
Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1823

Building a Library for Automatic

Duplicate Code Detection

Dufan Quraish Shihab1, Fadilah Fahrul Hardiansyah2, Desy Intan Permatasari3,

Umi Sa'adah4, Jauari Akhmad Nur Hasim5, Andhik Ampuh Yunanto6, Irma Wulandari7

Department of Informatics and Computer Engineering

Politeknik Elektronika Negeri Surabaya

Surabaya, Indonesia

Abstract:- The existence of duplicate code can be one of

the factors that complicate the software maintenance

process. This can be avoided by detecting and

refactoring. Duplicate code detection is generally done

manually, so it is quite time consuming and makes

developers less productive. This research proposes the

creation of a library to automatically detect duplicate

code. This research goal is to avoid detecting duplicate

codes manually. The proposed library uses a new

approach, combine text and tree bases as a method of

detecting duplicate code. Tree base as a representation

of code structure. The textbase is using pretty-printing,

represents the fragment code in the form of text for

comparison. The threshold used is 30%. If the

comparison results are above the threshold, the

fragment code is said to be a duplicate code. The output

of the library is a list of codes that are indicated by

duplicate codes or called clone pairs. This library can

detect duplicate code Type-1 and Type-2. Manual

duplicate code detection requires a very long time

because the comparison process is complex. While

duplicate code detection with this library, only takes

5.57 seconds. With this very significant time efficiency,

it will make software developers more productive.

Keywords:- Duplicate Code; Clone Pair; Automatic

Detection.

I. INTRODUCTION

The process of maintaining software requires adding

new functions or modifying existing functions [1]. As a

result, the structure of software becomes more complex as

time passes. Increased software complexity has the potential

to cause code smell.

Code smells are a set of common signs which indicate

that your code is not good enough and it needs refactoring to

finally have a clean code. If left unchecked, code smell has

the potential to cause bugs, errors, or gaps in security in the

future [2]. Code smell can reduce aspects of program

understandability and maintainability. Understandability is

the quality of a system that can be understood or read. While

maintainability is an aspect related to speed, accuracy,

security, and economics of maintenance activities.

Maintenance is an activity that starts from the time the

software starts to be used until the software can't be used
anymore. The low understandability makes the program

code difficult to understand, consequently, the

maintainability decreases and the maintenance process is
more difficult to do. This can be detrimental to the

developer because it requires a large enough cost. Duplicate

code is one of the factors that make the software

maintenance process more difficult [3].

Duplicate code is a type of code smell where there are

parts of code that are very similar in software systems.

Several studies [4, 5, 6] show that duplicate codes are often

found on a large codebase. Duplicate code occurs as a result

of reusing fragment code by copying and pasting with or

without minor adaptations in software development.

Duplicate code detection is generally done manually.

For that, the developer needs to read the program code in a

file as a whole. Then the developer needs to determine

which fragment code is indicated by duplicate code from the

program code that is read. To determine this, the developer

needs to make a comparison of code in one place with

another place. Because there are many steps in manual

detection, this process requires a considerable amount of

time. The size and complexity of the software affect the

time and accuracy in making the detection. As a result,

developer productivity decreases. So that the specified
software development schedule can be missed. Cost

allocations have also increased.

II. RELATED WORKS

This section will explain the related works for building

a library in this research.

Roy et. al. [11] presented clone code detection

techniques and tools, provides concise explanations with

comprehensive surveys and hypothetical evaluations based

on editing scenarios. Jeon et. al. [7] defined rules of
inference to automatically identify several candidates and

refactoring strategies to change one of several candidates

into the desired design pattern structure. Opdyke [13]

defined several programs that specifically have restructuring

operations (refactoring) to support the design, evolution, and

reuse of object-based application frameworks. Aristyagama

[2] provided a semi-automatic bad smell code detection

design framework to deal with the problem of

standardization of bad smell code in team programming.

Kamiya et. al. [4] presented a clone detection tool called

CCFinder with transformation rules and token-based
comparisons, and optimization techniques to improve

performance and efficiency. Higo et. al. [10] presented

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1824

refactoring support tools called Aries to characterizes the

clone code with several metrics and suggests how to remove
them. In other words, Aries tells the user which clone codes

can be removed and how to delete them. Bulychev and

Minea [9] presented a duplicate code detection tool called

Clone Digger to takes the source file name and threshold

value as parameters. This tool generates HTML files with a

list of clones. Each pair is reported statement after statement

by displaying differences. Roy and Cordy [14] provided a

new clone detection method called NICAD is based on a

two-stage approach: identification and normalization of

potential clones using flexible pretty-printing and code

normalization, followed by a simple text comparison of

potential clones using dynamic clusters.

