
Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 965

Facemask Detection using MMdetection Toolbox

Mukul Kumar Vishwas

Department of Mathematics and

Mechanics Novosibirsk State

University, Novosibirsk, Russia

Petr Menshanov

Novosibirsk State University

Novosibirsk, Russia

Aleksey Okunev

Vice director

NSU Higher College of Computer

Science Novosibirsk, Russia

Abstract:- This paper described and compare between

two object detection model for face mask detection.

Using object detection we can predicts if the person on

the picture wearing the mask correctly/incorrectly or

not, in the current situation this model is extremely

useful as this simple precaution will help to stop the

spreading of deadly Coronavirus. In this paper, a

comprehensive description of two operational and

functional model was discussed how the data flows in

the model and the type of operation performed on that.

Additionally how the input data annotated and the

result. The result was described using the mAP metric.

Keywords:- MMdetection, Detectron2, COVID-19, Object

Detection, Coronavirus, mAP.

I. INTRODUCTION

The COVID-19 pandemic also widely known as

coronavirus pandemic caused by Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-Co-2). The World Health

Organization instantly declared the outbreak on 30 January,

and a pandemic on 11 March[1], It completely affected

social and economi- cally and cost more than 1 million of

lives[9]. On the other hand, by following some simple rules

(mentioned below) the spreading of this virus can be

stopped:

• Face masks and respiratory hygiene.
• Social distancing.

• Self-isolation.

The goal of this work is to compare two object

detection model and train the best neural network to

discriminate between peoples who follow sanitary rules like

wearing the face mask properly from those people who are

violating them by following this simple rule this virus can

be stopped from spreading, until the vaccine was created

these are our only option to be safe. As till October 321

vaccine candidates are developing vaccine but none of them

are able to complete clinical trials to prove it’s safety and
efficiency[10]. Described model should able to perform

below task’s:

• Identify the position of the person.

• Identify person with correct mask, no mask or

incorrect mask.

• A boundary region with the probability/confidence of

the model’s prediction (varies from 0-1).

• A segmentation mask on the confident region.

II. MMDETECTION

A. What is MMdetection

As per the paper published by K.Chen in 2019

”MMdetec- tion is an object detection toolbox that contains

a rich set of object detection and instance segmentation
methods as well as related components and modules[2]”.

Major features of MMdetection are:

• Modular design: Because of it’s design the detection

framework can be easily changed and a

flexible/customize version can be created as per the

requirement, it can be done by combining different kind

of modules like backbone, neck and RIO extractor.

• Support of multiple frameworks: The toolbox and it’s

simple architecture made it very easy to use

additionally it provides a large variety of detection

frameworks like Fast R-CNN, Faster R-CNN, Mask R-
CNN, RetinaNet, DCN etc.

• High efficiency: All operations (masking, boundary box

Creation, prediction) run on GPUs, hence the training

speed is faster than or comparable to other code–bases

in- cluding Detectron, mask rcnn-benchmark and

SimpleDet. It also provides vides weight of more than

200 network model.

B. Architecture

Although the model architectures of different

detectors are different, they have common components,
which can be roughly summarized into the following

classes:

• Backbone: Backbone is the part that transforms an

image to feature maps, such as a ResNet-50[8] without

the last fully connected layer.

• Neck: Neck is the part that connects the backbone and

heads. It performs some refinements or re configurations

on the raw feature maps produced by the backbone. An

example is Feature Pyramid Network (FPN).

• Dense Head (Anchor Head/ Anchor Free Head):

Dense Head is the part that operates on dense locations of

feature maps, including Anchor Head and Anchor Free
Head, e.g., RPNHead, RetinaHead, FCOSHead.

• RoIExtractor:RoIExtractor is the part that extracts fea-

tures as per the region of interest from a single or

multiple feature maps. An example that extracts RoI

features from

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 966

Fig. 1. Framework of single-stage and two stage detector.

Fig. 2. Feature Pyramid Network.

The corresponding level of feature pyramids is single

RoIExtractor.

• RoIHead (BBoxHead/ MaskHead): RoIHead is the part

that takes RoI features as input and makes RoI-wise task

specific predictions, such as bounding box classification/

regression, mask prediction.

C. Resnet50 with FPN

In this section, the architecture of the object detector

ex- plained With Feature Pyramid Network (FPN). In the

Fig. 2 the working of FPN is shown.

Identifying components of different scale and

complexity is a difficult task which we overcome by using

the same picture of the different size /scale, however this

approach has some disadvantages, including high memory

demand and high time consumption. [3].

