apps are more used but for Research purposes, we
have needed more computation power and parallel execution
with less complication, and there comes Multiple Processors
in to rescue.

IX. REFERENCES

[1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli,

E. P. (2004). Image quality assessment: from error
visibility to structural similarity. IEEE transactions on
image processing, 13(4), 600-612.

[2] Narayanan, S., & Thirivikraman, P. K. (2015). Image
similarity using Fourier transform. Journal Impact
Factor, 6(2), 29-37.

[3] Xie, G., & Lu, W. (2013). Image Edge Detection Based
On Opencv. International Journal of Electronics and
Electrical Engineering, 1(2), 104-6.

[4] Singh, N., Browne, L. M., & Butler, R. (2013). Parallel
astronomical data processing with Python: Recipes for
multicore machines. Astronomy and Computing, 2, 1
10.

[5] Malakhov, A. (2016, July). Composable multi-
threading for Python libraries. In Proceedings of the
Python in Science Conferences.

[6] Meier, L., Honegger, D., & Pollefeys, M. (2015, May).
PX4: A node-based multithreaded open source robotics
framework for deeply embedded platforms. In 2015
IEEE international conference on robotics and
automation (ICRA) (pp. 6235-6240). IEEE.

[7] g using similarity of subspace

Volume 6, Issue 7, July 2021 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

IJISRT21JUL487 www.ijisrt.com 253

& Aoki, T.
[8] Y. Lu, X. Tu, S. Lu and P. S. P. Wang, "Application of

pattern recognition technology to postal automation in
China" in Pattern Recognition and Machine Vision-in
Honor and Memory of Professor King-Sun Fu.,
Copenhagen, Denmark:River Pub. Co, pp. 367-381,
Mar. 2010.

[9] D. G. Lowe, "Distinctive image features from scale-
invariant keypoints", Int. J. Comput. Vis., vol. 60, no.
2, pp. 91-110, 2004.

[10] Zhili Zhou, Q. M. Jonathan Wu, Yimin Yang, and
Xingming Sun. 2020. Region-Level Visual
Consistency Verification for Large-Scale Partial-
Duplicate Image Search. <i>ACM Trans. Multimedia
Comput. Commun. Appl.</i> 16, 2, Article 54 (June
2020), 25 pages.
DOI:https://doi.org/10.1145/3383582.

[11] A. Landge and P. Mane, "Near duplicate image
matching techniques," 2016 International Conference
on Information Communication and Embedded
Systems (ICICES), 2016, pp. 1-5, doi:
10.1109/ICICES.2016.7518863.

[12] K K, Thyagharajan & Kalaiarasi, G.. (2020). A
Review on Near-Duplicate Detection of Images using
Computer Vision Techniques. Archives of
Computational Methods in Engineering. 28.
10.1007/s11831-020-09400-w.

[13] Kumar, P.J. & Ellappan, V. & Badala, P.. (2016).
Image duplication detection. International Journal of
Pharmacy and Technology. 8. 25632-25639.

[14] Morra, Lia & Lamberti, F.. (2019). Benchmarking
unsupervised near-duplicate image detection.

[15] S. Thaiyalnayaki, J. Sasikala, R. Ponraj,Indexing near-
duplicate images in web search using minhash
algorithm,Materials Today: Proceedings,Volume 5,
Issue 1, Part 1,2018,Pages 1943-1949,ISSN 2214-
7853,https://doi.org/10.1016/j.matpr.2017.11.297.

[16] Malakhov, Anton & Liu, David & Gorshkov, Anton &
Wilmarth, Terry. (2018). Composable Multi-
Threading and Multi-Processing for Numeric
Libraries. 18-24. 10.25080/Majora-4af1f417-003.

[17] Walter Tichy, "The Multicore Transformation",
Ubiquity, Volume 2014 Issue May, May 2014. DOI:
10.1145/2618393.http://ubiquity.acm.org/article.cfm?i
d=2618393

[18] Maret, Yannick. (2007). Efficient image duplicate
detection based on image analysis. 10.5075/epfl-
thesis-3797.

[19] Y. Cao, H. Zhang, Yanyan Gao and Jun Guo, "An
efficient duplicate image detection method based on
Affine-SIFT feature," 2010 3rd IEEE International
Conference on Broadband Network and Multimedia
Technology (IC-BNMT),2010,pp.794-797,doi:
10.1109/ICBNMT.2010.5705199.

[20] Z. Zhou, Q. M. J. Wu, S. Wan, W. Sun and X. Sun,
"Integrating SIFT and CNN Feature Matching for
Partial-Duplicate Image Detection," in IEEE
Transactions on Emerging Topics in Computational
Intelligence, vol. 4, no. 5,pp.593-604,Oct. 2020, doi:
10.1109/TETCI.2019.2909936.

