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Abstract:- Quantum mechanics emerged as a result of the 

scientific enquiry into the wave nature of light during the 

mid-17th century under the contribution of eminent 

scientists including Christian Huygens, Robert Hooke 

and James Maxwell. This was followed by the Young’s 

Double Slit experiment [1] and coining of the term 

Quanta (small energy packets) by Max Planck in the 

Planck’s hypothesis for emission and absorption of 

radiation or energy. Several other contributions ranging 

from Wien’s law and Maxwell’s equations of 

Electromagnetic radiation to Schrödinger’s [3] and Klein-

Gordon’s equations [4] have resulted in the continuous 

development of this seemingly reality defying field of 

modern science. 
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As with most of the other fields in science, quantum 

mechanics has infiltrated other fields of scientific interest 

including but not limited to nano-materials, possible 

teleportation and not to mention, quantum computing 

[12]. The main focus of this chapter revolves around the 

optimization techniques, their quantum implementations 

and how they can be made more efficient by introducing 

a slight amount of fractional order calculus which 

introduces the long term memory required for faster 

convergence to optimal values. Most of the concepts 

required to understand this text have been explained in 

the subsequent sections. Readers should feel free to refer 

to the reference/bibliography section for further reading. 
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I. INTRODUCTION 

 

The main concern of engineering problems has always 

been about maximizing yields or minimizing losses. As 

science and technology develop, the complexity of 

optimization problems increases. Engineering problems in 

the areas of energy conversion, conservation and 
distribution, mechanical design, logistics, all the way to the 

reload of nuclear reactors often find in themselves an 

inherent need for optimization techniques . 

 

The world of quantum mechanics is known for its 

unforgiving use of seemingly complex terminologies and 

mathematical equations, mostly defining concepts which 

seem to defy our perception of reality. The following section 

introduces the reader to a few of the algorithms [23] and 

underlying mathematical theorems which can prove useful 

for understanding the application of Fractional order 

differential equations ( or fractional order calculus in general 
) and the concept behind Optimization Techniques , 

particularly the Fractional Order Quantum Particle Swarm 

Optimization technique (FQPSO) [27]. 

 

II. PARTICLE SWARM OPTIMIZATION [27] 

 

The Particle Swarm Optimization (PSO) algorithm [6] 

is a metaheuristic algorithm, originally proposed by 

Kennedy and Eberhart, which is capable of solving various 

complex engineering problems using the power of swarm 

intelligence 
Pseudo Code: 

 

1. Initialising each particle 

1.1. Initialise each 𝑋𝑖 randomly 

1.2. Initialize each 𝑉𝑖 randomly 

1.3. Evaluate the fitness of each 𝑋𝑖 or : 𝑓(𝑋𝑖) 

1.4. Initialising 𝑝𝑏𝑒𝑠𝑡𝑖 with a copy of 𝑋𝑖 

2. Initialize global best or 𝑔𝑏𝑒𝑠𝑡 with a copy of 𝑋𝑖 
3. Repeat the following until stopping criterion achieved 

: 

3.1. For every particle 𝑖: 
3.1.1. Update 𝑉𝑖

𝑡  and 𝑋𝑖
𝑡 according to the formulas : 

𝑉𝑖𝑗
𝑡+1 = 𝑤𝑉𝑖𝑗

𝑡 + 𝑐1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 −  𝑋𝑖𝑗
𝑡 ) +  𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗
𝑡 ) 

And,                   𝑋𝑖𝑗
𝑡+1 =  𝑋𝑖𝑗

𝑡 +  𝑉𝑖𝑗
𝑡+1 
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3.1.2. Evaluate the fitness 𝑓(𝑋𝑖
𝑡) 

3.1.3. 𝑝𝑏𝑒𝑠𝑡𝑖  𝑋𝑖
𝑡 if 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖) < 𝑓(𝑋𝑖

𝑡) 

3.1.4. 𝑔𝑏𝑒𝑠𝑡  𝑋𝑖
𝑡 if 𝑓(𝑔𝑏𝑒𝑠𝑡) < 𝑓(𝑋𝑖

𝑡) 

* ( Please refer to the following section for the 

meanings of the symbols used in the above pseudo-code. The 

following section provides an in depth analysis of the PSO 

algorithm [22] and its working ) The fitness function (also 

referred to as the objective function)  
𝑓(𝑋) ∶  𝑅𝐷 → 𝑅 

 

On a D-dimensional domain 𝑅𝐷 represents the function 

which we are interested in minimising. 

 

Particle Swarm Optimization [6] was originally 

intended to be used for simulating social behaviour such as 

the movement of organisms in swarms, for example: a flock 

of birds or a school of fishes. New and more complex 
forms/variants of the PSO algorithm [23] are being 

continuously developed for improving [18] the 

optimizational efficiency of these algorithms. The new 

variants include: improved genetic algorithms and 

Accelerated Particle Swarm Optimization Techniques. 

 

Since the Quantum Particle Swarm Optimization 

Algorithm [8] as well as the Fractional Quantum Particle 

Swarm Optimization Algorithm [9] are both based on solid 

foundations of the PSO concept, we shall be dedicating an 

entire section only to contribute to our understanding of the 
fundamentals of the PSO technique. 

 

A. Attractors 

The local attractor (better known as the private guide) 

[7] of a particle can be defined as the best position with 

respect to 𝑓  (the objective function) that particle has 

encountered so far. The swarm [26] also shares a standard 

memory also called the worldwide attractor (better referred to 

as the local guide), which is the best position any of the 

particles within the entire population has found so far. The 

movement of the entire swarm is hence governed by the local 
attractor [7] , the global attractor and the movement 

equations (which shall be discussed in the upcoming section). 

 

B. Understanding the Particle Swarm Optimization 

Algorithm 

There are several approaches that one could perform to 

maximize or minimize a function in order to find the 

optimum value. Though there exists a wide range of 

optimization algorithms that could be used, there is not a 

particular one that is considered to be the best for any case. 

An optimization method that works fine for one problem 
might not be so for another one; it depends on several 

features, for example, whether the function is concave or 

convex, and whether it is differentiable or not. To solve such 

a problem, an individual must understand various 

optimization techniques so as to select the algorithm that best 

fits on the optimization problems parameters. 