III. PROPOSED IDEA

This research proposes the creation of a library to

automatically detect duplicate code. This research goal is to

avoid detecting duplicate codes manually. The proposed

library uses a new approach, combine text and tree bases as

a method of detecting duplicate code. Tree base as a

representation of code structure. The textbase is using

pretty-printing, represents the fragment code in the form of

text for comparison. The threshold used is 30%. If the

comparison results are above the threshold, the fragment

code is said to be a duplicate code. In Fig. 1 is a research

system design that illustrates the steps of the duplicate code

detection process.

Fig 1:- System design of duplicate code detection

Based on the design in Fig. 1, to get a list of fragment

codes that are indicated by duplicate code or clone pairs, the

user must first enter the directories of the software.

The system is looking for the code program files that

are in that directory. After getting all the program files, the

files will be read for method detection to get all the methods

in files. Based on the methods obtained, the system will look

for the contents of the methods of clone pairs by making a

comparison. The part of contents in the method or fragment

code is compared with other fragment code to get the
fragment code pairs indicated by duplicate code or called

clone pairs.

IV. SYSTEM DESIGN

This section will explain more detail about the

approach to building a library used as a solution to this

research.

A. File Detection

File detection is the first step of duplicate code
detection. File detection is based on software directories

entered by the user. The file detection design is shown in

Fig. 2. This design was obtained by reference [15].

Fig 2:- System design of file detection

Based on the design in Fig. 2, the steps are below:

 The directories will be read by the system. The system

checks readable directories. The system checks whether
that is a directory or not.

 If the result is a directory, then it will move into that

directory.

 If the result is a file, then the file will be checked,

whether it has the file extension as desired.

 If the file extensions match, then the file will be saved

for the next process.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1825

B. Method Detection

The next step is reading the method for each file.
Below in Fig. 3 is the system design of method detection.

Fig 3:- System design of method detection

The design in Fig. 3 was obtained by reference [15].

Based on the design in Fig. 3, the steps are below:

 To find a method, we need global characteristics that are

owned by the method. These characteristics are defined

as regex (regional expression). Regex is used to search

for sentences that fit the specified conditions. The

system obtains all the methods based on regex.

 Then the system analyzes to determine the beginning

and the end of the method. It aims to get the overall

method.

 After the method has been successfully read, then the
system analyzes to obtain the attributes of the method.

The method has several attributes, including keywords,

return types, names, parameters, and exceptions.

 The next step is to get the contents or body of the

method. Based on that content, the system read each

statement and the variables that are used in the method.

 If the contents of the method have been successfully

obtained, then the method has been successfully read

perfectly, and the method can be stored for the next

process.

C. Match Detection

Match detection is looking for fragment code pairs that

are indicated as duplicate code or can be called clone pairs.

The output of this process is clone pairs for each file. This

process is the next step after the method detection has been

successful In Fig. 4 is a match detection system design. This

design was obtained by reference [11].

Fig 4:- System design of match detection

Based on Fig. 4, match detection has several phases

that need to be passed. Below is a description of each phase.

 Preprocessing Code

This stage will build a candidate that will be used as a

comparison unit in finding clone pairs. Candidates are

obtained by taking statements in each method in each file. In

Fig. 5 below is an example of taking candidates.

Fig 5:- Example of taking candidate

Based on Fig. 5, taking statements need to pay

attention to the threshold and determined at least three

statements to get.

 Transformation Code

After building a comparison unit or candidate, the

statement on each candidate will be changed to an

intermediate level representation that is suitable for the

comparison process. Starting from normalization to
extraction. Normalization is the step to eliminate minor

differences such as differences in whitespace, comments,

format, or identifier names.

Fig 6:- Transformation code from tree approach to text

approach

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1826

Extraction transform code to the form that matches

with input to the comparison algorithm as shown in Fig. 6.
All statements in the method that have been built in the form

of a tree approach will be transformed one by one in the

form of a text approach, called pretty-printing [14].

 Match Detection Code

The code that has been transformed is entered into a

comparison algorithm where the comparison units are

compared with each other to find a match. In Fig. 7 below is

an example of comparing two statements.

