
Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT169 www.ijisrt.com 552

Performance Analysis of Network Port Scanning

When Using Sequential Processing, Multithreading

and Multiprocessing in Python

Programming Language

Ante Projić

University College of Management and Design ASPIRA

Split, Croatia

Frane Marjanica

University College of Management and Design ASPIRA

Split, Croatia

Abstract:- This paper contains an analysis of sequential

processing, multithreading, and multiprocessing of a

simple application based on Python programming

language. Due to the availability of powerful hardware,

parallelism and concurrency have become an efficient

and powerful solution when considering software

performance. Execution times are a significant factor to

look at when designing and implementing software. In

this paper, we analyze the software performance

regarding sequential processing, concurrency and

parallelism and its impact on execution times when using

network port scanning. The analysis is based on three

separate implementations of the same function and its

performance on the same network subnet, same

hardware, and operating system. We will show that

multithreading and multiprocessing have a significant

performance impact on software analyzed when using

repetitive executions and that we are able to improve the

performance of our application. The results obtained will

provide insights into the parallel capabilities of Python

programming language, and it will show the differences

between multithreading and multiprocessing techniques.

We will explore both models for parallel computing. The

purpose of this paper is to explore the implementation of

multithreading and multiprocessing in Python

programming language and its potential limitations and

implementation suggestions.

Keywords:- Concurrency, Multiprocessing, Multithreading,
Parallelism, Sequential Processing.

I. INTRODUCTION

Parallel computing fulfills a need for the increased and

efficient performance of applications. Parallel computing

enables the simultaneous use of multiple computing

resources to enable processing that can be executed on

multiple CPUs or CPU cores. The processing problem can be

broke down into discrete pieces that can be processed

simultaneously, and each piece can be further divided into a

series of serially executed instructions on different CPUs or
CPU cores. Not to be confused with parallel computing,

concurrent programming denotes executing several

operations concurrently in overlapping periods.

Concurrent programming is not equivalent to parallel

programming. Concurrency is a property that specifies that

some operations can be run simultaneously, but that is not

necessarily the case. Parallelism is a property that specifies

that operations are being run simultaneously. Concurrent
threads or processes will not necessarily be running in the

same instant, wherein parallelism two or more processes or

threads literally run at the same time.

II. PARALLELISM AND CONCURRENCY IN

PYTHON PROGRAMMING LANGUAGE

Parallel computing fulfills a need for the increased and

efficient performance of applications. Parallel computing

enables the simultaneous use of multiple computing

resources to enable processing that can be executed on

multiple CPUs or CPU cores. The processing problem can be
broke down into discrete pieces that can be processed

simultaneously, and each piece can be further divided into a

series of serially executed instructions on different CPUs or

CPU cores. Not to be confused with parallel computing,

concurrent programming denotes executing several

operations concurrently in overlapping periods. The most

widely used programming approach for the management of

concurrency is based on multithreading. In concurrent

programming, an application is made by a single process that

is divided into multiple independent threads.

Python programming language has built-in libraries that

enable the use of most common programming methods that

deal with concurrent or parallel execution, and those are

multiprocessing and multithreading.

A process in Python is an independent sequence of

execution that has its own memory space. Its memory space

is not shared with other processes. Thread is also an

independent sequence of execution that shares its memory

space with other threads that belong to the program. A thread

runs on a single processor, and therefore only one can be run

at a time where processes run on separate processors. The
most important difference between the two is that

concurrency effectively hides latency and gives an illusion of

simultaneity where parallelism executes tasks at the same

http://www.ijisrt.com/

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT169 www.ijisrt.com 553

time. Threads allow dividing the main control flow of a

program into multiple concurrently running control streams.
Threads allow the creation of concurrent pieces of the

program where each piece accesses the same memory space

and variables. In contrast, processes have their own memory

space and resources. Also, starting threads is computationally

less expensive and requires fewer resources than starting

processes.

Concurrency and parallelism can be of extreme

significance for the performance of software programs,

especially those that are CPU and I/O heavy. For example,

I/O operations cause a lot of delays in execution due to

frequent waits from an external resource like a network.

This paper will demonstrate the impact of sequential

and concurrent executions on a port scanning program, and

how performance changes with different parameters. Since

port scanning spends most of its time waiting for a network

request to complete, we can implement concurrency so that

in those times that is spent on waiting for another task to

complete another task runs.

