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Abstract:- The research article presents a mathematical 

formalism to associate Infinite sequences of complex 

numbers with matrices belonging to ( , )M r c subsets of 

strictly rectangular complex matrix spaces. This is 

achieved by using the Spacer matrix (as defined in [2]) 

based Matrix chain propagation. The formalism is 

discussed and clarified with appropriate numerical 

examples  
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Notations 

 ( )m nM C  denotes the Complex Matrix space of  

Matrices of order m by n 

 ( )R A  denotes the Global Mass Factor associated with 

the matrix m nA   

 0 ( )R A  denotes the Effective Global Mass Factor 

associated with the matrix m nA   

 ( )C A  denotes the Global Alignment Factor associated 

with the matrix m nA   

 c  denotes the modulus of the complex number c  

 c
denotes the complex conjugate of the complex 

number c  

  1 2, ,...., me e e  denotes the standard 

Orthonormal basis in
mC  and  1 2, ,...., nf f f  

denotes the standard Orthonormal basis in 
nC  

 
HX  denotes the Hermitian conjugate of the matrix X  

 ( , )M r c  Is a subset of the Complex Matrix space 

( )m nM C  characterized by the numerical values of the 

Global Mass factor and Global alignment factor, r  and 

c , respectively 
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 N  denotes the set of all Natural numbers 

 u  denotes the Embedding dimension 

 n mX   denotes the Spacer Matrix associated with the 

complex matrix space ( )m nM C  

 ,n u u mP Q   are the component Matrices  associated 

with the Spacer Matrix n mX   

 s sI   denotes the Identity Matrix of order ‘s’ 

 max( , )a b  denotes the maximum of the two inputs a  

and  b , ,a b N  

 a b  denotes the absolute value of the difference of 

the two inputs a  and  b , ,a b N  

 .....t

s sB B B B B       (  t times ),  ‘ × ‘ denotes 

ordinary matrix multiplication 

 
INFC  denotes the set of all Infinite sequences of 

complex numbers 
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I. INTRODUCTION 

 

The Spacer Matrix based Matrix Multiplication 

scheme [2], can be used to link up infinite (countable 

infinite) sequence of matrices belonging to a strictly 

rectangular (m≠n) complex matrix space. In this research 

article the focus is on the above being applied to M(r,c) 

subsets of the complex Matrix spaces ( )m nM C
 ([1],[3]), 

i.e. subsets of complex matrices characterized by a given 
numerical value of the Global Mass and the Global 

Alignment factor. The chain propagation is determined by 

the spacer matrix elements, weightage terms arising out of 

modulus distribution and the composite phase terms 

associated with each degrees of freedom of the Matrix

( , )m nA M r c  . Every Iteration in Chain propagation 

(Increment in Chain size) is captured through an inner 

product formation, i.e. as a complex scalar. Therefore, the 

Matrix 
m nA 

 is associated with an infinite sequence of such 

complex scalars, such sequences themselves are elements of 

the set of all complex, infinite sequences. 

 

The article presents the Mathematical formalism and 

illustrates the same through its application on the numerical 
examples discussed in [1]. 

 

 

II. MATHEMATICAL FRAMEWORK AND ASSOCIATED ANALYSIS 

 

The following results, stated in [1], [2] and [3] are used to provide the groundwork for the formalism described in this 

research article: 

 

 ( )m nA M C  , 

1 1

m n

ij i j

i j

A a e f
 

  , ij ij ija r c  ,  ij ijr a , ijc C , 1ijc  , we consider the following 

convention that in the case of zero matrix elements of matrix  A :  0 0, 1ij ij ija r c     

 
1 1

( )
m n

ij

i j

R A r
 

  ,  
0

1 1

( ) (1 exp( ))
m n

ij ij

i j

R A r r
 

     

 
11 12 1 21 22 2 1 2

1 1

( ) .... .... ......... ....
m n

n n m m mn ij

i j

C A c c c c c c c c c c
 

   

 

( ) , ( ) 1, ( )m nC A C C A A M C   
 

 

  ( , ) ( ), ( , ) ( ) | 0 , ( ) , ( )m n m n m nM r c M C M r c A M C A R A r C A c         where we have the condition: 

0, , 1r c C c    

 

 

0

( )(1 exp( ))
ij

ij ij

r
r

r
     ,  where 

0

1 1

(1 exp( ))
m n

ij ij

i j

r r r
 

    is the numerical realization of the Effective Global Mass 

factor 0 ( )R A  

 

