
Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1138

Improving the Performance of Proof of Work-Based

Bitcoin Mining Using CUDA

Seid Mehammed

Department of Computer Science

Woldia University, Woldia, Ethiopia

Dagmawi Lemma

Department of Computer Science

Addis Abeba University, Addis Abeba, Ethiopia

Abstract:- The most dominant block chain

consensus algorithm is Proof of Work (POW). It is

an algorithm, which scales up the bitcoin

transaction well globally, by competition a

cryptographic hash function. This process is

named mining. POW-based bitcoin mining is a

well-known problem of computational and

memory-intensive algorithms.

On the other hand, the high-threaded CUDA

architecture has become with enhanced

performance for a various range of computation

and memory-intensive applications. Thus, feature

of massive number of software threads with low

overhead context switch provides high

computational throughput and hides the memory

access latencies. However, it is not effective

enough for all applications because of two

challenges that directly affect performance such

as scheduling new threads and the overhead to

startfresh kernels on the CUDA. Existing work

tried to model performance of POW-based mining

from various aspects. However, no model

considers all of these factors came together at the

same time.

The main contribution of the

articlecombination of the POW-based bitcoin-

mining algorithm with a focus on the higher-level

analysis of algorithm performance and lower-level

details about runtime configuration (thread per

block) and scheduling on CUDA.

The results indicate that the model can be

effectively use on various optimization techniques.

It’s able to get a performance, which is almost 4

times when compared to baseline serial algorithm

of POW-based mining implementation.

Keywords:- POW, CUDA, Bitcoin-Mining,

Blockchain, Thread, Thread-block.

1.
I. INTRODUCTION

Cryptocurrency is a digital asset designed to

work as a medium of exchange and it uses strong
cryptography to control the creation of additional

unit, secure business transactions, and verify the

transfer of asset [1, 2, 3]. Bitcoin is one of the

cryptocurrencies, which are decentralized electronic

payment platforms that particularly work in a peer-to-

peer (P2P) network.

Bitcoin has attracted substantial interest in recent

years from the overall public. It was the first
established cryptocurrency, with the first trade in

2009 [4].

The success of bitcoin is the result of its features

such as Security, Privacy, as users manage their data,
Immutability, and Transparency, due to distributed ledger in

a distributed cryptocurrency rather than all of the traditional

services provided by the third party[5].

Other cryptocurrencies such as Litecoin, and

Ethereum, use the Proof-of-Work (POW)-based

mining algorithm. The POW consensus protocol gets

its success to be powered by a blockchain to control

as opposed to centralized digital currency such as

Master Card, PayPal, and Visa [2].

Mining is the process of verifying all

transactions on the bitcoin blockchain in a P2P

network, and adecentralizedsecurity mechanism for

P2P digital currency[6]. A blockchain is an electronic

ledger of transactions, consisting of a series of blocks

of transactions, each block containing a block body

and block-header, within a trusted network

infrastructure[6, 7].

Each miner (node) calculates a hash over the

block header to find a nonce value. For example,

when the miner wants to add a new block to the

blockchain, all data of the bitcoin block-header are

first to perform double hashing (SHA-256) with a
concatenated nonce (32-bit length). After hashing

check if the result is less than the targets, then add the

block into the blockchain and share for everyone in

the bitcoin community (node) acknowledges the new

block. If it is not less than the target, then the nonce

is changing by a random number generator and this

keeps iterating 4 billion times sequential until finally,

the requirements are met. This technique is called

POW.

Before the invention of the Internet, the banking

system was based on manual work. With the advent

of the Internet the banking, the system is online

systems. The identity may include customer name,

account number, recipient’s details, mobile number,

and any identity card number. The details provide by

customer to perform transaction can be acquire by
hacker even when there is security in place and their

accounts can be hacked. Hence, online banking has

become a major security concern even though there

are many advantages.

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1139

To overcome this drawback, the idea of the

digital currency known as cryptocurrency was
introduced with bitcoin in 2009 [1]. Cryptocurrency

uses strong cryptographic algorithms to monitor

decentralize and secure cryptocurrency transactions.

Cryptocurrency is a decentralized system based

on blockchain as against the current banking system,

which is based on a central banking system using

centralized digital currency. Through POW-based

mining, all financial crypto currency transactions are

public.

