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Abstract:-  In this paper, we propose a new single-factor 

filled function only where this new filled function is not 

only easily decomposable but also uniformly 

approximated by a continuously differentiable function. 

Therefore, a thumbnail of the proposed filled function can 

be obtained simply by using the local optimization 

algorithm. Then, the obtained minimizer is taken as a 

prime number to reduce the objective function, and by 

repeating this process, a better miniature is found. And 

we will finally have a global minimizer. Through the 

numerical results of the proposed new filled function, it 

becomes clear to us the effectiveness of this method. 
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I. INTRODUCTION 
 

Most practical problems in applied sciences of various 

fields are presented as global improvement problems. Many 

researchers competed in the field of global improvement, 

where many recent contributions were made to solving  global 

improvement problems, either theoretically or by using 

computers. The field of global optimization is fundamentally 

concerned with  the properties and calculations of multimodal 

capacities. That is, existing techniques can be ordered into two 

strategies: deterministic strategies (see, e.g.,[1]) and 

probabilistic techniques [2], where the first method is a model 
for filled function methods (FFM) [3], the path method [4], the 

tunnel method [5] and the covering method [5], while the 

second method is a model for the assembly method [5], the 

methods mentioned in [6], the simulated annealing method 

[7], and genetic algorithms [7]. Moreover, some hybrid 

deterministic and probabilistic algorithms (see, e.g., [8]) have 

been proposed to solve practical problems. The great 

challenge of the global optimization problem is that there are 

multiple local minimums for the general non-normative 

objective function. Thus, there are two main problems for 

global improvement. Finding a way to find out a minimum 

thumbnail of the target function from a known local 
thumbnail. The other is during out how to converge and, 

accordingly, designing stopping criteria. FFM was first 

suggested by Ge in [9], which was used to solve the global 

miniaturization of the unconstrained multiextremum function. 

Subsequently, many researchers have made valuable efforts to 

improve this method (see, e.g.,  [10, 3, 11]). In any case, 

conventional filled functions are frequently undefined (see, 

e.g., [12]), need more than one modifiable parameter (see, e.g.,  

[3]), or contain unseemly terms Conditional (see, e.g.,  [3]). 

To beat these weaknesses, some parameter functions (see, e.g.,  

[13]) and some without parameter functions (see, e.g., [14]) 

are proposed; nevertheless, they are typically unclear, 

regularly cousing extra local miniaturization. Some 

ceaselessly differentiable filled functions with a single  
parameter (see, e.g.,  [14]) have been proposed; however, the 

parameter is not difficult to tune. To manage this issue, 

another class of functions, filled with a solitary operand, which 

can be reliably recognized and effectively tuned by 

parameters, is proposed in this paper. In light of this, another 

single operand filled function strategy has been proposed; the 

algorithm is mathematical soundness. Also, the proposed 

strategy can be utilized to tackle the multi-layered issueIn this 

article, we investigate the following objective functions: 

                    𝑚𝑖𝑛{𝑓(𝑥) ∶  𝑥 ∈  𝑅𝑛}                               (1) 

 

where 𝑓(𝑥) is a twice continuously differentiable 

function on 𝑅𝑛and 𝜴 = ∏ [𝑙𝑖 , 𝑢𝑖] ⊂ 𝑅𝑛𝑛
𝑖=1 . Generally, we 

assume that 𝑓(𝑥) has only a finite number of minimizers and 

the set of minimizers is denoted as 𝐿𝑚 = {𝑥∗
𝑖|𝑖 =

1,2, … , 𝐼} 𝑖𝑛 𝜴 (𝐼 is the number of minimizers of 𝑓(𝑥)).  

 

The following are some essential principles and 

notations: 

𝑥1
∗: A local minimizer of 𝑓(𝑥) on 𝜴 found so far;  

𝑆1: Set 𝑆1 = {𝑥|𝑓(𝑥) ≥ 𝑓(𝑥1
∗), 𝑥 ∈ 𝜴\{𝑥1

∗}};  

𝑆2: Set 𝑆2 = {𝑥 ∈ 𝑖𝑛𝑡𝜴|𝑓(𝑥) < 𝑓(𝑥1
∗)}; 

m: A constant satisfying𝑚 =

𝑚𝑖𝑛
𝑖,𝑗∈{1,2,…,𝐼},𝑓(𝑥𝑖

∗)≠𝑓(𝑥𝑗
∗) 

|𝑓(𝑥𝑖
∗) − 𝑓(𝑥𝑗

∗)|;  

M: A constant satisfying 𝑀 = max
𝑥,𝑦∈𝜴

‖𝑥 −  𝑦‖. 

