
Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY889 www.ijisrt.com 1985

Design and Implementation of Sequential Read

Ahead in Zoned Namespaces for Solid State Drives

Adnan Asad Vohra, Dr. Srividya P.

Department of Electronics and Communication Engineering

RV College of Engineering, Bengaluru, India – 560059

Abstract:- In the day and age of data and information,

the ability to retrieve the information becomes of

paramount importance. The cutting edge technology in

terms of data storage is currently Solid State Devices

which use NAND gates to store data. This relatively new

method of storing data presents numerous avenues of

research and breakthroughs. The concept of Zoned

Namespaces in SSD firmware is one such major avenue

of ongoing research. The objective of this paper is to

understand the need for higher data accessing speeds

and envisioning the advancements made possible by

improving basic read and write speeds in SSD's. The

goal is to allow for writing sequential data in namespaces

where the data related to each other holds a granularity

of a single zone. The idea is achieved by implementing

sequential read ahead where the sequential data is read

ahead of time by anticipating host read request to that

data. This gives the host, cache hit on requested data

which greatly improves performance. The pre-fetched

data is cleared from cache once the data has been read or

any disabling condition occurs thus not hampering

normal functioning of the drive. The implementation was

tested on a 8 TB form factor SSD. The results for reads

were 70 MB/s for ZNS before SRA and 275 MB/s after

SRA enablement. Thus a very significant increase is

observed which proves that the objective was achieved.

Keywords:- Sequential Read Ahead, Zoned Namespaces,

Cache Memory, NAND, Static Random Access Memory,
Queue Depth, Non-Volatile Memory Express.

I. INTRODUCTION

Flash Translation Layer (FTL) is a key technology in a

Solid--State Disk (SSD) system to manage the data transfer.

Different mapping granularity in FTL will cause a change in

the read/write performance and the size of mapping table. A

zone is a range of logical block addresses that is managed as

a single unit. Namespaces are a quantity of non-volatile

memory that may be formatted into logical blocks. When

formatted, a namespace of size n is a collection of logical
blocks with logical block addresses from 0 to (n-1).

Combining both these terms gives rise to Zoned Namespaces

(ZNS), a namespace that is divided into zones and is operated

by the Zoned Command Set. The data in the zones are

sequential which results in highly cohesive data inside a

zone.

Sequential Read Ahead (SRA) is the mechanism of

reading sequential data before it has been requested by

anticipating read request. This is done to improve response

time by having higher cache hit ratio. The data is pre-fetched

from the NAND and kept in SRAM cache for faster access

times. For most cases of read the function should work
properly while additional cases need to be added for

defragmented zones and avoiding reading of holes between

two zones. Flash Translation Layer Based on Grouping Pages

was studied and the conclusion obtained was that using pg-

FTL algorithm to divide the mapping table into three levels,

the size of mapping table will fall dramatically because of the

channel parallelism in pg-FTL. There was also an

improvement under read requests comparing to the page

mapping, especially sequential read requests [1]. On

Investigating Hybrid SSD FTL Schemes for Hadoop

Workloads the results presented included logical-physical

mappings, I/O request size analysis, erase and merge counts
and sensitivity to some important FTL parameters.

Correlation was done to the workload behavior for most of

the results. GC, Erase counts and lifecycle greatly improved

[2].

II. METHODOLOGY ADOPTED

A. Design

The design of the project is carried out by first

identifying the states of the SRA function. Next the

conditions for reaching those states are listed mainly the
enabled and disabled states. The interdependencies are also

taken into account while also considering corner cases which

might results in minor unwanted behavior of the system. The

penalty for cache usage is also taken into account so as to not

use too much RAM unnecessarily which can make the whole

device slow thus countering what was intended.

The design of SRA shall be expandable from single

stream to multi-streams, and multi-namespaces. When host

issues low Queue Depth (QD) small command size

sequential reads, after a ramp-up time, SRA shall be able to

provide cache hit of host reads to boost performance number.
If the Read across Zone Boundaries bit in the Identify

Namespace data structure is set to ‘1’, then read operations

are allowed to cross zone boundaries. If the Read across Zone

Boundaries bit is cleared to ‘0’ the read operations are not

allowed to cross zone boundaries.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY889 www.ijisrt.com 1986

SRA will consist of five states which are as shown in

Table 1 –

Current SRA state Valid Next SRA States

SRA_DISABLED SRA_RAMPING

SRA_RAMPING SRA_ENABLED,

SRA_DISABLING

SRA_ENABLED SRA_PAUSED,

SRA_DISABLING

SRA_PAUSED SRA_ENABLED,

SRA_DISABLING

SRA_DISABLING SRA_DISABLED

Table 1:- Valid state transitions of SRA

Conditions for enabling SRA –

 Host is not issuing large host read command

 Host is not issuing high QD host read commands

 There is no host write command in-flight

 There is no unmap command in-flight

 Host is issuing sequential read commands

The conditions for disabling SRA are – Any of the

following condition (or conditions) can cause SRA going

back to disabled, which is the default state

 New host write comes in

 New unmap command comes in

 Large host read command comes in

 High QD read commands come in

 Random read command comes in

 Sequential low QD read has been idle from host for X

seconds

Once the data has been read and SRA is going back to

SRA_DISABLED state the data present in cache has to be

removed to empty the Random Access Memory (RAM). This

process is called cache entry (CE) teardown. SRA cache

entries that have been inserted into the L2P must be torn

down by calling the CE rollback processor. Any other

mechanism for tearing down the CE is invalid. CEs can

either be torn down individually, in the case of Cache Entry

Pruning, or collectively when the SRA transitions to state

SRA_DISABLING.