One of the major challenges to the existing

algorithm of POW-based mining is highly

computational and memory-intensive algorithm. Due

to that, the mining process takes a lot of time for

block creation. As a result, a process for one block
creation takes a time of average 10 minutes,

transaction throughput of around 3–10 TPS, and the

transaction confirmation takes time [1, 6, 8].

Compared to a traditional payment systems, it
supports small number of transactions per second, for

example, PayPal and Visa can process up to several

thousand transactions per second[9, 10].

Thus, this algorithm is not fit for large networks
that require vast numbers of transaction

processes[11]. However, the POW-based bitcoin

network as a decentralized payment platform, by

itself cannot support the global market anytime

soon[12]. Therefore, it needs to further enhance the

performance of POW-based mining algorithms.High-

performance implementation of POW-based mining

algorithms is very useful in constructing fast and

secure virtual payment system[9].

Existing improvement of POW-based mining by

using special hardware FPGA and ASIC

implementations were introduce. However, FPGA or

ASIC mining compromises the democratization and

decentralization of the bitcoin-network and its

expensive hardware cost.

On the other hand, CUDA enables developers to

speed up performance for computing and memory-

intensive applications, but not effective enough for

all applications because of two challenge that directly
affect performance. First, there is no opportunity for

the scheduler to schedule new threads when possible.

Second, there is overhead to start new kernel on the

CUDA.

Researchers designseveral performance models

that detention memory hierarchy for several types of

high-threaded CUDA architecture such as, global

memory, shared memory, and many cores, to

enhance the performance of many applications.

However, here is narrow literature study this relation

on high threaded CUDA architecture with POW-

based mining algorithm[13].

Therefore, no highly threaded CUDA

architecture permits an unlimited number of threads,
and different Thread_Per_Block counts result in a

POW-based bitcoin mining of diversified

performance.

The research tries to answer the following
questions

What are the current statesof the art performance of

POW-based mining algorithms and CUDA?

 How does the difference of thread and thread-block
counts effect the scheduling and the real

performance of bitcoin mining?

 How can the actual performance be predict for

POW-based mining on runtime configurations?

Therefore, we focus on the bridging of the

POW-based mining algorithm and high-threaded

CUDA platform the tradeoffs concerning general

optimal performance.

Study over-all problem of algorithm first to

understand, analyze, and finally optimize the

algorithm performance on high-threaded CUDA

platform and programmers to develop a solution with

limited drawbacks and high performance. This is a

wide problem, not all type of application obvious

similar performance pattern on high-threaded CUDA

platform.

From the theoretical side, we can effectively use

the number of Instruction Level Parallelism (ILP),

Data Level Parallelism (DLP), and Thread Level

Parallelism (TLP) to measure runtime assuming

instructions take constant time.

For the problem side, need to identify input

parameters and variable parameters in POW-based

mining algorithm. For architecture side, need to

identify fixed memory-sizes and configuration

parameters (threads, thread-blocks, and warp) for
CUDA platform.

A. Related work

Several research directions are propose to enhance

the performance of POW-based bitcoin mining in a
public blockchain. In this paper, we have categorized

related work done so far based on the performance

enhancement approach: unrolling loop for SHA-256,

pipeline, and another different approach, etc.

a) Unrolling loop of hash SHA-256

We summarize the work, which is, conducted

on the well-known unrolling loop to improve the

performance of SHA-256.

According to [14, 15] use unrolled architectures

to reduce the number of clock cycles required to

perform SHA-256 hash computation by

implementing multiple rounds of SHA-256

compression function using combinational logic on

POW-based bitcoin scenario. This architecture helps

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1140

improves throughput by optimizing info

dependencies involve within the message
compression function. As a trade-off, unrolling the

SHA-256 architecture comes at the value of a

decrease within clock-frequency and rise within the

area complexity.

 In this article, a new structure using the above-

mentioned two optimization methods is design for the

SHA-256 algorithm in bitcoin-mining scenario,

which improves its computational performance.

b) Pipelining

The goal of pipelining is to optimize the critical

path. Pipelined SHA-256 architectures [16, 17, 18]

use registers to break the long path of the

computation of the working variable A within the

message compression function. Pipelining is not as

easy to realize because the SHA-256 compression

function is design difficult. Useful with the small

number of processors, but does not scale up to fit

with more processors. One reason pipeline chain does

not attain sufficient length.

c) Other Different Approach

L. Dadda et al. [18] proposed an optimization

method using the carry-save adder; This approach

increases the throughput but this architecture requires
additional control circuitry for additional register.