Assumption. The local minimizers of the function 

f(x) lie within the interior of  𝜴. 

 

Definition 1:The basin 𝐵(𝑥1
∗) [15] of a function at 𝑥1

∗ is a 

connected domain that envelopes the point 𝑥1
∗, where the 

descent sequences of the function  start from any point 𝑥 and 

converge to 𝑥1
∗ , while the minimization sequences of the 

function 𝑓(𝑥) start from any point outside of 𝐵(𝑥1
∗) do not. 

It is obvious that if 𝑥 ∈ 𝐵(𝑥1
∗), then 𝑓(𝑥) > 𝑓(𝑥1

∗). If there is 

another minimizer 𝑥2
∗ of 𝑓(𝑥) and 𝑓(𝑥2

∗) < or ≥ 𝑓(𝑥2
∗), then 

the basin 𝐵(𝑥2
∗) of 𝑓(𝑥) at 𝑥2

∗ is said to be lower (or higher) 

than 𝐵(𝑥1
∗) of 𝑓(𝑥) at 𝑥1

∗. 

 

Definition 2: A function 𝐺(𝑥) is supposed to be a filled 

function of 𝑓(𝑥)at the point 𝑥1
∗, assuming that it satisfies the 

accompanying properties: 
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 𝑥1
∗ is a strict local maximizer of 𝐺(𝑥) over 𝜴; 

 𝐺(𝑥) has no stationary point in the set 𝑆1 − {𝑥1
∗}; 

 If the set 𝑆2 is not empty, then there exists a point 𝑥′ ∈
𝑆2 such that 𝑥′ is a local minimizer of 𝐺(𝑥). 

 

II. A NEW FILLED FUNCTION AND ITS 

PROPERTIES 

 

Suppose that we find a local minimizer 𝑥1
∗ of 𝑓(𝑥).  

Now let us study the following function of problem (1):  
𝐺(𝑥, 𝑥1

∗, 𝑎) = (tan(min{𝑓(𝑥) − 𝑓(𝑥1
∗), 0}) − a) × ‖𝑥 −

𝑥1
∗‖2                                                                  (2) 

 
where 𝑎 is a parameter. The proof of the next 

theorems will demonstrate that expression (2) represents 
a filled function that fulfills definition 2. We will apply to 
our newly filled function all the properties and theorems 
contained in [16].  
 
Theorem 1: Suppose 𝑥1

∗ is a local minimizer of 𝑓(𝑥), and 
𝐺(𝑥, 𝑥1

∗, 𝑎) is defined by (2), then 𝑥1
∗ is a strict local 

maximizer of 𝐺(𝑥, 𝑥1
∗, 𝑎) for all 𝑎 > 0. 

 
Proof. Since 𝑥1

∗ is a local minimizer of 𝑓(𝑥), there exists a 
neighborhood 𝑁(𝑥1

∗, 𝜖) ⊂ 𝑖𝑛𝑡𝜴  of 𝑥1
∗, 𝜖 > 0 such that 

𝑓(𝑥) ≥ 𝑓(𝑥1
∗) for all 𝑥 ∈ 𝑁(𝑥1

∗, 𝜖). For all 𝑥 ∈ 𝑁(𝑥1
∗, 𝜖), 𝑥 ≠

𝑥1
∗ one has 

𝐺(𝑥, 𝑥1
∗, 𝑎) = −𝑎 × ‖𝑥 − 𝑥1

∗‖2 < 0  
                                 = 𝐺(𝑥1

∗ , 𝑥1
∗, 𝑎)                       (3) 

 
Thus, 𝑥1

∗ is a strict local maximizer of 𝐺(𝑥, 𝑥1
∗, 𝑎).      