 

 

 

 

One such optimization algorithm is Particle Swarm 

Optimization (PSO) [6] which was developed in 1995 by the 

authors Kennedy and Eberhart, inspired by the behaviour of 

social organisms in groups, such as bird and fish schooling 

or ant colonies. This algorithm mimics the interaction 

between members of a particular group to share information. 

It has been applied to various areas of optimization and in 

combination with other existing algorithms. This algorithm 
performs the look for the optimal solution through agents, 

also mentioned as particles, whose trajectories are adjusted 

by a deterministic and a stochastic component. Each and 

every particle is influenced by its ‘best’ (local attractor [7]) 

achieved position and the group’s ‘best’ position (global 

attractor), but tends to move randomly. 

 

This algorithm also has a competitive performance 

with the Evolutionary Programming (EP) [29], Genetic 

Algorithm (GA), Evolution Strategies (ES), Genetic 

Programming (GP) and many other classic algorithms [23]. 
  

The goal of an optimization problem is to determine a 

variable represented by a vector 𝑋 = [𝑥1 𝑥2 𝑥3 …  𝑥𝑛] , that 

minimizes or maximizes depending on the proposed 

optimization formulation of the function 𝑓(𝑥). The variable 

vector 𝑋 is known as position vector; this vector represents a 

variable model and it is 𝑛  dimensional vector, where 𝑛 

represents the number of variables that may be determined 

in a problem, that is, the latitude and therefore the longitude 
within the problem of determining some extent to land by a 

flock. On the other hand, the function 𝑓(𝑥) is referred to as 

the fitness or objective function, which assesses how good 

or bad a position 𝑋 is, i.e. how good a particular landing 

point a bird thinks it is after the animal finds it, evaluation of 

which is subjected to several survival criteria. 

  

Consider a swarm constituting P particles, in such a 

case we know that there exists a position vector 𝑋𝑖
𝑡 =

(𝑥𝑖1𝑥𝑖2𝑥𝑖3 … 𝑥𝑖𝑛)𝑇   and a velocity vector 𝑉𝑖
𝑡 =

(𝑣𝑖1𝑣𝑖2𝑣𝑖3 … 𝑣𝑖𝑛)𝑇  at 𝑡  iteration for each one of the  𝑖  
particle that composes it. These vectors are updated through 

the dimension  𝑗 according to the following equations: 

𝑉𝑖𝑗
𝑡+1 = 𝑤𝑉𝑖𝑗

𝑡+1 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗

𝑡 ) + 𝑐2𝑟2
𝑡(𝑔𝑏𝑒𝑠𝑡𝑗 −

𝑋𝑖𝑗
𝑡 )    Eq.(1) 

and 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑉𝑖𝑗
𝑡+1        Eq.(2) 

where 𝑖 = 1,2,3 … 𝑃 and 𝑗 = 1,2,3 … 𝑛. 

 

Eq. (1) denotes the presence of three different 

contributors to the particle’s movement in an iteration, 
giving rise to three terms which shall be further discussed. 

On the other hand, Eq. (2) updates the particle’s positions. 

The inertia weight constant represented as w is a positive 

constant value in case of classical Particle Swarm [26] 

Optimization and is important for balancing the global 

search, also referred to as exploration (in case higher values 

are set), and local search, known as exploitation (in case 

lower values are set).This is one of the main differences 

between the classical and the derived versions of PSO.
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The first term of the velocity update equation is given 

by the product between parameter w and the particle’s 

previous velocity, which is how it takes into consideration 

the particle’s previous motion while calculating the current 

one. Hence, for example, if 𝑤 = 1, the particle’s motion is 

completely influenced by its previous motion and therefore 

the particle may keep going on , in the same direction 

whereas if 0 ≤ 𝑤 < 1, a partial influence is imparted , which 

implies that a particle wanders and goes to other regions in 

the search domain. Therefore, a reduction in the inertia 

weight parameter makes the swarm explore more areas in the 

searching domain, thus enhancing the chances of finding a 

global optimum. However, using lower w values, comes with 

the price of an increased simulation time as the swarm takes a 

longer time to converge. 

 

 
Fig 1 

 

The individual cognition term, (indicated by the 2nd 

term in Eq.(1) ) , is calculated using the difference between 

the particle’s own best position, for example, 𝑝𝑏𝑒𝑠𝑡𝑖𝑗, and its 

current position 𝑋𝑖𝑗
𝑡 . One may notice that the idea behind this 

term is that as the particle gets more distant from the 𝑝𝑏𝑒𝑠𝑡𝑖𝑗 

position, the difference (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗
𝑡 )  must increase; 

therefore, this term increases, attracting the particle to its own 

best position. The parameter 𝑐1  exists as a product in this 

term while being a positive constant and an individual-

cognition parameter, helping particles to weigh the 

importance of their own previous experiences. The second 
parameter that is made up of the product of the second term 

is 𝑟1, and this is a random value parameter lying within the 

range [0,1] . This random parameter helps in avoiding 

premature convergences, thereby increasing the chances at 

finding the most likely global optima. 

 

Lastly , the third term in the equation is responsible for 

the social learning behaviour of the swarm. It makes it 

possible for all the particles in the swarm to be able to share 

the information of the best point achieved with each other , 

regardless of which particle had found it, for example, 

𝑔𝑏𝑒𝑠𝑡𝑗 . It has the same format as that of the term 

corresponding to the individual learning property of the 

swarm. Hence : (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑋𝑖𝑗
𝑡 ) is the difference that acts as 

an attraction for the particles to the best point until it is found 

at some 𝑡 iteration. In the same way , the variable 𝑐2  is a 

parameter involved in social learning , which weighs the 

importance of the global learning of the swarm while 𝑟2  

plays the exact same role as 𝑟1. 

 

 
Fig 2 

 

III. UNDERSTANDING QUANTUM COMPUTERS 

AND THE QUANTUM WORLD 

 

A. Quantum Physics 

The emergence of Quantum mechanics in the early 

1900s was mainly driven by the urge to develop a 
framework to explain nature on the nanoscopic scale of 

atoms and drive advancements in areas such as transistor 

technology, efficient or better laser systems, and more 

accurate high resolution magnetic resonance imaging. The 

merging of quantum mechanics and information theory was 

a debate in and around the 1970s but garnered little 

attention. That was until 1982, when physicist Richard 

Feynman gave a talk revolving around the fact that 

computing based on classical logic could not process 

calculations describing quantum phenomena. On the other 

hand, quantum phenomena based computing, configured to 

simulate and test other quantum phenomena, could 
theoretically act as a great solution as it would not be subject 

to the same bottlenecks as the ones faced by modern day 

classical computational systems. This application of 

quantum computing [12] eventually gave rise to the field of 

quantum simulation but failed to spark much research 

activity or interest at the time. 