The authors of [16] used combination of

techniques such as carry_save_adders and pipeline to

increase the performance of SHA-256. Unrolled
techniques and pipelines increase throughput of

SHA-256. Next, constant inputs and difficulty

requirements in the process of bitcoin mining is used

to reduce number of cycles per SHA-256 operation.

We propose an optimization strategy to

accelerate the performance memory_intensive POW-

algorithm.

Courtois et al. [14] explore mining optimizations

from an algorithmic perspective to summarized the

optimization methods for the SHA-256 algorithm in

bitcoin mining applications, but they demand higher

area consumption, which increases the mining cost.

d) CUDA performance

Yudanov et al. observed that the serialization

effect of thread divergence hurts the performance of

CUDA applications noticeably [19]. The authors

track down and resolved the source of branch

divergence in a simulation of neural networks

application and achieved 9X, speedup compare to a

baseline CPU implementation.

Baghsorkhi et al. propose an analytical model to

predict the performance of a CUDA kernel executing

on a generic CUDA architecture based on its

compute-to-memory-access ratio, coalesced memory

accesses, thread divergence ratio, and shared memory

usage of each thread block [20].

These four criteria are sufficient to determine the

performance of a CUDA application when its
memory footprint is smaller than CUDA memory

size.

Liu et al. [21] define a general performance

model that predicts the performance of a bio-
sequence database scanning application fair

precisely.

More recently, Kim et al. [22] design tool to

estimation CUDA-memory performance by
assembling performance critical constraints.

II. SUMMARY

There are no works on the performance of POW-

based mining that integrates with the CUDA

platform.

Therefore, to improve the performance of POW-

based bitcoin mining using CUDA, there is a need to

design new data access techniques that consider

multiple constraints. According to the literature, our

solution is intend to use better memory access, ILP,

and TLP for better performance we proposed for
POW-based bitcoin mining using CUDA.

A. The Proposed Solution

a) Overview

Performance on highly threaded CUDA
architectures depends on the correctness of the

essential algorithm, the effect of the memory sub-

system on performance, and the effectiveness of

scheduling.

A program runs efficiently only when it launches

a large number of threads while not incurring too

much memory traffic. Interactions

betweenparameters, as well as impact of the

algorithm performance, are often, not sound

understood.

In this paper, we utilized performance prediction

on many-threaded CUDA architecture to improve an

integrated framework merging both analyzing

algorithm efficiency and calculating the achieving

running time based on number of parallelism,

occupancy, and latency hiding. We consider memory

difficulty determine by the number of memory data

transfers from slow-memory to fast-memory as a

critical performance parameter.

At the similar time, seeking large thread count

per Thread_Block does not always offer high

occupancy on Streaming multiprocessors(SM) and

cannot assure good performance.

Compared to corresponding multi-threaded CPU

baseline implementations, POW-based bitcoin

mining executes up to 4 times faster.

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1141

b) Proposed solution Architecture

Our model is useful in several aspects:-

 It can recognize the performance constraint of a

POW-based mining algorithm, and decide the

algorithm is more likeperformance bound by

memory access or by computation.

 Kernel executions launch a grid of thread blocks,

each of which consists of several threads. Problems

are decomposed, processed on the two-level thread

hierarchy, by specifying the grid-size (number of

thread-BlocksPerKernel) and block size (number of

Threads_Per_Block) for better scheduling frequent

access nonce data.

 It helps detect performance enhancement

opportunities of two dimension, scheduling, and

algorithm design.

 High occupancy,present CUDA scheduler greedily

dispatches thread_blocks depending on the resource

usage of every thread_block.

In this section, we describe and present

architecture of our proposed system on a generic

CUDA architecture. In section, Coalescence within

a data_block is discuss. In section , we describe

Improving Data Transfer Performance using ILP and

TLP.

In this section, we formalizestructure of POW-

based mining in context of the bitcoin

cryptocurrency.

Algorithm 1: POW-based mining algorithm

In Algorithm 1, the input of the Hash2 is the initial

hash value of H0 with concatenating nonce 1024-bit

message. The 1024-bit message split into two 512-bit

message; then SHA-2560 calculates a value of the

first 512-bit message of bitcoin-header, and SHA-

2561 computes a hash value of the final H2 512-bit

message.

Due to H2 requirement, 256-bit hashloutput from

SHA-2561 must be compressinto the final 256-bit

hash by using SHA-2562. In the bitcoin mining

process, the final H2 256-bit hash output from SHA-

2562 is compared to the target value.

