
Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 548

An Experiment of Looping Argument in

Hypertext Preprocessor in Web Based System

Danial Kafi Ahmad 1 2*, Norshima Zainal Shah2, Hoo Yann Seong3

1Faculty of Information Technology, INTI International University, Nilai, Malaysia

2Language Centre, National Defence University of Malaysia, Kuala Lumpur, Malaysia.

3Centre for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, Malaysia.

Abstract:- Looping were common and essential in most

software based system regardless of their programming

languages. As an example of a basic system, the absent of

loop function, however seems possible for the program

to perform required repetition automated task, but

could lead to major issues in terms of system efficiency.

Imagine of a particular software system without loop

function, but would require to perform multiple

repetitions, then it would be a system with massive lines

of code which create so called “important redundancies”

in within the software code itself. In this experiment, a

light program of looping function of different designs

and versions were developed whereby the argument or

parameter of initialization and incremental function

were manipulated in a manner of non-common practice.

Keywords:- Control Structure, Repetition, Initialization,

Argument.

I. INTRODUCTION

Control structures were very important in any system
of software based nowadays. It was classified into two types

of structure which are condition and looping. Condition and

looping, both perform validation of condition

(TRUE/FALSE value), however, the loop function would

make sure that repetition of certain program were executed

as according to the required condition [1]. These situation

had caused the perception of the importance of the loop

function in a system at a very high level, thus it is a very

good idea to understand deeply how loop functions works

especially in a content of so called “non-common practice”.

By possess good and deep understanding of the function,
therefore the tendency to design a good software based

system which integrated with loop function structure is high.

In this experiment, the for() loop function were deployed in

the program, as to investigate more on the non-common

practice of the loop function in terms of syntax and semantic.

In this case, syntax would be the code grammar and semantic

would be the logical flow of the program. The program were

developed using Hypertext preprocessor (PHP), in which the

results would be in this scripting language context. This is

due to the possibilities of other scripting language or

programming language that own different interpretations

towards the scripts or statements, this include the syntax and
semantic.

II. METHODOLOGY

 SDLC

Software Development Lifecycle (SDLC) were vital in

any software development processes or activities as it

provides the essence or the guidance of how the activities of

development would be executed systematically. The

systematic approach is a required and common practice in

Software Engineering [2]. In other any engineering

discipline, it would be the same concept in a context of
systematic approach whereby the design and development

should be systematic and organized. This means that

measurement, records and approval take place. In this

experiment of small scale software development, an

incremental model which comprises of Specification,

Development and Validation were executed in a non-fixed

sequence of activities (Non-Plan Drive) [3]. It would mean

that the activities were done according to the requirement

change due to a certain factor. The non-plan driven would

benefits the developer by providing flexibilities and agilities

during the development as well as rapid development.

 Software Process Model (Incremental)

Specification

Development Tools

PHP scripting language were used in this research

experiment in order to develop the program. This is due to

the nature of its reliability and functionality as well as the

popularity [4]. Popularity would plays an important role in

determining the usage of the language as it would reflects

the size of the community of the language. For example,

PHP is an open source language which mean that it provides

easy access. Developer or anyone who involved in software
development would be able to use the language to develop a

program without any cost incur in most of the cases. In

addition, large community would be able to create a variety

of problems, issues as well as solution in within the PHP

language context. It seems that more problems could lead to

more solutions. Therefore more learning occur directly or

indirectly. The XAMPP package which consist of Apache

were used in this experiment. However, there were no

database system were deployed in the program.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 549

 Architecture-Client Server

Since the program were written in a form of Web

Based, therefore a components of Client and Server were

required to be deployed and integrated in the system. The

program were developed on the server side whereby the file

which consist of the scripts or code would be stored in the

server folder of localhost (htdocs). So, whenever the user

would like to view the program’s output, therefore the client
(browser) were required to request the program page form

the server and this were done via the Uniform Resource

Locator (URL). In summary the client would request

program in form of page form the server, and if the program

is exist, therefore the server would return the program to the

client [5][6].

 Pseudocode

Prior to the development (coding) the program’s design

of flow were depicted using the pseudocode. Even though

the pseudocode were in general idea, however it would be as

important as the real code in order to understand the program
flow or semantic, and it also were used in testing activities of

Static Type since it is not executable in automated means to

see the output [7].

Fig 1:- Pseudocode of first version (common practice).

Fig 2:- Pseudocode of second version (without both assigned

initialization and end of line indicator)

Fig 3:- Pseudocode of third version (without assigned

initialization with end of line indicator).

Fig 4:- Pseudocode of fourth version (without assigned

initialization with end of line indicator and without
increment in within the for() argument).