 

Theorem 2: Suppose 𝑥1
∗ is a local minimizer of 𝑓(𝑥), 𝑥 is a 

point in set 𝑆1, then 𝑥 is not a stationary point of 𝐺(𝑥, 𝑥1
∗, 𝑎) 

for all 𝑎 > 0. 
Proof. Due to 𝑥 ∈ 𝑆1, one has 𝑓(𝑥) ≥ 𝑓(𝑥1

∗) and  𝑥 ≠ 𝑥1
∗, so 

𝐺(𝑥, 𝑥1
∗, 𝑎) = −𝑎 × ‖𝑥 − 𝑥1

∗‖2 
∇𝐺(𝑥, 𝑥1

∗, 𝑎) = −2𝑎 × (𝑥 − 𝑥1
∗) ≠ 0 

 
That is 𝑥 is not a stationary point of 𝐹𝐹(𝑥, 𝑥1

∗, 𝑎).                                     
 

Theorem 3: Suppose 𝑥1
∗ is a local minimizer of 𝑓(𝑥) but not 

a global minimizer of 𝑓(𝑥), which means that  𝑆2 is not 
empty, then there exists a point 𝑥′ ∈ 𝑆2 such that 𝑥′ is a 
local minimizer of 𝐺(𝑥, 𝑥1

∗, 𝑎) when 0 < 𝑎 <  𝑚. 
 
Proof. Since 𝑥1

∗ is a local minimizer of 𝑓(𝑥), and 𝑥1
∗ is not a 

global minimizer of 𝑓(𝑥), there exists another local minimizer 

𝑥2
∗ of 𝑓(𝑥) such that 𝑓(𝑥2

∗) < 𝑓(𝑥1
∗). 

 

By the definition of 𝑚 and continuity of 𝑓(𝑥), there exists a 

point �̅� in rectangular area [𝑥1
∗, 𝑥2

∗], such that 

 

                     𝑓(𝑥1
∗) − 𝑓(�̅�) = 𝑎                  (4)     

So 

 𝐺(𝑥1
∗, 𝑥1

∗, 𝑎) = 𝐺(�̅�, 𝑥1
∗ , 𝑎)                (5) 

 

By 𝑥1
∗ is a local minimizer of 𝑓(𝑥), there exists a point �̅� ∈

𝐵(𝑥1
∗) ∩ [𝑥1

∗, 𝑥2
∗] such that 𝐺(�̅�, 𝑥1

∗, 𝑎) < 0. Then, there exists 

a point 𝑥′  ∈ [𝑥1
∗, 𝑥2

∗] = {𝑥 ∈ ℝ∗| min{|𝑥1
∗|𝑖 , |𝑥2

∗|𝑗} ≤ 𝑥𝑖 ≤

max
 

{|𝑥1
∗|𝑖 , |𝑥2

∗|𝑗}} ⊂ 𝑖𝑛𝑡𝜴 which is a minimizer of  

𝐺(𝑥, 𝑥1
∗, 𝑎).  

 

By Theorem 2, we have 𝑓(𝑥′) < 𝑓(𝑥1
∗). We know that of 

theories 1, 2, and 3 when there is a better local minimizer 𝑥2
∗ 

of 𝑓(𝑥)  than 𝑥1
∗, there is a point 𝑥′ and a miniature for 

𝐺(𝑥, 𝑥1
∗, 𝑎). Located in the basement. This means that if we 

reduce 𝑓(𝑥) using the initial point 𝑥′, it will find a better 

minimizer for 𝑓(𝑥). 
 

We can do it in the event that 𝑥1
∗ is definitely not a global 

minimizer for the meaningful function, then, at that point, 

𝐺(𝑥, 𝑥1
∗, 𝑎) is non-differentiable sooner or later in Ω. Gradient 

algorithms cannot be utilized for neighbourhood 

improvement for the minimizer of 𝐺(𝑥, 𝑥1
∗ , 𝑎). Here a 

smoothing strategy to approximate 𝐺(𝑥, 𝑥1
∗, 𝑎) is utilized here 

as follows. 

 

Let                                  

 𝐺𝑏(𝑥) = [−𝑎 +
1

𝑏
log(1 + 𝑒tan(𝑓(𝑥)−𝑓(𝑥1

∗)))] × ‖𝑥 − 𝑥1
∗‖2

                                                           (6) 