 

This lack of interest in quantum computing [12] and 

research related to the field however took a turn in the year 

1994, when mathematician Peter Shor developed a quantum 

algorithm, capable of finding the prime factors of large 
numbers efficiently. The word, “efficiently” here refers to a 

time range of practical relevance, which is currently beyond 

the capability of even state-of-the-art classical algorithms. 

 

B. Quantum Computing  

The fundamental motivation behind both Quantum and 

classical computers remains the same , i.e. to help and try to 

solve problems in an efficient manner within a particular 

time frame, but at their core , the way they manipulate the 

data to derive answers is almost completely different. In the 

following parts of this section we aim to provide an 
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explanation targeting the uniqueness of quantum computing 

[12] systems by introducing the two fundamental underlying 

principles of quantum mechanics crucial for their operation 

namely : superposition and entanglement [21]. 

 

 
Fig 3 

 

C. Need for Quantum Computing 

The possibility of someday developing a quantum 

computer sophisticated and capable enough to pull off feats 

such as executing Shor's algorithm for large numbers which 

might effectively result in a revamp of currently implemented 

cryptographic tools and systems , has been one of the 
motivators for advancing the field of quantum computation. 

It is however important to understand that quantum 

computers are likely to deliver tremendous speed-ups only 

for specific types of problems which can be simulated in the 

quantum world. In other words , quantum computing [12] 

does not mean faster computers , it just means that we shall 

be able to solve specific problems , within a reasonable time-

frame compared to what would have required traditional or 

classical computers years to compute. Researchers are 

working towards enhancing their understanding of which 

problems are best suited for quantum speed-ups and focusing 
on the development of algorithms to demonstrate them. 

Scientists working in the field of quantum computing [12] 

currently involved in active research believe that quantum 

computers should be able to help immensely with problems 

related to optimization of parameters or resources , which can 

play key roles in advancements in fields ranging from 

everything from defence to financial trading. 

 

There are additional applications focused at exploiting 

qubit based systems for fields that are not related to 

computing or simulation and are active areas of research. 

Research is currently underway on two of the most prominent 
application areas or use cases of qubit based computational 

systems namely :  

 

1. Quantum Sensing and Metrology , leveraging the 

extreme sensitivity of qubits to environmental factors in 

order to realize and improve sensing capabilities beyond 

the classical shot noise limit, and  

2. Quantum Networks and Communications , which are 

thought to lead to revolutionary breakthroughs in the 

realm of  information / data sharing . 

 

D. The building blocks of Quantum Computers: Qubits 

A well known fact is that modern day computers are 

binary digital systems which use bits - or in other words a 

stream of electrical or optical pulses representing the two 

states of either 1s or 0s , highs or lows and on or off. 

Everything in the digital world ranging from our tweets and 

emails, to our credit card information ,  songs and YouTube 

videos are nothing more than long strings of these 1s and 0s. 
 

In quantum computing [12] systems the building 

blocks consist of a qubit or quantum bit which is also  the 

basic unit of quantum information - it represents the 

quantum version of the classical binary bit usually 

physically designed and working as a two-state device. The 

design or structure of a qubit essentially represents a 

somewhat similar two-state (or two-level) quantum-

mechanical system, often regarded as perhaps one of the 

simplest quantum systems having the ability to display the 

peculiarity of quantum mechanics. The similarity in 
representation of states in a qubit in comparison with a 

classical bit can be seen by taking the spin of an electron as 

an example in which the two levels can be considered as the 

two spins namely : spin up and the spin down of an electron 

; or even the polarization of a single photon in which the 

states can be considered according to whether the light has 

undergone vertical polarization or horizontal polarization. 

The generation and maintenance of stable qubits [13] poses 

huge scientific and engineering challenges. Popular Tech 

Conglomerates, such as IBM, Google [19], and Rigetti 

Computing, make use of superconducting circuits which are 

cooled down to mind cryogenic temperatures , even colder 
than that in deep space. Other systems like IonQ ( Ion 

Capture Technology ) [14] work by trapping and isolating 

individual atoms with the help of strong electromagnetic 

fields which are produced by strong superconducting 

electromagnets on  silicon chips kept inside ultra-high-

vacuum chambers. Whatever be the methods used , the end 

goal is to isolate the qubits [13] in a controlled quantum 

state. 

 

Unlike binary bits, qubits have some quirky quantum 

properties due to which a connected group of them can 
provide way more processing power than the same number 

of binary bits. The properties that enable the qubits [13] to 

exhibit such extraordinary performance are superposition 

and entanglement [21]. 

 

There exists 2 orthogonal z-basis states of a qubit 

which can be defined as follows : 

 |0⟩ 
 |1⟩ 

 

The two orthogonal x-basis states are: 

1.  |+⟩ =
|0⟩+|1⟩

√2
 

2.  |−⟩ =  
|0⟩−|1⟩

√2
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Similarly , the two orthogonal y-basis states of a qubit 

can be defined as : 

1.  |𝑅⟩ =
|0⟩+𝑖|1⟩

√2
 

2.  |𝐿⟩ =  
|0⟩−𝑖|1⟩

√2
 

 

The basis states can be visualized as points which are 

located at the opposite points on the Bloch sphere 

representation of the current state of a single qubit. 

 

E. Understanding Superposition  

The property of superposition is what sets apart a 
quantum bit from a classical bit is the fact that a qubit can be 

in superposition. Superposition is one of the most weird , 

intriguing and yet among the fundamental principles of 

quantum mechanics. We have read about the Fourier Series 

and its applications in signal processing. Using the same 

principle in classical physics, a wave describing a musical 

tone can therefore be seen as a combination or superposition 

of several waves with different frequencies that are added 

together. In the same manner , in case of quantum mechanics 

a superposed quantum state can be broken down or 

decomposed into a linear combination of a number of other 
distinct quantum states.  