This process is repeating 232 times until the hash

of SHA-2562not meets the target requirement.

Therefore, the 512-bits of data input precompute by

SHA-2560 function does not the change frequently

because it does not include the 32-bit nonce attribute.

On the contrary, the 512bits of data input to

SHA-2561 are updating frequently because of the

changing value of the nonce attribute. Whenever the

output of SHA-2561 changes, SHA-2562 also, needs

recomputed and access their values up to 232 times.

As a result, memory-intensive POW-based

mining algorithm depends on global_memory

bandwidth and latency. Reducing the computing

overhead of the hash2 function, while maintaining the

necessary data dependencies, the compute overhead

of the hash2function (Line 5, on Algorithm 1) should

be, minimized.

In this paper, we proposed block data access

framework (DAFW) on CUDA platform to improve

the performance of POW-based bitcoin mining.

Furthermore, we focus on improving POW-based

bitcoin mining algorithm performance using CUDA

platform by presenting two techniques.

 Using memory access pattern and

 On Thread-levels, andInstruction-level parallelism(TLPs

and ILPs)

To helpsperformance tasks, we discuss Block
Data Access frameworks (DAFW) on the CUDA

platform.

Besides, categories of Block Data Access

Frameworks (DAFW) are Warp_by_Warp and
Block_by_Block. The underlying framework code

forming this framework has already been testing,

works correctly, and achieves high throughput.

To support our Block DAFW in the context of

POW-based mining algorithm, we implement CUDA

kernels by using C++ outline generic programming

and better performance. Block DAFW provided

testingon both ILP and TLP via parameters ‹nWork,

nWarpss›.

The nWork parameter permits to

experimentation with ILP by changing the number of

data element per thread in our case 32-bit nonce data

per thread.

nWarps parameter permits us to experiment with

TLP by changing the number of threads per thread-

block.

 Block DAFW

The Block DAFW is based on simple data

transfer kernel. For ILP, we use software pipelining

on multiple work-items (32-bit nonce data) per-

thread per data-block the amount of work per thread

is specify via a work_per_thread(nWork) parameter.

For TLP, we support vast thread parallelism via

dynamic CTA layout for fixed 1Dsblock_size and

2Ds grid.

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1142

By revolving the Block DAFW into C++,

outlinekernels a program-writer canexperimentation

with diverse configuration (Work_Per_Thread, CTA

layout) byalteringoutlineconstraints. With Block

DAFW, data is divide into m set size blocks and

organize into 2Ds and 1Dsgrid; depending on the
number of thread and blocks need to wholly cover all

data using Layout 1Dsfunction.

 First, choose afixed_sizethread_block, fixed-size

Work_Per_Thread (nWork), and work out the

corresponding fixed-size data_block.

 Second partition data array into m fixed-size data blocks

fully covers data-range [0, n).

 Third, launch one thread_block_Per_data-block.

 Forth inside each kernel, map each thread-block onto its

matchingdata_block

 Fifth each thread within thread_block process its assigned
work (transforms ‹copies› input into output)

Fig.1: Proposed system architecture

As showed in Fig.1, to make Block DAFW more

efficient, we choose fixed thread_block_size (TBS)

=nWarps*WarpSizes, and fixed amount of

Work_Per_Thread(nWork), typically in the range

(1...4). From it, the fixed data block size (DBS) can
be computed as DBS=TBS*nWork. Once,

data_block_size is known, a number of data-blocks

(m) need to cover the entire data set can be computed

as 𝑛s/𝐷B𝑆.

One_to_one mappings between thread and

data_block makes it relatively easy to compute where

the matching data_block starts as block Offs=

(bids*DBS). For 1Ds grid, the blockID(bid) can be

computed as bids=blockIdx.x and for a 2D grid, bids=

(blockIdx.y*gridDim.x) + blockIdx.x.

To get higher performance with Block DAFW,

we use two main techniques.

Coalescence within data block and amortizing cost

across multiple work item.

 Coalescence with the data block
DAFW mainly deals with the well-

organizedmapping of thread-blocks onto data-blocks.

We use two DAFW techniques such as

Warp_by_Warp, and Block_by_Block that provision
coalescence for high throughput.

Block_by_Block DAFW is straightforward the

CUDA provisions coalescence allocating one

Thread_Per_Data element consecutively and then
striding (strides=TBS) to next row of data within

data_block as needed.