 

where b is a positive parameter. Clearly 𝐺𝑏(𝑥) It is 

differentiable. And , because 

𝐺𝑏(𝑥) − 𝐺(𝑥, 𝑥1
∗ , 𝑎) = [

1

𝑏
log(1𝑒tan(𝑓(𝑥)−𝑓(𝑥1

∗)))-

 tan(min{𝑓(𝑥) − 𝑓(𝑥1
∗), 0})] × ‖𝑥 − 𝑥1

∗‖2 

  ≥ [
1

𝑏
log(2𝑒tan(min {𝑓(𝑥)−𝑓(𝑥1

∗),0}))-0] × ‖𝑥 −

𝑥1
∗‖2= 

log 2

𝑏
‖𝑥 − 𝑥1

∗‖2, 

we have the inequality 

0 ≤ 𝐺𝑏(𝑥) − 𝐺(𝑥, 𝑥1
∗, 𝑎) ≤

log 2

𝑏
‖𝑥 − 𝑥1

∗‖2   

                                      ≤
log 2

𝑏
𝐴2,                          (7) 

 

holds. We can see from the previous discussion that 

when b becomes larger, 𝐺𝑏(𝑥)  gradually converges to 

𝐺(𝑥, 𝑥1
∗, 𝑎) . As a result, the minimization of 𝐺(𝑥, 𝑥1

∗ , 𝑎) could 

be substituted by the minimization of 𝐺(𝑥, 𝑥1
∗, 𝑎) by choosing 

a suitably large  b. 

                                 𝑚𝑖𝑛
 𝑥∈Ω

𝐺𝑏(𝑥)                             (8) 

 

To produce a rather more accurate minimizer of 

𝐺(𝑥, 𝑥1
∗, 𝑎), a should be large enough in 𝐺𝑏(𝑥) by solving 

𝐺𝑏(𝑥). Furthermore, if this value of b is too large, the function 

values 𝐺𝑏(𝑥) will be overwritten. To avoid this, a contraction 

factor r is inserted into 𝐺𝑏(𝑥) to provide a fixed and 

sufficiently big b (eg, b=10𝛼 A,3 ≤ 𝛼 ≤  8) that ensures that 

the 𝐺𝑏(𝑥)  correctly approximates 𝐺(𝑥, 𝑥1
∗, 𝑎). 

 

Thus,  to avoid numerical computing difficulties, a large 

b might be used. Therefore, the expression 𝐺𝑏(𝑥) may be 

expressed as 

𝐺𝑏(𝑥) = [−𝑎 +
1

𝑏
× ‖𝑥 − 𝑥1

∗‖ × log(1 +

                𝑒tan(𝑓(𝑥)−𝑓(𝑥1
∗)))] × ‖𝑥 − 𝑥1

∗‖2       (9)                   

 
By doing so, current flaws can be addressed.                            

 

http://www.ijisrt.com/


Volume 6, Issue 12, December – 2021                                   International Journal of  Innovative Science and Research Technology                                                 

                                                                                                                                      ISSN No:-2456-2165 

 

IJISRT21DEC436                                                                www.ijisrt.com                                                                        1200 

III. THE ALGORITHM OF THE PROPOSED 

METHOD 
 

From the study of the previous theorems, we can 

propose a new filled function algorithm to find an overall 

minimization of f(x). Next, we can give some explanations of 

this algorithm. We detail it as follows: 

 

Step 1: Select an initial value 𝑎 =  𝑎0, a lower bound of 𝑎, 

(denoted by ℎ), sufficiently large 𝑏. Directions 𝑑 =

(𝑐𝑜𝑠𝑖, 𝑠𝑖𝑛𝑖), 𝑖 = 2 ∗
𝑝𝑖

100
: 2 ∗

𝑝𝑖

100
: 2 ∗  𝑝𝑖. Set 𝑘 ∶=  1. 

 

Step 2: Minimize 𝑓(𝑥) at  𝑥𝑘 ∈ Ω and determine 𝑥𝑘
∗  . 

 

𝑥𝑘 = 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ(@(𝑥)𝑜𝑏𝑗(𝑥),  𝑥0) 

 

Step 3: Define the function 

𝐺𝑏(𝑥) = [−𝑎 +
1

𝑏
× ‖𝑥 − 𝑥1

∗‖ × log(1 + 𝑒tan(𝑓(𝑥)−𝑓(𝑥1
∗)))]

× ‖𝑥 − 𝑥1
∗‖2, 

𝑥𝑘  =  𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ(@(𝑥)𝑓𝑓(𝑥, 𝑎. 𝑥𝑘 , 𝑏), 𝑥𝑘). 
 