 

The superposition of the Qubits [13] can be broken 

down and represented as a linear combination of the basis 

states ∣0⟩ and ∣1⟩. When a qubit is measured (only 

observables are measurable), the qubit falls or collapses to 

one of its Eigen states which is then reflected in the measured 

value. For example, if a qubit exists in an equally weighted 

superposed state,  measuring it or trying to observe it , would 

make it collapse to one of its basis states∣0⟩or∣1⟩ with an 

equal probability of 50%. The ∣0⟩basis state on measurement 

or observation collapses and always gives the result as 0 and 

the basis state∣1⟩always converts or collapses to 1. 

 

It should however be kept in mind that Quantum 

Superposition is fundamentally different from summation 

and superposition of classical waves. A n qubit containing 

quantum computer can in total exist in a superposition of 2𝑛 

states: from∣000...0⟩ to ∣111...1⟩. But on the other hand , if we 
take the example of a classical situation  such as 

playing n musical sounds with distinct frequencies, it can be 

observed that we can only obtain a superposition 

of n frequencies. Therefore , adding classical waves scales 

linearly, whereas the superposition of quantum states scales 

exponentially. 

 

F. Quantum Entanglement: Spooky Action at a Distance [21] 

Entanglement is one among the many counter-intuitive 

phenomena in the realm of Quantum Physics. Entanglement 

refers to a phenomenon when the quantum state of a pair or 
group of particles cannot be described independently of the 

quantum state of the other particle(s). Therefore the quantum 

system as a whole can be described as being in a definite 

state where the measurement of each particle affects every 

other particle, even though the individual parts of the system 

are not in a definite state. 

 

The entanglement of two qubits [13] brings into 

existence a special connection between them. The effects of 

the entanglement become clear from the observations 

obtained after measurements. Upon measurement , the 

outcome of observing the individual qubits could be either 0 

or 1. However , since the qubits are entangled with each 

other , the outcome of the measurement of a single qubit will 

always be correlated or influenced by the measurement on 
the other qubits [13]. This happens , even if the particles are 

far apart and separated from each other by large distances. 

The Bell state configuration of qubits [13] can be given as 

an example for the observation of  the behaviour of an 

entangled qubit system. 

 

As an example, let us consider two particles created in 

such a way that the total spin of the system is zero. A certain 

reference axis is considered and the spin of the particles is 

measured along that axis. Let us suppose that the spin of one 

of the generated particles measured with respect to a certain 
axis is found to be counter clockwise, then it can be 

guaranteed that a measurement of the spin of the other 

particle (with reference to the same axis) will exhibit a 

clockwise spin. It appears as if one of the entangled particles 

is able to feel or detect immediately that a measurement has 

been performed on the other entangled particle and 

accordingly locks what the outcome should be, but this is 

not the case. All this happens instantaneously, without the 

exchange of any form of information between the entangled 

particles even if they were located billions of miles away 

from each other , this entanglement would still exist. 

 

IV. FRACTIONAL CALCULUS 

 

Fractional calculus [5] as the name suggests, deals 

with the analysis of differentials of fractional order. The 

topic is in no way a recent development and has seen a lot of 

contribution from people from the field of pure mathematics. 

Only recently has it undergone major, heated development 

by the contribution of various eminent mathematicians from 

the field of applied mathematics. Nevertheless there is a 

wide variety of theorems to choose from in order to navigate 

the realm of Fractional Calculus [5] and they are usually not 
compatible (equivalent) to each other. Only in recent years 

have scientists around the world discovered the use of 

fractional calculus and its theories in understanding various 

natural frameworks ranging from viscoelastics, signal 

processing and of course now in Quantum Particle Swarm 

Optimization technique [8]. 

 

The use of Convolutional kernels for evaluating 

fractional integrals, The Riemann-Liouville Integral / 

Derivative, The Reisz fractional derivative , The Caputo 

fractional derivative and the Grünwald–Letnikov [2] 

derivative are some of the frameworks in place for 
understanding / evaluating fractional order differentials. The 

most popular among these: The Grünwald–Letnikov [2] 

derivative, has been discussed in further details in the 

upcoming sections. 
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A few terms and functions to know about while 

discussing fractional calculus have been listed as follows . 

 

A. Analytic Functions: 

Functions which can be represented in the form of a 

power series are known as Analytic functions. Their 

importance lies in the fact that they encompass and contain 

most of the commonly encountered mathematical functions. 
 

These functions are usually divided into two separate 

types : Real analytic functions and Complex analytic 

functions (also called holomorphic functions). This class of 

functions is closed relative to the fundamental operations of 

arithmetic which are used in algebra, analysis and the other 

fields of analytic functions and applied mathematics. 

 

B. The Euler-Gamma function: 

The Gamma function representable as Γ(𝑛)  can be 

defined as an extended version of the factorial function (n!) 
which is otherwise, only limited to whole numbers. The 

gamma function hence extends the factorial function to 

include complex as well as fractional values of n. 

 

It is related to the factorial of a number as: Γ(𝑛) =
(𝑛 − 1)! The Euler-Gamma function is analytic everywhere 

except at n = 0 , -1 , -2 , … and residue at 𝑧 = −𝑖 is given by 

:   

𝑅𝑒𝑠𝑧=−𝑖  Γ(𝑧) =  
(−1)𝑖

𝑖!
 

 

C. Grünwald–Letnikov derivative 

Just like modules enhance/extend the functionality of a 

programming language, various theorems in mathematics act 
as patches which help to increase the domain of functioning 

of a particular field of mathematics. 