 Development

Code

The program were developed in four versions. This is

to distinguish in between the versions of loop design. The

arguments in for(arguments…)of variable initialization were

manipulated in this experiment in order to validate all of the

versions’ output. Below shows the basic list of function or

statement that were used in the program:

 for()

 $i

 <=

 $i++

 echo ()

 “
”

 ;

Table 1 shows the basic components that were used to

form a flow chart. In most software development process,

flow chart would be treated as a visual of the system design

that could represent or depict the flow of the system

regardless of small or large scale [8]. In this research

experiment, the flowchart were used in order to shows the

versions of loop function in terms of their flow and

sequence.

Shape Action

Process/Computation

Input/Output

Condition/Decision

Flow/Sequence/Directio

n

Table 1:- Components of Flow Chart.

 Installation and Configuration

The user would need to perform a configuration of the

port where necessary in order to avoid unavailable port

issue. Default port would be 80 in most of the default

configuration, However, there would be a situation of port

were being used by other application, and this led to the

necessity for port configuration and it could be done via the
Graphical User Interface (GUI) of XAMPP Control Panel.

In this research experiment, the port were configured to

8080 and had caused the request of the web page to be made

by the client (browser) via URL in this form

(localhost:8080/loop.php). Figure 5 shows the Listen

12.34.56.78:8080 and Listen:8080 indicated the changed

port.

BEGIN

 for (i=1;i<=10;i++)

 display i with break space (newline)

END

BEGIN

 for (i<=10;i++)

 display i with break space (newline)

END

BEGIN

 for (;i<=10;i++)

 display i with break space (newline)

END

BEGIN

 for (;i<=10;)

 display i with break space (newline)

 i++

END

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 550

Fig 5:- Configuration of port via httpd.conf file.

 Validation

Testing were conducted towards all versions of the

loop program in order to validate and verify the output.

Following Test Level, Type and Techniques conducted as
shown below:

 Unit(Functional)Static, Dynamic

 Integration(Functional) Static, Dynamic

 System(Functional)Static, Dynamic

 Acceptance(Functional) Static, Dynamic

 Test Level

The following test model were implemented to depict

the testing flow of the program’s component rather than the

mathematical sides [9].

1<=x<=n, 1<=y<=n,

n=maximum number of components /execution state

component(x) result(y=x)

Fig 6:- Unit Testing Model.

1<=x<=n, 1<=y<=n,

n=maximum number of components/execution state

component(x) executed AND component(x+1) executed

 result(y=x)

Fig 7:- Integration Testing Model.

1<=x<=n, 1<=y<=n,

n=maximum number of components/execution state
(component(x) AND component(x + 1))

result(y = x)

Fig 8:- System Testing Model.

III. DISCUSSION

 Algorithm

Coding

Fig 9:- Loop version 1

Figure 9 shows the code of the version 1 loop design.

The design were practiced by most of the developer when

implementing loop control structure, in other words it is a

common design in loop programming. The code consist of

few optional statements such as the curly braces ({}), and

the initialization. The absence of initialization would cause

to value assumption in a context of PHP. The argument in

within the loop which are $i=1; create a variable of $i which
assigned by a value of 1, and $i<=10 is a condition which

need to be met in order for the “execution statement” would

be executed. However, the increment of variable’s value

which represented by $i++ were executed after the

statement execution even though it is in within the for()

argument and were skewed to the right position of the

argument. For example as in this design and version, the

initialization would take place followed by the condition

validation and statement execution. The statement execution

would be redirected to the for() loop again for condition

checked, however, it was first that increment would occur on

the variable of $i before the condition checked for the
second time. In this design, the number of 1 to 10 were

displayed as an output with the line break after each of the

displayed value.

Fig 10:- Loop version 2

Figure 10 shows the loop of version 2 whereby the

initialization and end of line indicator were absence. This
design would produce the output with an error. In the for()

loop, the initialization is technically required in within the

argument, therefore when the initialization is missing, the

for () loop function were affected and this cause the program

to stop executing. Thus, the statement execution which

displayed the number of 1-10 were not able to be displayed.