Fig 7:- Comparing two statements

The system will compare part of the statement for each
statement that has been changed to a text approach. Each

similar part will increase the value of similarity by one. The

calculation of the value of similarity has been mentioned in

reference [14]. The calculation is shown in equation (1)

below.

Equation (1) is a formula for calculating the percentage

of uniqueness based on the value of similarity. UPI (Unique

Percentage of Items) values are obtained by dividing the

number of unique values with the total items and then

multiplying it with 100%. Zero value in similarity indicates
that an increase in unique value by one.

Fig. 7 shows that the UPI value is 0%. We assume that

the UPI threshold used is 30%. This threshold obtained by

reference [14]. If the UPI value is below the threshold, it can

be said to be a clone.

The output of match detection is a list of matches in

the transformed code that is represented or combined to

form a set of prospective clone pairs.

V. EXPERIMENT AND ANALYSIS

The design of the duplicate code detection experiment

is shown in Fig. 8. The experiment will compare manual

detection by using a library.

Fig 8:- Experiment design

The experiment is carried out by running the system

that has been created by using the directory of the project
dataset. This research limits duplicate code detection for

Type-1 and Type-2. Duplicate code Type-1 is fragment

codes that are identical except for variations in whitespace,

layout, and comments. Duplicate code Type-2 is fragment

codes that are structurally and syntactically identical except

for variations in an identifier, literal, type, whitespace,

layout, and comments.

The dataset specification for the experiment is shown

in Table 1.

Dataset (java-ml-projects)

Total Java file 40

Total method 201

Table 1:- Dataset Specification

Based on Table 1, the dataset used in the experiment is
a project that uses Java programming language to implement

various machine learning. This project has 40 Java files and

has 201 total methods.

The experiment device specification is shown in Table

2. The device used for the experiment was the researcher's

laptop.

Experiment Device

Operating System Windows 7

Processor
Intel(R) Core (TM) i7-4510U CPU

@ 2.00GHz, 2.60GHz

RAM 4 GB

System Type 64-bit

HDD 1 TB

Table 2:- Experiment Device Specification

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1827

Based on Table 2, the specifications for the experiment

are Windows 7 operating system, processor Intel (R) Core
(TM) i7-4510U CPU @ 2.00GHz, 2.60GHz, 4GB RAM,

64-bit system type, and HDD 1 TB.

The results obtained by the system are not matched

with the results obtained manually. Manual detection

detected 16 clone pairs in the dataset software. Detection by

the system successfully detected 20 clone pairs in the dataset

software. The graph of experiment results for duplicate code

detection by the system is shown in Fig. 9 below.

Fig 9:- Experiment results for duplicate code detection by

the system

Based on the results in Fig. 9, this library can detect

fragment codes that are indicated by duplicate code with an

accuracy rate of 64% and an error ratio of 36%. The error

ratio that is obtained is due to the existence of an

anonymous class which cannot be considered as a single

statement, so there is an error in taking the candidate.

Anonymous class is still not handled in defining the

statement in method detection. This error ratio also depends

on how many errors in taking candidates in finding
anonymous classes. The more anonymous ones are found,

the greater the error ratio is. If anonymous class handling

can be ignored, then it can be said that the detection

accuracy level reaches 100%.

In addition to analyzing the accuracy of the results, the

experiments also analyzed the time needed to detect

duplicate code. To test the time needed for the system to

detect duplicate code, the experiment is carried out by

running the system five times.

The result of the time experiment by the system is shown in

Table 3.

The time needed for each experiment (s)
Average

Time (s)
1 2 3 4 5

5.51 5.64 5.55 5.38 5.75 5.57

Table 3:- Time Experiment by System

Testing the time for manual detection is occur only

once. Manual duplicate code detection takes hours or even
more than one day due to the complexity of the comparison

process. Based on Table 3, duplicate code detection with the

system takes only 5.57 seconds. It can be proven that the

time needed by the system to detect duplicate code is faster

than manual detection.

In Table 3, each experiment generates a fairly stable

detection time so that the system has a good level of stability

and can avoid human errors.

VI. CONCLUSION

Duplicate code is one type of code smell that makes

the software maintenance process more difficult. Duplicate

code detection is generally done manually. The number of

steps for manual detection can be a very long time even at a

lower level. A lot of time consumed causes developers to

not be able to add new features. Without the addition of new

features, the software development schedule that is set can

be missed. At last, this problem can increase the costs.