 

The Grünwald–Letnikov (GL) derivative [2] does the 

same for the field of differential calculus and hence extends 

the domain of differential equations in order to include 

fractional order differentials. It allows us to take the 

derivative of a function, non-integer number of times 

 

D. Understanding / Deriving the Grünwald–Letnikov 

derivative [2] 
We all are well aware that the differential of a function 

representable as 𝑓′(𝑥) is: 

𝑓′(𝑥) =  lim
𝑐→0

𝑓(𝑥 + 𝑐) − 𝑓(𝑥)

𝑐
 

 

The derivative can be applied recursively on a function 

to get derivatives of higher orders. So we can write the 2nd 

derivative as: 

𝑓′′(𝑥) =  lim
𝑐→0

𝑓′(𝑥 + 𝑐) − 𝑓′(𝑥)

𝑐
 

= lim
𝑐1→0

lim 
𝑐2→0

𝑓(𝑥+𝑐1+𝑐2)−𝑓(𝑥+𝑐1)

𝑐2
− lim 

𝑐2→0

𝑓(𝑥+𝑐2)−𝑓(𝑥)

𝑐2
 

𝑐1
 

 
 

 

 

Here we assume that the infinitesimally small 

(differential) element converges synchronously. This can be 

further verified by using the Mean Value Theorem or 

M.V.T. We now generalize this by using our knowledge of 

binomial expressions in order to obtain :  

 

𝑓(𝑛)(𝑥) =  lim
𝑐→0

 
1

𝑐𝑛
∑ (−1)𝑚 (

𝑛

𝑚
) 𝑓(𝑥 + (𝑛 − 𝑚)𝑐)

0≤𝑚≤𝑛

 

 

We now remove the restriction that n should be a 

positive integer and hence derive the form:  
 

𝐷𝑞𝑓(𝑥) =  lim
𝑐→0

 
1

𝑐𝑞
∑ (−1)𝑚 (

𝑞

𝑚
) 𝑓(𝑥 + (𝑞 − 𝑚)𝑐)

0≤𝑚≤∞

 

 
This, is the general form of the Grünwald–Letnikov 

(GL) derivative [2]. 

 

The Grünwald–Letnikov (GL) derivative [2] :  

 
 

Where, 𝑓(𝑥) is a differentio-integrable function, [a, x] 

is the domain of the function, Г represents the Euler-Gamma 

function, α represents the fractional order of the derivative 

and 𝐷𝑎
𝐺𝐿 𝑓(𝑥)𝑥

𝛼  represents the GL derivative operator. 

 

When n becomes large enough, the limit symbol is 

neglected (as we then consider infinitesimal sections) . We 

can hence rewrite the above equation for large values of n 
as: 

 

𝑑𝛼

𝑑𝑥𝛼
𝑓(𝑥)  ≅  

𝑥−𝛼𝑛𝛼

Γ(−𝛼)
 ∑

Γ(𝑘 − 𝛼)

Γ(𝑘 + 1)
𝑓 (𝑥

𝑛−1

𝑘=0

−
𝑘𝑥

𝑛
) ; 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝒏 

 

The above equation can be further generalised for a 1D 

signal as follows (Note: the equation given below is not 

convenient for thorough analysis but is often used for 

numerical approximations):  

 
𝑑𝛼

𝑑𝑥𝛼
𝑓(𝑥) ≅ 𝑓(𝑥) + (−𝛼)𝑓(𝑥 − 1)

+
(−𝛼)(−𝛼 + 1)

2
𝑓(𝑥 − 2) + ⋯

+
(−𝛼)(−𝛼 + 1) … (−𝛼 + 𝑛)

𝑛!
𝑓(𝑥 − 𝑛) 
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V. QUANTUM PARTICLE SWARM 

OPTIMIZATION 

 

The major/significant difference between classic PSO 

and Quantum PSO is the use of the wave function in QPSO 

in order to facilitate optimization or determine the position of 

a given particle in 3D space. 

 
Trajectory analysis according to [citation] demonstrated 

that each particle in practice converges to its corresponding 

local attractor [7] or 𝐶𝑖𝑑 which can be demonstrated by the 

following equation: 

𝐶𝑖𝑑(𝑡) = 𝑎. 𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) + (1 − 𝑎). 𝑔𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) , 𝑎~𝑈(0,1) 

 

Where, 𝑎 =
𝑐1𝑟1

(𝑐1𝑟1+𝑐2𝑟2)
 

 

The local attractor [7] is thus a randomly distribution or 

pattern that may be analyzed statistically but may not be 

predicted precisely or in other words a stochastic attractor of 

the 𝑖𝑡ℎ particle that lies inside a hyper-rectangle with 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 

and 𝑔𝑏𝑒𝑠𝑡𝑖𝑑 as the two ends of its diagonal. 

 

Sun et al. studied the convergence behaviour of PSO 

and proposed a novel PSO model from quantum mechanics 

abbreviated as QPSO or the Quantum Particle Swarm 
Optimization [8]. Based on the Delta potential, the quantum 

behaviour of particles are considered. In the framework of 

quantum time-space, the quantum state of a particle is 

represented by a wave function  𝜓(𝑥, 𝑡) . 
In 3D space, 𝜓(𝑥, 𝑡) is given as 

 
|𝜓|2𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑄𝑑𝑥𝑑𝑦𝑑𝑧 

 

where Q is the probability of finding the particle at a 

particular point in space (with respect to the xyz coordinate 

system).Here , |𝜓|2 represents the probability density of the 

particle. 

 
As a probability density function, we have: 

 

∫ |𝜓|2𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

=  ∫ 𝑄𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

= 1 

 

The normalized version of 𝜓 can be represented as: 

 

‖𝜓‖ =  𝜓(𝑦) =  
1

√𝐿
𝑒

−|𝑦|
𝐿  

 

As a result, Q and the corresponding distribution 

function 𝐹 can be obtained as: 

 

𝑄(𝑦) =  |𝜓(𝑦)|2 =  
1

𝐿
𝑒

−2|𝑦|
𝐿  

 

And :  

𝐹(𝑋𝑖𝑑(𝑡 + 1)) = 1 − 𝑒
−

2|𝑝𝑖𝑑(𝑡)−𝑋𝑖𝑑(𝑡+1)|
𝐿𝑖𝑑(𝑡)  

 

 

 

Where 𝐿𝑖𝑑(𝑡)  denotes the standard deviation, which 

describes the search space of each particle. The Monte Carlo 

method can now be used in order to obtain the position of 

the particle as follows : 

 

𝑠 =
1

𝐿
𝑢 =

1

𝐿
𝑒−

2|𝑦|
𝐿  , 𝑢 ~ (0,1)𝑎𝑛𝑑 𝑠 ~ (0,

1

𝐿
) 

 

Then by comparing: 

𝑢 =  𝑒−
2|𝑦|

𝐿  
 

Let  𝑦 =  𝑥 − 𝑐, we have: 

 

𝑥 = 𝑐 ±
𝐿

2
ln (

1

𝑢
) 

 

The convergence condition for PSO is given by: 

𝑥 → 𝑐 , 𝑤ℎ𝑒𝑛 𝑡 → ∞ 
 

Let L be a function of time, then for the above 

condition to hold true, we have: 