Step 4: for 𝑖 = 2 ∗
𝑝𝑖

100
: 2 ∗

𝑝𝑖

100
∶ 2 ∗ 𝑝𝑖 set 𝑥𝑘 = 𝑥𝑘

∗ + 𝑒𝑝 ∗ 𝑑 

then proceed to Step5; Othewise, proceed to Step 6. 

 

Step 5: The point 𝑥 is used as an initial point to minimization 

of  𝐺𝑏(𝑥), assuming that the minimization arrangements of 

𝐺𝑏(𝑥) go out of Ω, set 𝑥0 = 𝑥0
∗ + 𝑒𝑝 and return  to Step 4; 

Othewise, a minimizer 𝑥 of  𝐺𝑏(𝑥) can be determined in Ω 

and set 𝑥𝑘 = 𝑥 
′ 𝑎 = 𝑎0, 𝑘 =  𝑘 +  1 and return to Step 2. 

 

Step 6: In the case  ℎ ≤  𝑒𝑝 , the algorithm is terminated and 

𝑥𝑘
∗  is chosen as the global minimizer of 𝑓(𝑥); Else, proceed  

to Step 3; 

 

We must first supply basic additional details on the 

above-mentioned filled function algorithm before beginning 

the experiments. 

 

1. To minimize 𝑓(𝑥) and 𝐺𝑏(𝑥), we must first choose a local 
optimization approach. The trust region approach is used 

in the suggested algorithm. 

2.  In Step 4, Step 4 requires a smaller ep to pick properly; 
in our technique, the ep is chosen to ensure that 
‖𝐺𝑏(𝑥)‖ is larger than a threshold. 

 (e.g., take the threshold as 10−3). 

3.   Step 5 shows that when a local minimizer 𝑥 of 𝐺𝑏(𝑥) is 
discovered in Ω  and with 𝑓(𝑥 

′) < 𝑓(𝑥𝑘
∗ ), a superior 

minimizer of f(x) would be obtained using 𝑥 as the 
starting point to minimize 𝑓(𝑥). 

 

 

 

 

 

 

 

 

IV. NUMERICAL EXPERIMENTS 

 

Problem 1: (Three- hump back camel function) 

𝑚𝑖𝑛 𝑓(𝑥) = 2𝑥1
2 − 1.05𝑥1

4 +
1

6
𝑥1

6 − 𝑥1𝑥2 + 𝑥2
2 

s.t   −3 ≤ 𝑥1 ≤ 3, −3 ≤ 𝑥2 ≤ 3 

 

 
Fig 1: Three-hump back camel function 

 

The global minimum solution is 𝑥 ∗ =  (0,0)𝑇 . 

 

Problem 2: (Six-hump back camel function) 

 

𝑚𝑖𝑛 𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 − 𝑥1 𝑥2 − 4𝑥2
2 + 4𝑥2

4 

s.t    −3 ≤ 𝑥1 ≤ 3, −3 ≤ 𝑥2 ≤ 3 

 

 
Fig 2: Six-hump back camel function 

 

Where 𝑥 ∗ =       (−0.0989, −0.7127)𝑇  𝑜𝑟 𝑥 ∗ =
(0.0989,0.7127)𝑇 . 
 

Problem 3: (Treccani function) 

 

𝑚𝑖𝑛 𝑓(𝑥) = 𝑥1
4 + 4𝑥1

3 + 4𝑥1
2 + 𝑥2

2  
s.t    −3 ≤ 𝑥1 ≤ 3, −3 ≤ 𝑥2 ≤ 3 

 
The global minimum solution are 𝑥 ∗ =  (0,0)𝑇and 𝑥 ∗ =
 (−2,0)𝑇. 

 

 

http://www.ijisrt.com/


Volume 6, Issue 12, December – 2021                                   International Journal of  Innovative Science and Research Technology                                                 

                                                                                                                                      ISSN No:-2456-2165 

 

IJISRT21DEC436                                                                www.ijisrt.com                                                                        1201 

 
            Fig 3: Treccani Function 

 

Problem 4: (The Goldstein price function) 
 

𝑚𝑖𝑛𝑓(𝑥)  =  (1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 −

14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)) × (30 + (2𝑥1 − 3𝑥2)2(18 −

 32𝑥1  +  12𝑥1
2  +  48𝑥2  −  36𝑥1𝑥2  +  27𝑥2

2))  

 

 

 
Fig 4: the Goldstein price function 

 

This function has 4 local minimizers in the domain −2 ≤
𝑥𝑖  ≤ 2, 𝑖 = 1,2,3,4, … but only one global minimizer 𝑥 ∗ =
(0, −1)𝑇 . 