For the above issue, FPN has a fantastic approach, it

con- structs a feature pyramid and uses this for object

recognition. The Feature Pyramid Network (FPN) is a

feature extractor programmed with accuracy and speed in

mind.

It substitutes the feature extractor of detectors such as

Faster R-CNN and generates various feature map layers

(multi-scale feature maps) with higher quality information

as compare to the standard feature pyramid for object

detection. A bottom- up and a top-down pathway are
constructed of FPN as shown in Fig. 2. The image quality

reduces as we go up. The semantic meaning for every layer

increases with more high- level structures detected.

FPN extracts feature maps and later feeds into a

detector, says RPN, for object detection. RPN applies a

sliding window over the feature maps to make predictions on

the object (has an object or not) and the object boundary box

at each location[3]. In the FPN framework, for each scale

level a 3 × 3 convolution filter is applied over the feature

maps followed by separate 1 × 1 convolution for object

predictions and boundary box regression. These 3 × 3 and 1

× 1 convolutional layers are called the RPN head. The same

head is applied to all different scale levels of feature maps.

D. Formula to pick feature map
The equation for determining the characteristic maps is

dependent on the ROI’s width w and height h.

k = ko + log2
√

wh/224) (1)

Where, ko = 4
k is the Pk layer in the FPN used to generate the feature

patch. if the model has assigned k = 2, it made P2 as

model’s feature maps and ROI pooling will be done and

it will feed the result to the framework used like Fast R-

CNN head (Fast R-CNN and Faster R-CNN have the same

head) to finish the prediction.

E. Comparison

The comparison of different feature with and without FPN

is mentioned in the table 1.

AR (Average recall): The ability to capture Object.

Inference time: Time taken for prediction.

Table 1:- Comparison of Feature with and Without

FPN

Feature Without FPN With FPN

Training Time Normal Increased

Dataset requirement Big Small

Test/validation time High Low

Accuracy Normal Increased

AR 44.9 56.3

Inference time 0.32 sec. 0.148 sec.

III. MODEL

A. Model composition

In this section, a detail description of the model used

for mask detection is explained. The model described part

by part in every section it’s corresponding architecture was

explained in dictionary format for ease of understanding.

• Backbone: The backbone of this model was created
using Resnet50[8] with batch normalization it is used for

the feature extraction from the image, this can easily be

replaced by some other feature extracting network.

• Neck: The neck used in this model is FPN and the full

description is below:

Neck = dict (type = ‘FPN’,

In channels = [256, 512, 1024, 2048],

Out channels = 256, Num outs = 5)

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 967

∗ ∗

∗ ∗

• Dense head: For the dense head architecture had used

RPNHead it extract feature from the dense part of the
image:

Rpn head = dict (type = ‘RPNHead’, In channels = 256,

Feat channels = 256)

• ROI head:ROI head is a very interesting part of the

model in this model CascadeROIHead was used, the main

work of RIO head is to propose the region of interest from

where the model should detect the object. The description

is below:

Roi head = dict (type = CascadeRoIHead’, numstages =

3)

Table 2 Model Comparison Detectron2 And

Mmdetection

Module MMdetection Detectron2

Base Model Resnet50 Resnet50

Neck(FPN) Yes Yes

Training time more less

RIO Yes Yes

Learning rate 0.02 0.02

mAP 0.139 0.158

• Optimizer: The Stochastic gradient descent (SGD)

optimizer was used in this model. SGD is an iterative

method for max- imizing an objective function with

adequate and appropriate (e.g. differentiable or

subdifferentiable) smoothness properties. It can be

described as a stochastic gradient descent optimiza- tion

approximation, since it replaces the actual gradient (cal-

culated out of the whole data set) with a gradient

optimization approximation (calculated from a
randomly selected subset of data). In high-dimensional

optimization problems, this approach is very usefull as it

decrease the computational stress and achive faster

iteration in exchange of low convergence rate.