𝐿 = 𝐿(𝑡) , 𝐿 → 0 , 𝑤ℎ𝑒𝑛 𝑡 → 0  
 

We can further write the iterative version for the 𝑖𝑡ℎ 

particle as: 

 

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑 ±
𝐿𝑖𝑑

2
ln (

1

𝑢
) 

 

A global point called mean best position is introduced 

to evaluate the value of 𝐿𝑖𝑑(𝑡). This global point, which is 
denoted by mbest and can be computed as the mean of 

the pbest positions of all the particles present in the swarm, 

which can be given s: 

 

𝑚𝑏𝑒𝑠𝑡(𝑡) = (𝑚𝑏𝑒𝑠𝑡1(𝑡), 𝑚𝑏𝑒𝑠𝑡2(𝑡), … , 𝑚𝑏𝑒𝑠𝑡𝑑(𝑡) 

=
1

𝑛
∑ 𝑝𝑖1(𝑡),

1

𝑛
∑ 𝑝𝑖2(𝑡),

𝑛

𝑖=1

… ,
1

𝑛
∑ 𝑝𝑖𝑑(𝑡),

𝑛

𝑖=1

𝑛

𝑖=1

 

 

The values of 𝐿𝑖𝑑(𝑡) is calculated by: 

 

𝐿𝑖𝑑(𝑡) = 2𝛽|𝑚𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)| 
 

And finally, the position of the particle  𝑋𝑖𝑑  can be 

given by: 

 

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑(𝑡 + 1) ± 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑(𝑡)| ln (
1

𝑢
) 

 

Where parameter 𝛽  is step size, which is utilized to 

control the convergence speed. U(0,1) is the shorthand for 

Standard Uniform Random Variable Distribution in between 

0 and 1.  

 

 
 

 

 

 

A. QPSO with the fractional-order position : FQPSO 
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Fractional Calculus [5] is often regarded to have 

excellent long term memory characteristics. From the 

definition of Grünwald-Letnikov differential [2] (under 

fractional calculus sub-section), it can be seen that the 

fractional derivative is computed with the previous/historical 

states which makes it suitable for the iterative procedure of 

intelligent optimization algorithms like the Fractional 

Quantum Particle Swarm Optimization algorithm [9] , which 
introduces fractional index based swarm optimization. 

 

To further improve the speed and accuracy of 

convergence of QPSO algorithm/technique, in this section, 

the proposed QPSO with the fractional-order position is 

detailed. Initially, the original position is rearranged to 

modify the order of the position derivative, which can be 

derived as follows:  

 

Equations corresponding to all possible relations 

between rand and mbestid. (rand~U(0,1)) 
  

𝑪𝒂𝒔𝒆 𝟏 ∶  𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡)  

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑(𝑡) + 𝛽. ln (
1

𝑢
) . (𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑(𝑡))   

𝑎𝑛𝑑 , 𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡) 

 

𝑪𝒂𝒔𝒆 𝟐 ∶  𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡)  

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑(𝑡) + 𝛽. ln (
1

𝑢
) . (𝑋𝑖𝑑(𝑡) − 𝑚𝑏𝑒𝑠𝑡𝑑)   

𝑎𝑛𝑑 𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡) 

 

𝑪𝒂𝒔𝒆 𝟑 ∶  𝑟𝑎𝑛𝑑 < 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡)  

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑(𝑡) − 𝛽. ln (
1

𝑢
) . (𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑(𝑡))   

𝑎𝑛𝑑 𝑟𝑎𝑛𝑑 < 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡) 

 

𝑪𝒂𝒔𝒆 𝟒 ∶  𝑟𝑎𝑛𝑑 < 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡)  

𝑋𝑖𝑑(𝑡 + 1) = 𝐶𝑖𝑑(𝑡) − 𝛽. ln (
1

𝑢
) . (𝑋𝑖𝑑(𝑡) − 𝑚𝑏𝑒𝑠𝑡𝑑)   

𝑎𝑛𝑑 𝑟𝑎𝑛𝑑 < 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡) 

 

All the above equations can now be uniformly written 

as : 

 

𝑋𝑖𝑑(𝑡 + 1) − 𝑋𝑖𝑑(𝑡) =  

𝐶𝑖𝑑(𝑡) + 𝛽. ln (
1

𝑢
) . (𝑚𝑏𝑒𝑠𝑡𝑑) − (𝛽. ln (

1

𝑢
) ± 1) 𝑋𝑖𝑑(𝑡) 

 

The left side of the above equation is the discrete 

version of the derivative with 𝛼 = 1. We can hence extend / 

generalize the above equation to get a general fractional order 

differential as follows: 

 

𝐷𝛼(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) +  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑 − (𝛽. ln (

1

𝑢
) ± 1) 𝑋𝑖𝑑(𝑡) 

 …   𝑒𝑞. 1 
 

 

 

 

𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡) 𝑜𝑟 , 

𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑 < 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡) 

 

And , 

𝐷𝛼(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) −  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑 + (𝛽. ln (

1

𝑢
) ± 1) 𝑋𝑖𝑑(𝑡) 

…   𝑒𝑞. 2  
 

𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑 > 0.5 , 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡) 𝑜𝑟 , 
𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑 < 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡) 

 

Researchers have demonstrated the fact that for 

~𝑈(0,1)  , smoother variations and a prolonged memory 

effect can be introduced which might possibly lead to a 

better accuracy than then the integral-order based model 

 

To study the behaviour and accuracy of the proposed 

fractional-order strategy, a set of functions are tested with 

𝛼~𝑈(0,1) and 𝛥𝛼 =  0.1 which denotes the step size. To 

simplify the computational complexity, we usually truncate 

the simplified form of the Grünwald-Letnikov differential 

[2] and only use the first four terms, so we have: 

 

𝐷𝛼(𝑋𝑖𝑑(𝑡 + 1)) = 

𝑋𝑖𝑑(𝑡 + 1) −  𝛼𝑋𝑖𝑑(𝑡) −
1

2
𝛼(1 − 𝛼)𝑋𝑖𝑑(𝑡 − 1)

−  
1

6
𝛼(1 − 𝛼)(2 − 𝛼)𝑋𝑖𝑑(𝑡 − 2)  