 ( )
ij

ij

r

r
  ,  where 

1 1

m n

ij

i j

r r
 

  is the numerical realization of the Global Mass factor ( )R A  

 0, 1,2,.. ; 1,2,....,ij i m j n     ,  and we have : 

1 1

1
m n

ij

i j


 

  

 

 0, 1,2,.. ; 1,2,....,ij i m j n      , and we have :

 1 1

1
m n

ij

i j


 

  

 

 1 2.....i i i inc c c   , 1 2 .....j j j mjc c c   , Therefore 1 2 1 2..... .....i j i i in j j mjc c c c c c   , 1,2,.. ; 1,2,....,i m j n   , we 

have: , 1, 1,2,.... ; 1,2,....,i j i jC i m j n         
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 , ,m n N m n   , we have: max( , ) , ,u m n m n u m u n      

 

n m n u u mX P Q    ,   where:  
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We define the following:  

 

1 1

m n

m n ij i j

i j

e f

 

   ,  

1 1

m n
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 

    ,  

1 1
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W e f      

 

   

 

Where: 
1

m

i i

i

e 


   ,   

1

n

j j

j

f 


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( )m m m n n u u m m n n u u mX X P Q P Q             ,   ( )n n n u u m m n n u u m m nX X P Q P Q          
 

 

( )m m m n n u u m m n n u u mX X P Q P Q             , ( )n n n u u m m n n u u m m nX X P Q P Q          
 

 

( )m m m n n u u m m n n u u mX X P Q P Q           , ( )n n n u u m m n n u u m m nX X P Q P Q          
 

 

( )m m m n n u u m m n n u u mX X P Q P Q           ,  ( )n n n u u m m n n u u m m nX X P Q P Q            

 

We define:  ( , | , | ) ( ) ( , )( )t tW t X X W X X            ,  ( , | , | ) ( ) ( , )( )t tW t X X W X X            

, ( , | , | ) ( ) ( , )( )t tW t X X W X X            , 

 

( , | , | ) ( ) ( , )( )t tW t X X W X X            ,  1,2,3,......t   , t N  

 

1
( , | ) ( )[ ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | )]

4
W t W t W t W t W t                      

1,2,3,......,t t N   
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We define:  
1 1

(0) ( ) ( , ) ( ) 1
. .

W
m n m n

              

 

1
( ) ( ) ( , | )

.
t W t

m n
       ,  1,2,3,......,t t N   

 

We have: ( ) { (1), (2),......., ( ),...........}m nC A t     ,  therefore, ( ) INF

m nC A C   

 

The complete mapping process can be represented in terms of the transformation ̂ : 

 

1 1

ˆ ( ) { (1), (2),......., ( ),...........}
m n

ij ij i j

i j

r c e f t  
 

         .... (eqn.) 

 

 

Numerical Examples 

 

1)  

2 3

1 0 0

0 1 0
A



 
  
 

  ,  ( 2, 1)A M r c    , we have the following:

2 3

1 0 0
2

1 00 2 

 
     

  

   

 
 

2 3

1 1 1
( , )

1 1 1
W  



 
  
 

 ,   

2 2

25 71
( ) ( ) ( ) ( ) ( )

7 2572
X X X X X X X X



 
             

   
 

 

3 3

25 7 0
1

( ) ( ) ( ) ( ) ( ) 7 25 0
72

16 16 0

X X X X X X X X



 
 

           
 
  

, 

 

( , | ) ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | ), 1,2,3,......,W t W t W t W t W t t t N                         

2 3( ) {0.197531,0.039018,0.007707,0.001522,0.000301,........}C A      .... (Each term in the sequence approximated 

to 6 places of decimal) 

 

 

2) 

2 3

2 0 0

0 0 0
B



 
  
 

 , ( 2, 1)B M r c    , we have the following: 

2 3

1 0 0

0 0 0


 
     

 
 

3)  

 

2 3

1 1 1
( , )

1 1 1
W  



 
  
 

 , 

2 2

49 71
( ) ( ) ( ) ( ) ( )

0 036
X X X X X X X X



 
             

 
, 

 

3 3

49 0 0
1

( ) ( ) ( ) ( ) ( ) 7 0 0
36

28 0 0

X X X X X X X X



 
 

           
 
  

 , 

 

 

( , | ) ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | ), 1,2,3,......,W t W t W t W t W t t t N                         
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2 3( ) {0.604938,1.120723,2.076277,3.846560,7.126228,........}C B       .... (Each term in the sequence approximated 

to 6 places of decimal) 

 

4) 

2 3

0 0

0 0

i
C

i


 
  

 
, ( 2, 1)C M r c    , we have the following:
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2
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, 

5)  
 

    

2 3

1 1
( , )

1 1

i
W

i
 



  
  

  
,  

2 2

25 71
( ) ( ) ( ) ( ) ( ) ,

7 2572
X X X X X X X X



 
             

   
 

 

   

3 3

25 7 0
1

( ) ( ) ( ) ( ) ( ) 7 25 0
72

16 16 0

X X X X X X X X



 
 

           
 
  

 , 

 
 

( , | ) ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | ), 1,2,3,......,W t W t W t W t W t t t N                       

 
 

2 3( ) {0.041667,0.002604,0.000163,0.000010,........}C C              .... (Each term in the sequence approximated to 6 

places of decimal) 

 

6) 

2 3

1 1 1

1 1 1
D



 
  
 

 ,  ( 6, 1)D M r c   , we have the following:  

2 3

1 1 11
( )

1 1 16


 
     

 
 , 

 

2 3

1 1 1
( , )

1 1 1
W  



 
  
 

,  

2 2

1 12
( ) ( ) ( ) ( ) ( )

1 19
X X X X X X X X



 
             

 
, 

 

3 3

1 1 1
4

( ) ( ) ( ) ( ) ( ) 1 1 1
27

1 1 1

X X X X X X X X



 
 

           
 
  

, 

 

 

( , | ) ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | ), 1,2,3,......,W t W t W t W t W t t t N                         

2 3( ) {0.197531,0.039018,0.007707,0.001522,0.000301,........}C D      .... (Each term in the sequence approximated 

to 6 places of decimal) 

 

7) 

2 3

1

1

i i
E

i i


  
  

  
 , ( 6, 1)E M r c    , we have the following: 

2 3

1 1 11
( )

1 1 16


 
     

 
, 

 
 

2 3

1
( , )

1

i i
W

i i
 



  
  

  
 ,  

2 2

1 12
( ) ( ) ( ) ( ) ( )

1 19
X X X X X X X X



 
             

 
, 
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3 3

1 1 1
4

( ) ( ) ( ) ( ) ( ) 1 1 1
27

1 1 1

X X X X X X X X



 
 

           
 
  

, 

 

( , | ) ( , | , | ) ( , | , | ) ( , | , | ) ( , | , | ), 1,2,3,......,W t W t W t W t W t t t N                         
 

2 3( ) {0.021948,0.004335,0.000856,0.000169,0.000033,........}C E          .... (Each term in the sequence 

approximated to 6 places of decimal) 

 

III. DISCUSSION AND CONCLUSION 

 
The article is an attempt to tie together the concepts of 

Spacer Matrix based Matrix Chain propagation with 

matrices belonging to ( , )M r c subsets. Using an Initiator 

matrix ( , )W    and Chain propagation matrix pairs

( , )X X X X    , ( , )X X X X    , 

( , )X X X X    , ( , )X X X X    , possibly 

infinite sequences of matrices belonging to ( )m nM C  are 

generated. 

 
Under the effect of inner product formation, this 

results in infinite sequence of complex numbers. 

 

In examples 1 through 3, the matrices belong to the 

( 2, 1)M r c  subset,  2 3A   and 2 3B   are associated 

with the same Initiator but different Propagator matrices, 

2 3A   and 2 3C   are associated with the same Propagator but 

different Initiator matrices. It can be observed that they are 

associated with different sequences, with 2 3( )C A   and 

2 3( )C C   appearing to converge absolutely to zero in the 

limit while the sequence 2 3( )C B  appears to be divergent in 

absolute sense. 

 

In examples 4 and 5, the matrices belong to the 

( 6, 1)M r c   subset; they differ from each other only in 

terms of the Initiator Matrix, It can be observed that both of 

them appear to converge to zero in absolute sense. It is 

evident from an examination of the presented formalism that 
the limiting behavior of these sequences is dictated by the 

overlap behavior of the participating matrices and vectors in 

the sequence, this aspect will be studied and analyzed in 

more details in subsequent follow up studies, and also focus 

will be made on applicability of the presented mathematical 

formalism in solving real world problems.   
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