Warp_by_Warp DAFW supports coalescence

assigns each threads to warps its fixed_size sub
chunk of work within data_block and moves each

thread_warp to its starting offset, and then strides

(strides=WarpSizes) through the sub chunk of work

warp by warp.

As we show in Fig. 2 the left and right columns

represent Block_by_Block, and Warp_by_Warp

DAFW respectively.

Fig. 2: Data Access Frameworks

As shown in Fig. 2, we focus the differences

between Block_by_Block and Warp_by_Warp

DAFW. For fixed_sizethread_block of size(TBS),

each thread is responsible for processing and data

transfer exactly nWork_work-items (nonce value)

which totally covers DBS data elements in current

data block.

Block_by_Block memory access pattern stride

through data_block cooperatively by all threads in

thread_block. In general, Block_by_Block DAFW a

vertical access pattern on a 2Ds block, where the

number of rows=nWork and the length of each data

rows=TBS.

Each thread within thread_block is assigned a

single column and then strides to the next assigned

row of data elements (stride=TBS) in

block_by_block manner.

Warp_by_Warp DAF Wallocates a fixed-size

data sub-chunk of work to each thread_warp, with

Work_Per Warpwork out as WPW =n Works*Warp

Sizes.

In general, Warp_by_Warp DAFWls a

horizontal access pattern on 2Ds block layout, where

a number of data rows is equal to number of

warps_per thread-block work out as

nRowss=TBS/Warp Sizes, and length of each data

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1143

row is equal to WPW. For each thread_warp is

allocate one data row and strides through its row one
data_warp at a time (strides=WarpSizese=32).

Specific experiment generating these traces used

two warps(TBS=64) and 6 work-item Per Thread

(nWorks=6) per data-block. Each warp is represent
by 8 small plus sign per warp.

Block_by_Block DAFW (middle_row,

left_panel), ping-pong as two warps stride through

their respective six data element; Warp by-Warp
BAFW (middle row, right panel) has more serialtrace

layout for each warp assign sub-chunk of work.

We suggest Warp_by_Warp DAFW use for two

reasons:

 Data access pattern is somewhatmore localized,

which can outcome in uncertain growingin I/Os

throughput 1-3% faster over Block_by_Block

DAFW despite additional setup and indexing

overhead.

 Each warp proceeds on its assign sub-chunk of work

freeof any other warp in thread_block. With

Block_by_Block DAFW, each warp wait for all

warps to complete transferring data before useful

processing work can proceed.

 Improving Data Transfer Performance using ILP

and TLP

The existing CUDA data transfer kernel had

poor performance.
 Growing TLP:- Increasing the Thread_Per_Block

 We discuss using our Block DAFW for data

transfer primitive.

 Growing ILP:- Increasing the work done per-

thread

 Loop Unrolling: -Classic programming technique

to handle multiple work-items in CPU serial code.

Each work-item (nonce value) requires registers

to trace execution state; we adviseunrolling data in

small batches of 2-8 work items to avoid exceeding

number of registers and spilling into local memory.

Processing more work-itemPerThread is the CUDA

kernel equivalent of loop unrolling.

Automatic Loop Unrolling: - The CUDA

compiler supports automatic Loop unrolling

example(as we shown in Algorithm line occurring

before source line #7 for an example) #pragma unroll

4 directive (in lighter-grey) around a looping

structure requests CUDA to automatically unroll the
wrap code (k=4) times.

Algorithm 2: Automatic loop unrolling

Manual Loop Unrolling:Main idea here

instructions for ithwork_itemstall, like instructions
from other k-1 work-items can be schedule as

replacement to hide stall and keep each processing

core busy do useful work.

More independent work items increase register

pressure limits occupancy so, we experiment with

manual unrolling (upto 16 work-items) in-group (2,

4, 8, and16).

As we show in Algorithm 1, the lighter grey if

(nWork >=?) { … } Wrappersare elide away at

compile time by CUDA compiler. If (nWorks>=)

{…} wrappers are resolve at compile time. Unroll

code is harder to read, and understand. Besides, up.to

k× as many generated instructions also, use k× as

many registers. Growing ILP is not only way to hide

stall.

TLP techniques work better Growing TLP: -

Another way to hide stall uses TLP to recycle

instructions from other independent and concurrent

warps of execution. Fermi supports upto 48 warps

(1538threads) per SM and Kepler supports upto 64

warps (2048threads) per SM. In this section, we show

how increasing number of threads per ThreadBlock
can growth throughput Upto 218GB/s (2.6× faster

than existing data transfer.