• Process of Training: In this section we will see the flow

of data during training cycle. We can see all the main

operation and transformation performed on the data.

train pipeline = [

dict(type = ‘LoadImageFromFile’),

dict(type = ‘LoadAnnotations’, withbbox = True),
dict(type = ‘Resize′, imgscale = (1333, 800), keepratio

= True,

dict(type = ‘RandomFlip′, flipratio = 0.5), dict(type

= ‘Normalize′, imgnormcfg),

dict(type = ‘Pad′, sizedivisor = 32), dict(type =

‘DefaultFormatBundle′), dict(type = ‘Collect′,

keys = [‘img′,′ gtbboxes′,′ gtlabels′])

]

Fig. 3. Log loss

• Process of Testing: Below is all the operation

performed on the data during testing.

test pipeline = [

dict(type = ‘LoadImageFromFile’), dict(type =

‘MultiScaleFlipAug, imgscale = (1333, 800), flip =

False, transform = [
dict(type = ‘Resize′, keepratio = True), dict(type =

‘RandomFlip′),

dict(type = ‘Normalize′ imgnormcfg), dict(type =

‘Pad′, sizedivisor = 32),

dict(type = ‘ImageT oT ensor′, keys = [‘img′]),

dict(type = ‘Collect′, keys = [‘img′])]

]

B. Model loss during training

To fine tuning our model, we used Cross Entropy

Loss. Cross-entropy loss, or log loss, measures the

efficiency of a model of classification whose output is a zero
to one probability value. As the expected probability

diverges from the real mark, cross-entropy loss increases.

But it will be wrong to estimate a chance of .015 where the

real observation label is 1 and result in a high loss value. A

great model will have a 0[5] log loss Fig.3.

The graph in Fig.3 shows the range of possible loss

values given a true observation (Masked = 1). As the

expected likelihood reaches 1, log loss decreases

steadily. However, the log loss increases significantly as the

expected likelihood decreases. Log loss penalizes both types
of errors, however especially those predictions that are

confident and wrong!

Cross-entropy and log loss are slightly different

depending on context, however in prediction when

calculating error rates/probability between 0 and 1 they

resolve to the same thing.

Fig. 4 showing epochs versus loss value graph for our

model,

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 968

Fig. 4. Loss during training

Fig. 5. Detectron2 Archetecture

We trained our model for 200 epochs. The loss value

was taken on every 25 epochs to draw.

IV. DETECTRON2

A. What is Detectron2
Detectron2 is Facebook AI research’s next generation

soft- ware system, it is a ground-up reconstructed on the

previ- ous version of Detectron and it originated from

maskrcnn- benchmark [11].

Major feature of Detectron2 are:

• It is based on PyTorch.

• It has more feature like panoptic segmentation,

Densepose, Cascade R-CNN, rotated bounding boxes,

PointRend, DeepLab, etc.

• It can be easily integrated with different project’s

because it’s usability as a library.
• Less training time.

• Models can be exported to TorchScript format or Caffe2

format for deployment.

The main component of Detectron2 is shown in figure

5.

Both model Detectron2 and MMdetection share some

common module like FPN, RPN, ROI pool and backend

network (Neck), all these are explained in MMdetection

section.

We used ResNet50 for feature extraction with a

learning rate of 0.02

V. DATASET

To train the model it need’s annotated images so

the model can extract features from the images and

distinguish between masked and unmasked faces. We used

total 8982 annotated images to train and validate the

model, we used LabelImg software to annotate all

images (figure 6). It creates an individual json file for

each image file according to the annotation, these json

files contain the information like file/image name,

category(one or more than one), bounded region information

in image, height of the bounded region, width of the

bounded region and total area enclosed within labelled

region.

All the individual json files converted into one single

COCO file using the labelme2coco converter package in

python. We need the images to be in Common Objects in

Context (COCO) formats, it stores the annotation details for

the bounding box in JSON format. The main component of

the coco file are:

– Info:Contains high-level information about the data set.

– Licenses: Contains a list of image licenses that apply to

images in the data set.

– Categories: Contains a list of categories. Categories can
belong to a super category.

– Images: Contains all the image information in the data

set without bounding box or segmentation information.

image id’s need to be unique.

– Annotations: List of every individual object annotation

from every image in the data set.

Example of a coco format(file and image) is below. “info”:

info,

“licenses”: [licenses], “categories”: [categories], “images”:

[images], “annotations”: [annotations]

VI. RESULT

The final output is displayed in figure 7, the model is

successfully able to predict and discriminate between

Masked and unmasked faces. Mask face is further classified

as Correct(Mask) and Incorrect.

As per the mAP vale in table III, we used

MMdetection for our facemask detection model.

Fig. 6. Example of Annotated Image

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 969

Fig. 7. Final output of the model.

To measure the accuracy of our model we used mAP

(mean Average Precision), it is a popular metric to measure

object detector like faster R-CNN, SSD, etc. It gives a

calculated value between 0 and 1.

Calculating accuracy for an object detector is a little

complicated as we have to detect the object or class and also

the area where the object was detected.

– Precision: It calculates the Accuracy of the predict ton.

– Recall: It measures how good model find all the

positives.