III. IMPLEMENTING PORT SCANNING IN

PYTHON

Our experiment with serial, concurrent and parallel

execution is based on a program developed in Python

(Python v2.7.5) which implements the basic functionality of

port scanning on a single host. For port scanning, we are

using socket library in Python. Determinating if the port is

open is done via socket.connect_ex(address) function where

the return error indicator of 0 means that the port is open and

connection has been successfully established. Socket global

timeout is defined by using the function socket. Set default

timeout(timeout) where it is set at 0.5 seconds. Queue library

is used for safely exchanging information between threads.
There are three main functions in which is port scanning

implemented. Function serial_port_scanner() implements

basic serial execution where all port scans are done

sequentially. Function multithreading_port_scanner()

implements concurrent execution via multithreading by using

Python built-in threading library. User can specify the

number of threads which will be spawned. Function

multiproccesing_port_scanner() implements parallel

execution via multiprocessing by using Python built-in

multiprocessing library.

A. Source code for application

port_scanning.py # #

Ante Projić #

PERFORMANCE ANALYSIS OF NETWORK # #

PORT SCANNING WHEN USING SEQUENTIAL # #

PROCESSING, MULTITHREADING AND # #

MULTIPROCESSING IN PYTHON #

PROGRAMMING LANGUAGE #

import datetime, socket, time, sys, threading, Queue,

multiprocessing

def port_scanner(PortNumber):

 tcp_sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

 result = tcp_sock.connect_ex((targetIP, PortNumber))

 if result == 0:

 return PortNumber

 tcp_sock.close()

def host_info():

 host_name = socket.gethostname()
 ip_address = socket.gethostbyname(host_name)

 print "Program is run on this host:"

 print "Hostname: %s" % host_name

 print "IP address: %s" % ip_address

 print "Timestamp:"

 print datetime.datetime.now()

def get_target_host():

 print "---"

 print "Enter FQDN host address for scanning:"
 target = raw_input(">> ")

 targetIP = socket.gethostbyname(target)

 print "Scanning host %s, IP address: %s" % (target,

targetIP)

 print "Enter port range:"

 start = raw_input("Start port >> ")

 end = raw_input("End port >> ")

 return [start, end, targetIP];

def threader():

 while True:
 worker = q.get()
 result_mt.append(port_scanner(worker))

 q.task_done()

def pool_handler(ports, number_of_processes):

 pool =

multiprocessing.Pool(processes=number_of_processes)

 pool.map(port_scanner, ports)

def serial_port_scanner():

 print "SERIAL Port scan starting!!!"
 start_time = time.time()

 result_se = []

 for PortNumber in ports:

 result_se.append(port_scanner(PortNumber))

 for port in result_se:

 if port == None:

 pass

 else:
 print "##Port %d is OPEN##" % port

 elapsed_time = time.time() - start_time

 print "SERIAL Port scan finished!!!"

http://www.ijisrt.com/

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT169 www.ijisrt.com 554

 print "Time elapsed for SERIAL execution: %s " %

elapsed_time

def multithreading_port_scanner():

 print "MULTITHREADING Port scan starting!!!"

 global q, result_mt

 q = Queue.Queue()

 print "Enter number of threads:"

 number_of_threads = int(raw_input(">> "))

 result_mt = []

 start_time = time.time()

 for x in range(number_of_threads):

 t = threading.Thread(target=threader)

 t.daemon = True
 t.start()

 for worker in ports:

 q.put(worker)

 q.join()

 for port in result_mt:

 if port == None:

 pass

 else:
 print "##Port %d is OPEN##" % port

 elapsed_time = time.time() - start_time

 print "MULTITHREADING Port scan finished!!!"
 print "Time elapsed for MULTITHREADING execution:

%s " % elapsed_time

def multiprocessing_port_scanner():

 print "MULTIPROCESSING Port scan starting!!!"

 host_cpu_count = multiprocessing.cpu_count()

 print "Number of CPUs in this host is %d" %

host_cpu_count

 print "Enter number of proccesses:"

 number_of_processes = int(raw_input(">> "))

 start_time = time.time()

 pool =
multiprocessing.Pool(processes=number_of_processes)

 result_mp = pool.map(port_scanner, scanlist)

 for port in result_mp:

 if port == None:

 pass

 else:

 print "##Port %d is OPEN##" % port

 elapsed_time = time.time() - start_time
 print "MULTIPROCESSING Port scan finished!!!"