Algorithm 1: Manual loop unrolling

One cause data transfer in existing CUDA poor

throughput codes naively not take benefit of vast

parallelism via TLP available on CUDA platform.

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1144

Data transfer only launch with CTA outline of only

32 threads (TBS=32) achieving an occupancy of
16.6% (8/48) and 25% (16/64.0) on CUDA version

580 and Titan respectively.

Programmer can directly specify number of

threads_per_block as part of CTA.

 Conclusion

Use both ILPs and TLPs for better performance

For better ILP To:-

 Support multiple work_item_per_thread
(nnWork=4).

 Reduce register pressure, batch work-items in

groups of four.

 Suggest manual over automatic loop unroll.

 2-4 work-item per thread are a good starting

point.

 For better TLP

 For block size, 128 threads is a good starting

point (TBSs=128)

 Growing ILP result up.to 1.2 times faster

performance

 Prefer growing TLP over growing ILP

 Growing TLPs result upto 2.95 times faster

performance

Approaches of orthogonal, growth both TLP and

ILP for best performance

 Setup pointers once per thread as an

alternative of once per work-item

 Register faster than shared memory, which is
faster than global_memory, which is faster

than CPU RAM.

 Understand CUDAMemory for better

performance

For better performance, cluster similar memory

access together in a small batch of k work-item (k

loads followed by k stores).

A. Experiment and Evaluation Result

a) Introduction

Mainly natures of bitcoin block-header data

collect by generating existing bitcoin client tool and

the parallelism results of the experiment are discuss.

b) Experimental Procedure

The following subsections discuss the activities

and steps to judge POW-based bitcoin mining using

CUDA.

 Data Collection

The experimentation of POW-Based Bitcoin

Mining begins with generating bitcoin block-

header from different bitcoin client browser. We

have collected from block to take bitcoin block-

header of data for experimentation.

 Tools and Programming Languages

Our baseline hardware infrastructure consists of

3.8 GHz Intel Xeon with 8 hardware threads and

10MB of combined L2/L3 cache, connected to

16GB of quad-channel memory clock at
1850MHz. All CUDA kernels were executing on

a GTX 680 CUDA with 1,536 computing cores,

each running at 1020MHz, and 2GB of CUDA

memory.

All CUDA-based applications were implement

using CUDA and GPGPU driver installed on 64-

bit Ubuntu 18 Linux with kernel 5.

c) Evaluation result
To measure the performance of our

implementation and compare it against on baseline

implementations we use the following speed-up

formula. Assume n size of Nonce value, and metric is

measure by counting the number of clock cycle it

takes for all n threads.

Finally, the number of hash per second is calculate as

n/s.

 Num Hashess = GDIMX*i

Where Hash rate new is the hash rate of the

optimized POW-based bitcoin mining on CUDA
implementation, while Hash rate existing is un-

optimized.

III. EXECUTION OPTIMIZATIONS EFFECTS ON POW-

BASED MINING ALGORITHM

To measure impact of optimization describe on

the performance of our CUDA implementation, we

have set up the following experiments:-

 Baseline: - This carrying out, which does not use
any optimization at all moreover, all variable are

stored in Global_Memory and distributionof

memory is doing automatically.

 Constant memory: -Variables that do not change

during execution, such as SHA-256 constants, are

now store in constant_memory. Other variable is

still stored in local memory.

SHA-256 makes use of a 64-word constant array k

that is derived from fractional-portions of first 64

prime[23]. A word from k is reference with stride-1

in each round of SHA-256 compression function,

which is compute twice for each thread. Previously,

these constants were stored in local memory as an

array unique to each thread that leads to too much

unnecessarily long memory accessed. Switch
constant-memory to store k result in single largest

optimization for CUDA algorithm shooting hash-

rate up.to 1.5 times improvement. After this

optimization, gains have only been incremental.

 Shared_memory with bank conflicts: -Changing

variables such as the input buffer and the resulting

hashes are now stored in the fast-shared memory.

 Shared_memory without bank conflicts:- The

distribution of shared_memory is no

bank_conflicts occur. With stride access pattern,

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1145

every thread can access its bank such that warp

serializes are keep to a minimum, which increases
performance.