 

Problem 5: (Banana function) 

 

𝑚𝑖𝑛 𝑓(𝑥) = 100 × (𝑥2
 − 𝑥1

2)2+(1 − 𝑥1
 )2 

s.t    −3 ≤ 𝑥1 ≤ 3, −3 ≤ 𝑥2 ≤ 3 
 

 

 

 

 

Fig 5: Banana function 

 

Problem 6: (Two-Dimensional Shubert function) 

 

min 𝑓(𝑥) = {∑ 𝑖𝑐𝑜𝑠[(𝑖 + 1)𝑥1] + 𝑖5
𝑖=1 }{∑ 𝑖𝑐𝑜𝑠[(𝑖 +5

𝑖=1

1)𝑥2] + 𝑖}  

s.t    0 ≤ 𝑥1 ≤ 10, 0 ≤  𝑥2 ≤ 10 

 

 
Fig 6: Two-Dimensional Shubert function 

 
There are 760 minimizers in all for this function,  and 

𝑓(𝑥 ∗) = −186.7309. 
 

Problem 7: (Two-Dimensional function) 

 

𝑚𝑖𝑛𝑓(𝑥) = [1 − 2𝑥2 + 𝑐𝑠𝑖𝑛(4𝜋𝑥2) − 𝑥1
 ]2 +[𝑥2  

− 0.5 𝑠𝑖𝑛(2𝜋𝑥1)]2 

s.t    0 ≤ 𝑥1 ≤ 10, −10 ≤ 𝑥2 ≤ 0 

 

 
Fig 7: Two-Dimensional function 

 

http://www.ijisrt.com/


Volume 6, Issue 12, December – 2021                                   International Journal of  Innovative Science and Research Technology                                                 

                                                                                                                                      ISSN No:-2456-2165 

 

IJISRT21DEC436                                                                www.ijisrt.com                                                                        1202 

where 𝑐 = 0.2, 0.5, 0.05. and  𝑓(𝑥 ∗) = 0 for all c. Tables 1 and 2 provide the results obtained of all of the 

experiments. 
 

Table 1: Computational results for problems with initial point 𝑥0 

 

 

 

 

 

 

 

 

 
 

 

 

Table 2: The results obtained by our algorithm 

 

 

 

 

 

 

 
 

 

 

 

 

     

In Tables 1 and 2, we will observe that our algorithm is 

powerful and impacted by the underlying value of a and the 

determination of a lower bound of a. The bigger introductory 

worth of a, the less nearby minimizer will be found, and 

furthermore the lower calculation cost will be; in the interim, 

assuming the function worth of the current neighbourhood 
minimizer is shut to that of the worldwide minimizer, then, at 

that point, the adequately little lower bound of an is essential, 

while a moderately enormous starting worth of a will cause 

expanding of the number of cycles. Hence, the underlying 

worth of an and lower bound of an are should have been 

chosen precisely. The determination of a lower bound of a 

guarantees the exactness of the worldwide minimizer, so that 

the adequately little lower bound of an and suitable little 

introductory an should be chosen.The following symbols are 

used in this paper: 

𝑥0 The starting point. 

𝑥∗ The local minimizer. 

𝑓(𝑥∗) The function value of the local minimizer. 

𝑓𝑒 Total number of  functions evaluations. 

𝑓𝑚 The ten-run average of such best value. 

𝑓𝑏 Best value out of ten runs. 

 

V. CONCLUSION 
 

The filled function technique is a thoughtful and 

successful strategy for generally speaking improvement. 

There are a few issues and imperfections in the present filled 

functions; for instance, some portions of these filled functions 

cannot be recognized, some of them contain more than one 

setting parameter, some contain fill terms conditions, etc. 

These deformities might prompt disappointment or trouble in 

the calculation in tracking down the ideal arrangement 

worldwide. To address this deficiency, another filled function 

is proposed in this paper. Albeit the new filled function 

cannot be demonstrated at certain places, it tends to be 

approximated consistently by a differentiable constant 
function. The basic lack in proximal function can be 

overcome with basic treatment. The adequacy of the proposed 

filled function strategy has been demonstrated by 

mathematical investigations on some optimization test issues. 
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