 print "Time elapsed for MULTIPROCESSING

execution: %s " % elapsed_time

if __name__ == '__main__':

 socket.setdefaulttimeout(0.5)

 target_variables = []

 scanlist = []

 host_info()
 target_variables = get_target_host()

 ports = range(int(target_variables[0]),

int(target_variables[1]) + 1)

 targetIP = target_variables[2]

 for x in ports:

 scanlist.append(x)

 try:
 serial_port_scanner()

 print "---
\n\n"

 multithreading_port_scanner()

 print "---

\n\n"

 multiprocessing_port_scanner()

 except KeyboardInterrupt:
 print "You pressed Ctrl+C. Exiting program."

 sys.exit()

B. Performance with serial, concurrent and parallel

implementations

The application was run on a Linux host (Red Hat
Enterprise Linux Server release 7.5 (Maipo)) with 4 CPUs.

Port scanning was done on a remote host with a total of 28

ports in listening state. The host was scanned for 1 port, 10

ports, 100 ports, 1024 ports, and all 65535 ports respectively.

Every iteration of scanning was using serial, multithreading

and multiprocessing techniques. Full results from the

experiment are available in the table below.

Execution time on 1

port

Execution time on

100 ports

Execution time on

1024 ports

Execution time on

65535 ports

Serial 0.003sec 0.33sec 3.48sec 218.74sec

Multithreading with 10 threads 0.008sec 0.04sec 0.38sec 22.51sec

Multiprocessing with 10

processes
0.039sec 0.07sec 0.37sec 21.57sec

Multithreading with 100 threads 0.029sec 0.06sec 0.31sec 17.81sec

Multiprocessing with100
processes

0.33sec 0.40sec 1.60sec 71.97sec

Multithreading with 200 threads 0.05sec 0.09sec 0.32sec 18.07sec

Multiprocessing with 200

processes
0.91sec 1.10sec 2.38sec 61.29sec

a. Execution times

http://www.ijisrt.com/

Volume 5, Issue 10, October – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20OCT169 www.ijisrt.com 555

IV. CONCULSION

Benchmark results show that in this particular instance

multithreading is far superior to serial execution and that it

also performs better than multiprocessing. Firstly,

multiprocessing has an overhead, it takes longer to spawn a

process when compared to multithreading. Multithreading

doesn’t have as much overhead since the threads can read the

same object without creating a copy. Global Interpreter Lock

(GIL) in Python is a form of a bottleneck when using

multithreading in Python as it allows maxing out only one

processor and it prevents execution of multiple threads at

once in Python. GIL is a thread-safe mechanism that is used

to prevent threads from writing to the same location in
memory, and it prevents parallel threads from executing on

multiple cores. Therefore, GIL prevents conflicts between

threads by executing only one statement at a time.

In this application, multithreading performed

significantly better than serial execution which was expected

since we are dealing with an I/O (input/output) processing

and in time that is spent waiting on a request another thread

is spawned and executed. Multiprocessing also cannot scale

well in this type of repetitive tasks that are I/O heavy since

using more processes than there are available CPUs leads to
competition for CPU resources. Contrary, if we were

analyzing a processing task that is CPU heavy multithreading

might not perform better than serial execution since only one

thread could be executed at any given time, and taking into

account the time needed to perform a switch between threads,

execution time would most likely be worse on multithreading

approach than using serial execution. Multiprocessing would

be expected to be far superior to serial and multithreading in

that case because it would use all available processors in the

system.

Multithreading is best for I/O tasks and hiding latency,
while multiprocessing performs better for computations. We

can conclude that threads are not recommended for use in

CPU bound tasks, but they are extremely effective in I/O

tasks like network IO as in this example and in filesystem

I/O.

REFERENCES

[1]. A. Zaccone, “Python parallel programming cookbook”,

Packt Publishing Ltd, 2019.

[2]. S. Kumar, “Python : threading vs multiprocessing”
unpublished.

[3]. S. Ghosh “Multiprocessing vs. threading in python:

what every data scientist needs to know” unpublished.

[4]. J. Palach, “Parallel programming with python,” Packt

Publishing Ltd, 2019.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. PARALLELISM AND CONCURRENCY IN PYTHON PROGRAMMING LANGUAGE
	III. IMPLEMENTING PORT SCANNING IN PYTHON
	A. Source code for application
	B. Performance with serial, concurrent and parallel implementations

	IV. CONCULSION
	REFERENCES