 Optimized SHA-256:- Depending on nonce

length, only the necessary calculations are

performed

 Constant without bank_conflicts and

shared_memory:- Now changing and non-

changing variables preserved in shared and

constant_memory respectively.

 Optimize double SHA-256 with shared and

constant_memory:- Number VI, optimized

version of SHA-256 Compression_Function is use
as well.

To make fair comparison, the configuration

parameters are equal. The number of thread blocks is

set 128 and the number of threads per block is 64. As
we show in Figure 4.1, performance increase per

optimization in black combine optimizations are

show in gray. The figure shows us that

shared_memory and SHA-256 compression function

optimization achieve speed up of three and two times

the baseline respectively.

Finally, Fig. 3:shows that storing variables in the

shared memory. Therefore, bank conflicts and warp

serialize should be avoided.

Scheduling Configuration optimizations

Fig. 3: Execute on CUDA platform.

As we show, Fig. 3:the influence of the block

size on the performance while the grid size is set 224.
With the optimal implementation and the

Threads_Per_Block set to 128, to launch an

exhaustive computation with our maximum

performance of approximately 800000 hashes per

second.

Block sizes up to 224 used well but did not

achieve more performance than 128 threads per

block. With block sizes higher than 32 kernel refused

to run.

Influence of number of threads_per_block on the

performance of our graph shows a behavior
depending on the number of threads per-block

configured; we get stair-like graphs. Multiple warp

size(32) and half warp size(16) result in more optimal

performance.

The shape of curves represent of speedup achievable

relative to fixed serial running time.

Fig. 0: Number of threads per-block

IV. CONCLUSION

Our work has presented performance analysis for

POW-based mining Algorithm Bridge both together

with highly threaded CUDA architecture.

High-level theoretical analysis performance of

POW-based bitcoin mining algorithm, particularly

studying to memory difficulty and compute such that

whether the algorithm is memory-bound or compute-

bound in standings of how fit the memory latencies

are hidden by huge number of threads.

We also develop a framework for mapping them

by block DAFW scheduling (‹nWarps, nWork (nonce

value) ›) mechanisms. Combining memory

complexity and computation is critical performance

measurement. These results compare to show that our

model is to-

 Classify performance restriction of a POW-based mining

algorithm

 Discover and decrease the design and configuration space

for tuning kernel execution on CUDA. A kernel execution

launches grid of thread blocks, each of which consists of

several threads. Problems are decompose, process on two-

level thread hierarchy, by identifying the number of thread-

Blocks Per Kernel, and a number of Threads_Per_Block for

better scheduling frequent access nonce data.

 Identify performance enhancement opportunities of two

dimension, scheduling, and POW-based mining algorithm
design for any application. Suboptimal configuration of

kernel launch can delay the performance.

 High occupancy, present CUDA scheduler dispatches

thread-blocks in greedy way depending on resource usage

of every thread block.

Our work only works on offline data stored

generates bitcoin block-headers data using JSON

RPC provided by the bitcoind. Complete experiments

testing with the Bitcoin network will future work.

http://www.ijisrt.com/

Volume 6, Issue 12, December – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21DEC657 www.ijisrt.com 1146

Therefore, we recommend that the proposed

approaches can be test in a real Bitcoin-network such
a way that network is speed is taken into account.

REFERENCES

[1.] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash
system, 2008. bitcoin. org/bitcoin. pdf", Accessed on,

pp. 11-18, 2018.

[2.] A. Back, "Hashcash-a denial of service counter-

measure", sunsite.icm.edu.pl, 2002.

[3.] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse,

"Bitcoin-ng: A scalable blockchain protocol", 2016, pp.

45-59.

[4.] S. J. A. o. Nakamoto, "Bitcoin: A peer-to-peer

electronic cash system, 2008. bitcoin. org/bitcoin. pdf",

pp. 11-18, Oct, 2018.

[5.] A. Anjum, M. Sporny, and A. Sill, "Blockchain
standards for compliance and trust", IEEE Cloud

Computing, vol. 4, no. 4, pp. 84-90 2017.

[6.] A. M. Antonopoulos. "Mastering Bitcoin: Programming

the open blockchain". " O'Reilly Media, Inc.", 2017.

[7.] S. Nakamoto and A. Bitcoin, "A peer-to-peer electronic

cash system", Bitcoin.–URL: https://bitcoin. org/bitcoin.

pdf, 2008.

[8.] B. S. Reddy and G. V. V. Sharma, "Optimal

Transaction Throughput in Proof-of-Work Based

Blockchain Networks", 2019, vol. 28, p. 6.