B. Implementation

The implementation done is as follows in Fig. 2. The

figure shown is a UML diagram in which the arrows

indicates transitions from one function to the other in

firmware while the task done by the functions is given

numbered. The figure gives a series of steps which help

execute SRA.

Fig.2: UML Diagram of Sequential Read Ahead

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY889 www.ijisrt.com 1987

The program code was written in C language and for

the testing scripts, Python was used. The firmware logic was
tested on an 8 TB SSD drive.

III. RESULTS AND ANALYSIS

The random read and write speeds for conventional

SSD and zoned SSD’s are shown below in Fig. 3 and Fig. 4.

respectively. For sequential data which is specifically

important for zoned namespaces the read and write speeds

get boosted up to 1.5 GB/s at a Queue Depth (QD) of 128

and a block size of 512 KB as shown in Fig. 5.

Fig 3:- R/W speeds for random data in conventional SSD

Fig 4:- R/W speeds for random data in Zoned SSD

Fig 5:- Write speeds for sequential data in Zoned SSD

Fig 6:- Read speeds for sequential data in Zoned SSD

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY889 www.ijisrt.com 1988

Additionally the reads with SRA shown in Fig. 6.

enabled show a significant increase in the read speeds
reaching up to 275 MB/s at a QD of 1 and block size of 4

KB. These reads are performed at a low I/O depth and 4K

block size for SRA to be enabled. The jump from 70 MB/s

which was observed without SRA enablement to 275 MB/s

after the implementation of SRA helps understand and

appreciate the speed increase in reading data. The results for

higher QD reads for both the cases gradually converge as the

QD keeps increasing since SRA does not have a significant

impact at a higher QD.

To improve I/O performance, this technique is

employed in operating systems, where more of a file than
was requested is read into memory with the assumption that

subsequent reads are likely to need that data. Higher read

ahead increases throughput at the expense of memory and

Input/output Cycles per second (IOPS). Lower read ahead

increases IOPS at the expense of throughput. Higher queue

depths increase IOPS but can also increase latency. Lower

queue depths decrease per-I/O latency, but might result in

lower maximum IOPS. Thus there exists a tradeoff between

SRA and QD where SRA is enabled with low QD and

disabled when the IO depth of the workload is high.

IV. CONCLUSION

The advancements made by the concept and

implementation of Sequential Read Ahead in Zoned

Namespaces brings a new benchmark in terms of I/O speeds

for Solid State Drives. It does so by addressing the fact that

data is now being stored in larger chunks and need to be

accessed simultaneously in a quick manner for example large

applications, movies, games, data stored in servers and data

centers. All these data are cohesive in nature and are

generally accessed in sequential fashion. These areas of data

storage greatly benefit from the concept of zoned storage and
read ahead mechanisms to cope with the growing demand for

faster access times and response times of systems.

The read and write speeds obtained in the results prove

that the access speeds have significantly been improved and

will thus result in faster and better systems. It will also enable

applications to take advantage of these speeds and push data

storage to a new boundary where even larger data will be

accessible in a short span of time resulting in more complex

application and heavier data storage and usage around the

globe.

ACKNOWLEDGMENT

I am indebted to my guide and co-author, Dr. Srividya P,

Associate Professor, RV College of Engineering for the

wholehearted support, suggestions and invaluable advice

throughout my project work and also helped in the

preparation of this paper.

I also express our gratitude to my panel members Dr.

Srividya P, Associate Professor and Dr. Shilpa D.R.,

Associate Professor, Department of Electronics and

Communication Engineering for their valuable comments

and suggestions during the phase evaluations.

My sincere thanks to Dr. K S Geetha, Professor and

Head, Department of Electronics and Communication

Engineering, RVCE for the support and encouragement. I

express sincere gratitude to our beloved Principal, Dr. K. N.

Subramanya for the appreciation towards this project work. I

thank all the teaching staff and technical staff of Electronics

and Communication Engineering department, RVCE for their

help.

Lastly, I take this opportunity to thank my family

members and friends who provided all the backup support
throughout the project work.

REFERENCES

[1]. Li Wang, Min Zhu, Chunling Yang, Xiaoming Qiu,

Research on the Flash Translation Layer Based on

Grouping Pages– Sixth International Conference on

Instrumentation & Measurement, Computer,

Communication and Control (IMCCC), IEEE, 2016

[2]. Hyeran Jeon, Kaoutar El Maghraoui, Gokul B.

Kandiraju, Investigating Hybrid SSD FTL Schemes for

Hadoop Workloads, IBM T.J. Watson Research

Center, United States, 2013
[3]. Hu Y, Jiang H, Feng D, et al. Performance impact and

interplay of SSD parallelism through advanced

commands, allocation strategy and data granularity.

International Conference on Supercomputing,

Tucson, USA, 2011
[4]. Dan M, Wang Y, Yang Y. A wear-leveling algorithm

based on IO request prediction. International

Conference on System Science, Engineering Design

and Manufacturing Informatization. IEEE, 2012
[5]. C. L. Abad, N. Roberts, Y. Lu, and R. H. Campbell. A

storage-centric analysis of mapreduce workloads: File

popularity, temporal locality and arrival patterns.

Workload Characterization (IISWC), 2012 IEEE

International Symposium
[6]. NVMe base specification, Revision 1.4, 2019

http://www.ijisrt.com/

	I. INTRODUCTION
	II. METHODOLOGY ADOPTED
	A. Design
	B. Implementation

	III. RESULTS AND ANALYSIS
	IV. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