−    
1

24
𝛼(1 − 𝛼)(2 − 𝛼)(3 − 𝛼)𝑋𝑖𝑑(𝑡

− 3)  
 … 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 4 𝑡𝑒𝑟𝑚𝑠  
 

Using the above result we can redefine / modify eq.1 

as : 
 

(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) +  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑 − (𝛽. ln (

1

𝑢
) ± 1 − 𝛼) 𝑋𝑖𝑑(𝑡)

+ 𝑋𝑋𝑖𝑑(𝑡) 

 

We also modify eq.2 as :  
 

(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) −  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑 + (𝛽. ln (

1

𝑢
) ± 1 + 𝛼) 𝑋𝑖𝑑(𝑡)

+ 𝑋𝑋𝑖𝑑(𝑡) 

 

Where 𝑋𝑋𝑖𝑑(𝑡) is defined as : 
 

𝑋𝑋𝑖𝑑(𝑡) =  
1

2
𝛼(1 − 𝛼)𝑋𝑖𝑑(𝑡 − 1) +  

1

6
𝛼(1 − 𝛼)(2 − 𝛼)𝑋𝑖𝑑(𝑡 − 2)

+  
1

24
𝛼(1 − 𝛼)(2 − 𝛼)(3 − 𝛼)𝑋𝑖𝑑(𝑡 − 3) 
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With respect to the position updating equations 

(equations of motion) of the particles it can be seen that the 

position of the particles depend not only on the position of 

the previous particle but also on the historical position of the 

particle itself at different points in time. The position 

acquired by the particle in subsequent steps or epochs is 

hence the result of it’s long term memory. This long term 

memory has the ability to protect the population density 
(distribution) and the diversity to a certain extent.  

 

B. Pseudo Code (Algorithm) 

1. Initialising the FQPSO parameters ( 𝛼 , t , 𝛽 , 𝑢 ) 

2. Initialise the swarm of particles 

3. For each particle 𝑖 in population: 

3.1. Computer 𝑓(𝑋𝑖) , where 𝑓( ) represents the fitness 

function 

3.1.1. If 𝑓(𝑋𝑖) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖) : 

𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖 
End 

 

3.1.2. If 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖) < 𝑓(𝑔𝑏𝑒𝑠𝑡) : 

𝑔𝑏𝑒𝑠𝑡 = 𝑝𝑏𝑒𝑠𝑡𝑖 

End 

 

3.2. Calculate Q using the equations 

3.2.1. If 

(𝑟𝑎𝑛𝑑 > 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡)) 𝑜𝑟 (𝑟𝑎𝑛𝑑

< 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡)) 

: 

(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) +  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑   

− (𝛽. ln (
1

𝑢
) ± 1 − 𝛼) 

𝑋𝑖𝑑(𝑡) + 𝑋𝑋𝑖𝑑(𝑡) 
Else 

 

If 

 (𝑟𝑎𝑛𝑑 > 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 > 𝑋𝑖𝑑(𝑡)) 

or (𝑟𝑎𝑛𝑑 < 0.5 𝑎𝑛𝑑 𝑚𝑏𝑒𝑠𝑡𝑑 < 𝑋𝑖𝑑(𝑡)) 

 

(𝑋𝑖𝑑(𝑡 + 1)) =  

𝐶𝑖𝑑(𝑡) −  𝛽. ln (
1

𝑢
) . 𝑚𝑏𝑒𝑠𝑡𝑑 

+ (𝛽. ln (
1

𝑢
) ± 1 + 𝛼) 

𝑋𝑖𝑑(𝑡) + 𝑋𝑋𝑖𝑑(𝑡) 

End 

3.3. 𝑡 = 𝑡 + 1 
4. Continue Until termination criterion is satisfied. 

 

Note : Other algorithms like the Fractional order 

Darwinian Particle Swarm Optimization [28] also use 

Fractional Calculus [5] but since they belong to the category 

of evolutionary algorithm [29], we will not be covering it 

here. The reader may feel free to read the articles or 
resources given in the reference section. You can also refer to 

references section for experimental evidence of the efficiency 

of FQPSO over QPSO. 

 

VI. APPLICATIONS OF THE ABOVE 

CONCEPTS AND (F)QPSO IN THE MODERN 

WORLD 

 

A. Applications of Quantum Computing [17] 

 As the new technologies have penetrated almost every 

aspect of our lives, artificial intelligence and machine 

learning have become some of the prominent areas right 
now. Some of the widespread applications that we see 

every day are in recognition of image, voice and 

handwriting samples. However, it becomes a 

challenging task for traditional computers, to match up 

the accuracy and speed as the number of applications 

have increased. And, that’s where quantum computers 

are better than traditional computers as they can help in 

processing through complex tasks in very less time, 

which would have taken traditional computers 

thousands of years. 

 

 Weather forecasting is another such field which 

includes several variables to consider, such as 

temperature, air pressure and air density, which makes it 

tough for it to be predicted accurately. Applications of 

quantum machine learning can help us improve our 

ability to recognize patterns, which will make it easier 

for scientists and researchers to predict harsh weather 

conditions and potentially save thousands of lives. 

Meteorologists will be able to analyse more detailed 

climate models with the help of quantum computers that 

can provide greater insights into climate change, and 

helping them if figuring out ways to tackle it. 
 

 

 Quantum Chemistry: Even in the smallest of 

molecule, it is believed that the amount of quantum 

states is extremely vast, and therefore tough for 

traditional computing memory to process. Meanwhile 

quantum computers can focus on the existence of both 0 

and 1 simultaneously which could provide a great 

amount of power to these machines to successfully map 

the molecules which  potentially opens up opportunities 

in research related to pharmaceuticals. Some of the 
critical problems that could be solved via them are — 

improving the nitrogen-fixation process for creating 

ammonia-based fertilizer; creating a superconductor at 

room-temperature; removing carbon dioxide from the 

atmosphere for a better climate; and creation of solid-

state batteries. 

 

 Financial Modelling: Finding the right mix for fruitful 

investments for a finance industry is based on the risk 

associated, expected returns and other factors which are 

important for its survival in the market. To achieve that, 
the technique of ‘Monte Carlo’ simulations is 

continually being run on traditional computers, which 

consume an enormous amount of compute time. 

However, by applying quantum computing [12] in 

performing these huge and   complex calculations, 

industries not only reduce the time to develop them but 

also improve upon the quality of the solutions. 
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 Cybersecurity & Cryptography: The online space 

recently has been quite vulnerable due to the increasing 

number of cyber-attacks occurring across the world. 