[9.] I. G. Varsha, J. N. Babu, and G. J. Puneeth, "Survey on

Blockchain: Backbone of Cryptocurrency", academia,
2020.

[10.] Y. Sompolinsky and A. Zohar, "Secure high-rate

transaction processing in bitcoin", 2015: Springer, pp.

507-527. ,Y. Sompolinsky and A. Zohar, "Secure high-

rate transaction processing in bitcoin", in International

Conference on Financial Cryptography and Data

Security, 2015: Springer, pp. 507-527.

[11.] M. Salimitari and M. Chatterjee, "A survey on

consensus protocols in blockchain for iot networks",

arXiv preprint arXiv:1809.05613, 2018,S. J. Alsunaidi

and F. A. Alhaidari, "A survey of consensus algorithms
for blockchain technology", 2019: IEEE, pp. 1-6

[12.] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H.

Ritzdorf, and S. Capkun, "On the security and

performance of proof of work blockchains", 2016, pp. 3-

16. ,K. Croman et al., "On scaling decentralized

blockchains", 2016: Springer, pp. 106-125.

[13.] L. Marziale, G. G. Richard Iii, and V. Roussev,

"Massive threading: Using GPUs to increase the

performance of digital forensics tools", digital

investigation, vol. 4, pp. 73-81, 2007.

[14.] N. T. Courtois, M. Grajek, and R. Naik, "Optimizing

sha256 in bitcoin mining", 2014: Springer, pp. 131-144.
[15.] Y. K. Lee, H. Chan, and I. Verbauwhede, "Iteration

bound analysis and throughput optimum architecture of

SHA-256 (384,512) for hardware implementations", in

International Workshop on Information Security

Applications, 2007: Springer, pp. 102-114.

[16.] M. Macchetti and L. Dadda, "Quasi-pipelined hash

circuits", in 17th IEEE Symposium on Computer

Arithmetic (ARITH'05), 2005: IEEE, pp. 222-229.

[17.] A. Satoh and T. J. I. Inoue, "ASIC-hardware-focused

comparison for hash functions MD5, RIPEMD-160, and
SHS", Elsevier, vol. 40, no. 1, pp. 3-10, 2007.

[18.] L. Dadda, M. Macchetti, and J. Owen, "An ASIC design

for a high speed implementation of the hash function

SHA-256 (384, 512)", in Proceedings of the 14th ACM

Great Lakes symposium on VLSI, 2004, pp. 421-425.

[19.] D. Yudanov, M. Shaaban, R. Melton, and L. Reznik,

"GPU-based simulation of spiking neural networks with

real-time performance & high accuracy", in The 2010

international joint conference on neural networks

(IJCNN), 2010: IEEE, pp. 1-8.

[20.] D. A. Alcantara et al., "Real-time parallel hashing on

the GPU," in ACM SIGGRAPH Asia 2009 papers, pp.
1-9, 2009.

[21.] W. Liu, W. Muller-Wittig, and B. Schmidt,

"Performance predictions for general-purpose

computation on GPUs", in 2007 International

Conference on Parallel Processing (ICPP 2007), 2007:

IEEE, pp. 50-50.

[22.] Y. Kim and A. Shrivastava, "Cumapz: a tool to analyze

memory access patterns in cuda", in 2011 48th

ACM/EDAC/IEEE Design Automation Conference

(DAC), 2011: IEEE, pp. 128-133.

[23.] I. Ahmad and A. S. Das, "Hardware implementation
analysis of SHA-256 and SHA-512 algorithms on

FPGAs", Computers & Electrical Engineering, vol. 31,

no. 6, pp. 345-360 2005.

http://www.ijisrt.com/
https://bitcoin/

	1.
	 Shared_memory with bank conflicts: -Changing variables such as the input buffer and the resulting hashes are now stored in the fast-shared memory.
	 Shared_memory without bank conflicts:- The distribution of shared_memory is no bank_conflicts occur. With stride access pattern, every thread can access its bank such that warp serializes are keep to a minimum, which increases performance.
	 Optimized SHA-256:- Depending on nonce length, only the necessary calculations are performed
	 Constant without bank_conflicts and shared_memory:- Now changing and non-changing variables preserved in shared and constant_memory respectively.
	 Optimize double SHA-256 with shared and constant_memory:- Number VI, optimized version of SHA-256 Compression_Function is use as well.