Precision = TP/ (TP + FP) (2)

Recall = TP/ (TP + FN) (3)

Where, TP = True Positive TN = True Negative

FP = False Positive FN = False Negative

Another important term we have to understand is IoU

(Intersection over Union) [6], To check the correctness of

our model’s we first have to judge the correctness of each of

these detection’s. The metric that tells us the correctness of

a given bounding box is the IoU.

A visual representation of IoU is shown in Fig.8.

subcap- tion

Fig. 8. Visual representation of IoU.

Fig. 9. Calculation of IOU

To get TP and FP we use IoU, we now have to identify

if the detection (a Positive) is correct (True) or not (False).

The most commonly used threshold is 0.5 - i.e. if the

IoU is ¿ 0.5, it is considered a True Positive, else it is

considered a false positive.

Table 3:- Comparison Of Different Map Between

Mmdetection And Detectron2

Metric IoU MMdetection Detectron2

mAP @[IoU= 0.50:0.95] 0.158 0.139

mAP @[IoU= 0.50] 0.238 0.277

mAP @[IoU= 0.75] 0.181 0.109

VII. FUTURE WORK

We are trying to create a pipeline of 2 model which

should be able to do facemask detection and person re-

identification. For that purpose we are using the facemask.

Fig. 10. Final pipeline of the model

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR432 www.ijisrt.com 970

Detection models output and using the boundary box

information to create a database of all person who entered the
premises. Then we used torchreid a python library and

pre-trained person re-identification model available on our

collected data.

Initially our gallery size is 21127 images and we used

top- 10 search result to calculate accuracy. if we choose 10

images randomly we get 2% accuracy but with torchreid we

are able to get 67% accuracy. Currently we are working to

improve our person re-identification model and complete

pipeline.

REFERENCES

[1]. “Naming the Coronavirus Disease (COVID-19)

and the Virus That Causes It.” World Health

Organization, World Health Organization,

www.who.int/emergencies/diseases/novel-

coronavirus-2019/technical -guidance/naming-the-

coronavirus- disease-(covid-2019)-and-the-virus -that-

causes-it (accessed October 19, 2020).

[2]. K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, Z.

Zhang, (2019). MMDetection: Open MMLab

Detection Toolbox and Benchmark. arXiv preprint
arXiv:1906.07155.

[3]. Lin, T.-Yi, P. Dollár, R. Girshick, K. He, B.

Hariharan, and S. Belongie. ”Feature pyramid

networks for object detection.” In Proceedings of the

IEEE conference on computer vision and pattern

recognition, pp. 2117-2125. 2017.

[4]. Wikipedia contributors, ”Stochastic gradient descent,”

Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org /w/index.Php ?ti- tle

=Stochastic-gradient-descentoldid=983180780

(accessed Octo- ber 19, 2020).

[5]. Wikipedia contributors, ”Cross entropy,” Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org

/w/index.php?title= Cross- entropy oldid=983515385

(accessed October 19, 2020).

[6]. T. Shah, “Measuring Object Detection Models-MAP-

What Is Mean Average Precision?” Tarang Shah -

Blog, 26 Jan. 2018 Tarangshah .com /blog /2018-01-

27/ what-is -map-understanding- the-statistic-of-

choice-for-comparing-object-detection-models

[7]. J. Hui., “MAP (Mean Average Precision) for Object

Detection.” Medium, Medium, 3 Apr. 2019,

medium.com/@jonathan- hui/map-mean-average-
precision-for-object-detection- 45c121a31173

(accessed October 19, 2020).

[8]. K. He, X. Zhang, S. Ren. J. Sun (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern

recognition (pp. 770-778).

[9]. Wikipedia contributors, ”COVID-19 pandemic by

country and territory,” Wikipedia, The Free

Encyclopedia,

https://en.wikipedia.org/w/index.php?title=COVID-

19-pandemic- by-country-and-
territoryoldid=984313691 (accessed October 20,

2020).

[10]. Wikipedia contributors, ”COVID-19vac- cine,”

Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=COVID-

19- vaccineoldid=984344201, (accessed October 20,

2020).

[11]. Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R.

Girshick, “Detec- tron2,”

https://github.com/facebookresearch/detectron2, 2019.

[12]. Zhou, K. and Tao Xiang. “Torchreid: A Library for

Deep Learn- ing Person Re-Identification in Pytorch.”

ArXiv abs/1910.10093 (2019): n. pag.

http://www.ijisrt.com/
http://www.who.int/emergencies/diseases/novel-

	Mukul Kumar Vishwas