Although organizations are establishing essential 

security frameworks, the process has become unsettling 

and impractical for traditional computers. And, 

therefore, cybersecurity has continued to be an important 

concern round the world. We are becoming even more 
vulnerable to these threats with our increasing 

dependency on digitization. Quantum computers with 

the help of machine learning can help to develop several 

techniques to tackle these cybersecurity threats. 

Additionally, quantum computing [12] can help in 

creating encryption methods, also referred to as, 

quantum cryptography. 

 

B. Applications of Particle Swarm Optimization Algorithms 

(PSO) [10] 

 Symbolic regression, which may be a sort of 
multivariate analysis that searches the space of 

mathematical expressions to seek out the model that 

most closely fits a given dataset, both in terms of 

accuracy and ease, may be a crucially important 

theoretical and practical problem. 

 

 Floor planning is to design the layout of equipment in a 

factory or components on a computer chip to reduce 

manufacturing time. 

 

 Weapon target assignment problem is to seek out an 
optimal assignment of a group of weapons of varied 

types to a group of targets so as to maximize the 

expected damage done to the opponent. 

 

 Supply chain management is the systemic and strategic 

coordination of the business functions and the tactics 

across them within a specific organization and across 

businesses within the availability chain, for the needs of 

improving the performance of the individual companies 

in the long run and therefore the supply chain as an 

entire. 

 

 Nurse scheduling problem is to seek out an optimal 

path to assign nurses to shifts, typically with a group of 

hard constraints during which all valid solutions must 

follow and a set of sentimental constraints which define 

the relative quality of valid solutions. 

 

 The mathematical study of waiting lines is named 

queuing theory. In queuing theory, a model is 

constructed so that queue lengths and waiting times can 

be predicted to make business decisions about the 

resources needed. 
 

 

 

 

 

 

 

C. Applications of Quantum Particle Swarm Optimization 

(QPSO) [11] and (FQPSO) 

 Use of Quantum mechanics principles instead of 

using Newtonian laws for governing particle motion 

unlike normal implementations of the Particle Swarm 

Optimization Algorithm (also known as the classical 

PSO implementations) [6]. 

 

 Quantum particle swarm optimization [8] can be used in 

order to tune antennas more accurately. It 

outperforms traditional PSO implementations and also 

has a much faster convergence rate than classical PSO. 

 

 The QPSO algorithm can be used for predicting / 

designing a more efficient, equivalent circuit for a 

given Dielectric Resonator Antenna (DRA) circuit [16]. 

This can further make it easier to derive important 

circuit properties such as the Quality factor of the 

circuit (Q-factor). 
 

 Both QPSO and the FQPSO algorithms have very few 

parameters which need to be tuned for optimization. 

This can be easily done by either checking accuracy at 

different states or values (i.e. trial and error) or by 

simple linear variation in the parameters. This also 

makes it easier to avoid errors and hence makes the 

algorithm even more accurate. Classical PSO generally 

involves 4 parameters: 𝑐1 , 𝑐2 , 𝑤 , 𝑉𝑚𝑎𝑥 . On the other 

hand, general implementations of the QPSO algorithms 

involve only one parameter which can be tuned easily 
for satisfactory convergence to optimal solution. This 

has the obvious advantage of less computational cost as 

tuning 4 parameters takes much more cycles than tuning 

a single parameter. 

 

 The algorithm (QPSO) can also be used to find a set of 

infinitesimal dipoles that produce the same near as that 

produced by a circular dielectric resonator antenna or 

DRA [16]. 

 

 The Dielectric Resonator Antenna or DRA[16] is 
often used in microwaves. They generally consist of a 

block of ceramic material which acts as the dielectric. 

This block is mounted on a metal plate. Radiation is 

introduced inside the ceramic material by using a 

Transmitter. This radiation bounces around inside the 

ceramic block giving rise to standing radio waves. The 

walls of the ceramic block are preferentially transparent 

to radio-waves and hence let them escape into space 

giving rise to a radio signal. 

 

 These antennas can have lower losses and be more 
efficient than metal antennas for high microwave and 

millimetre wave frequencies. This is where QPSO can 

be used in order to optimise frequency values [15] 

for finding the most optimum frequency or a range of 

optimum frequencies. 
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 The application of Fractional Calculus [5] to the field of 

Quantum Particle Swarm Optimization [8] results in the 

FQPSO technique. This new algorithm combines the 

speed of Quantum Particle Swarm Optimization [8] as 

well as the long-term memory effects and non-locality of 

Fractional Calculus [5] leading to faster convergence of 

particles while avoiding local optimums. It therefore 

significantly enhances the global optimum finding ability 
of the algorithm. Hence it has been experimentally 

verified that Fractional Order Quantum Particle Swarm 

Optimization (FQPSO) outperforms the traditional 

integer-based Quantum Particle Swarm Optimization [8] 

in most of the cases. 

 

VII. SUMMARY AND CONCLUSION 

 

The world of Quantum mechanics might be a new 

addition to the realm of science, but it can be said beyond 

doubt that this new field has given rise to some powerful 
concepts, extendable to various areas of modern life, one of 

them being complex engineering optimization problems. The 

Quantum Particle Swarm Optimization Algorithm [8] is cross 

between the classical principles of Particle Swarm 

Optimization (PSO) [6] and the probability equations which 

govern the quantum world. 

 

We further investigated yet another algorithm: The 

Fractional Order Quantum Particle Swarm Optimization, 

which happens to be a cross between its predecessor (the 

QPSO) and the realm of Fractional Calculus. Together they 

exhibit a display the potential advantages which fractional 
order systems are able to extend to different areas of modern 

life. By replacing the integer-based approach to QPSO with a 

fractional index we have thus been able to show the 

superiority of FQPSO algorithm over the QPSO algorithm 

over various natural, optimization problem. Another variant 

of this algorithm also known as the Fractional order 

Darwinian Particle Swarm Optimization [27], although not 

based on quantum mechanical principles, can help us see 

how, extending Fractional Calculus [5] to evolutionary 

algorithms [29] can lead to a significant increase in accuracy 

in evolutionary algorithms (use of fractional order system in 
natural simulation). The reader can feel free to refer to the 

references section for further reading and to keep exploring 

this vast intersection of Physics, Maths and Biology. 
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