This research proposes the creation of a library to

automatically detect duplicate code. This research goal is to
avoid detecting duplicate codes manually. The proposed

library uses a new approach, combine text and tree bases as

a method of detecting duplicate code. Tree base as a

representation of code structure. The textbase is using

pretty-printing, represents the fragment code in the form of

text for comparison. The threshold used is 30%. If the

comparison results are above the threshold, the fragment

code is said to be a duplicate code.

Based on the experiment result, it can be concluded

that the library can detect most of the duplicate code in the

software. This is because the library has not overcome
anonymous class detection in the method detection. So the

level of accuracy varies. Besides, this library can detect

duplicate code Type-1 and Type-2.

Because it is automatic, the library can reduce the time

to detect duplicate code. Manual duplicate code detection

takes hours or even more than one day due to the

complexity of the comparison process. Duplicate code

detection with the system only takes 5.57 seconds. This

proves that the time needed by the system to detect duplicate

code is faster than manual detection.

REFERENCES

[1]. Y. Higo, T. Kamiya, S. Kusumoto dan K. Inoue,

“Refactoring Support Based on Code Clone

Analysis,” 2004.

[2]. Y. H. Aristyagama, “Framework Deteksi Bad Smell

Code Semi Otomatis untuk Pemrograman Tim,” 2016.

[3]. M. Fowler, K. Beck, J. Brant, W. Opdyke dan D.

Roberts, Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY954 www.ijisrt.com 1828

[4]. T. Kamiya, S. Kusumoto dan K. Inoue, “CCFinder: A

Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code,” 2002.

[5]. M. Kim, V. Sazawal dan D. Notkin, “An Empirical

Study of Code Clone Genealogies,” 2005.

[6]. Z. Li, S. Lu, S. Myagmar dan Y. Zhou, “CP-Miner: A

Tool for Finding Copy-Paste and Related Bugs in

Operating System Code,” 2004.

[7]. S.-U. Jeon, J.-S. Lee dan D.-H. Bae, “An Automated

Refactoring Approach To Design Pattern-Based

Program Transformations In Java Programs,” 2002.

[8]. W. Evans, C. Fraser dan M. Fei, “Clone Detection via

Structural Abstraction,” 2007.

[9]. P. Bulychey dan M. Minea, “Duplicate Code
Detection Using Anti-Unification,” 2008.

[10]. Y. Higo, T. Kamiya, S. Kusumoto dan K. Inoue,

“ARIES: Refactoring Support Tool for Code Clone,”

2005.

[11]. C. K. Roy, J. R. Cordy dan R. Koschke, “Comparison

and Evaluation of Code Clone Detection Techniques

and Tools: A Qualitative Approach,” 2009.

[12]. Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto dan K.

Inoue, “On Software Maintenance Process

Improvement Based on Code Clone Analysis,” 2002.

[13]. W. F. P. Opdyke, “Refactoring Object-Oriented
Frameworks,” 1992.

[14]. C. K. Roy dan J. R. Cordy, “NICAD: Accurate

Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code Normalization,”

2008.

[15]. F. Z. P. Putra, D. I. Permatasari, U. Sa'adah, F. F.

Hardiansyah dan J. A. N. Hasim, “Rancang Bangun

Pustaka untuk Deteksi Otomatis Long Method Code

Smell,” dalam The 11th National Conference on

Information Technology and Electrical Engineering,

Yogyakarta, 2019.

[16]. D. Silva, R. Terra dan M. T. Valente,
“Recommending Automated Extract Method

Refactorings,” ICPC, 2014.

[17]. S. Charalampidou, A. Ampatzoglou, A.

Chatzigeorgiou, A. Gkortzis dan P. Avgeriou,

“Identifying Extract Method Refactoring

Opportunities Based on Functional Relevance,” vol.

43, no. 10, 2017.

[18]. C. K. Roy dan J. R. Cordy, “An Empirical Study of

Function Clones in Open Source Software Systems,”

2008.

[19]. Sun Microsystems, Inc, Java Code Conventions,
Mountain View: Sun Microsystems, Inc, 1997.

[20]. B. Baker, “On Finding Duplication and Near-

Duplication in Large Software Systems,” 1995.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. RELATED WORKS
	III. PROPOSED IDEA
	IV. SYSTEM DESIGN
	A. File Detection
	B. Method Detection
	C. Match Detection

	V. EXPERIMENT AND ANALYSIS
	VI. CONCLUSION
	REFERENCES