Fig 11:- Loop version 3

<?php

for($i=1;$i<=10;$i++){echo $i."
";}

?>

<?php

for($i<=10;$i++){echo $i."
";}

?>

<?php

for(;$i<=10;$i++){echo $i."
";}

?>

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 551

Whilst, the loop design of version 3 as shown in figure

11 were different as compared to loop design of version 1

and version 2. The differences were the absence of

initialization of integer value towards the $i as initialization,

which caused to the program to assume the value of

variables to null. However in this program the null value

would be less than ten in terms of numerical value or in other

words would be considered as so called “zero”. In this
version or design, the PHP interpreted the program as no

error but notice instead due to undefined variables. Since in a

single iteration, there were three variables which are $i in

$i<=10;, $i in echo $i.“
” and $i in $i++, then three

notices (Undefined Variable) were produced respectively as

the output. The program however were able to displayed the

integer of 1 until 10 as the program does not have any error

since the end of line which is semicolon (;), were indicated

that there is an argument before the argument of condition

($i<=10;) in the for () loop, and the program would assume

that it would be or maybe the initialization, and therefore it

continues to execute with the null value or so called “zero”
into the statement execution (echo $i. “
”;) as the

condition ($i<=10;) is TRUE and followed by the

incremental ($i++) of the variable. The incremented value of

variable $i which is now 1 is being checked via the condition

for the second iteration and displayed the value. This

execution were keep until the final iteration which is the

eleventh iteration followed by the loop termination.

Fig 12:- Loop version 4

Figure 12 shows that the design of loop without

initialization of variable $i which had caused notices

produced as part of the program output, and this were similar

as compared to version 3. However in version 4 as shown in

figure 12, the increment of the variable $i was written in

within the “statement execution” which belongs to for()

loop. This design would produce similar output as to version
3, as the increment would happen after echo $i.“
”. But,

the program would produce integer 1 until 11 with twelve

iteration if the $i++ were before the echo $i. “
”; in

within the “statement execution”. This demonstrated that

increment is an optional as an argument in within the for()

loop argument. In addition, an infinity displayed of output

would occur if there were no increment of value in the loop.

Below show the details of the looping sequence in a flow

chart form.

 The developed loop model:

Version 1 Version 2

Fig 13:- The flow chart model of looping version 1 and

version 2.

Version 3 and Version 4

Fig 14:- The flow chart model of looping version 3 and

version 4.

<?php

for(;$i<=10;){ echo $i."
"; $i++;}

?>

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 552

 Graphical User Interface

Below figures shows the output of all the versions of

the program.

Fig 15:- Output of version 1.

Fig 16:- Output of version 2.

Fig 17:- Output of version 3.

Fig 18:- Output of version 4.

 Testing (Validation)

Validation and Verification (V&V) were required in

this research experiment in order to determine the output

correctness and accuracy of the program. Therefore, the test

case of the requirement were captures as a components and

tested according to required test level and types which led to

acceptance testing. Figure 19 to figure 38 shows the

conducted testing activities in form of model.

 Unit Testing

1=x=<?php for($i=1;$i<=10;$i++){echo $i."
";} ?>

Fig 19:- Component version 1.

component(1=x=<?php for($i=1;$i<=10;$i++){echo
$i."
";)

 result(y=1=figure15)

Fig 20:- Tested component of version 1.

1=x=<?php for($i<=10;$i++){echo $i."
";} ?>

Fig 21:- Component version 2.

component(1=x=<?php for($i<=10;$i++){echo $i."
";}

?>)
 result(y=1=figure16)

Fig 22:- Tested component of version 2.

1=x=<?php for(;$i<=10;$i++){echo $i."
";} ?>

Fig 23:- Component version 3.

component(1=x=<?php for(;$i<=10;$i++){echo $i."
";}

?>)

 result(y=1=figure17)

Fig 24:- Tested component of version 3.

1=x=<?php for(;$i<=10;){echo $i."
"; $i++;} ?>

Fig 25:- Component version 4.

 result(y=1=figure18)

Fig 26:- Tested component of version 4.

 Integration and System Testing

Version1:

1=x=<?php for($i=1;$i<=10;$i++){echo $i."
";} ?>

Fig 27:- Component of version 1.

C1=component(1=x=<?php for($i=1;$i<=10;$i++){echo

$i."
";} ?>)executed result(y=1= figure15)

Figure 28. Integration Testing model with component

executed.

𝐶1

result(y = 1 = 𝑓𝑖𝑔𝑢𝑟𝑒15)

Fig 29:- System Testing model with component as a system

executed.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 553

Version2:

1=x=<?php for($i<=10;$i++){echo $i."
";} ?>

Fig 30:- Component of version 2.

C1=component(1=x=<?php for($i<=10;$i++){echo

$i."
";} ?>)executed result(y=1= figure16)

Fig 31:- Integration Testing model with component

executed.

𝐶1

result(y = 1 = 𝑓𝑖𝑔𝑢𝑟𝑒16)

Fig 32:- System Testing model with component as a system

executed.

Version3:

1=x=<?php for(;$i<=10;$i++){echo $i."
";} ?>

Fig 33:- Component of version 3.

C1=component(1=x=<?php for(;$i<=10;$i++){echo

$i."
";} ?>

) executed result(y=1= figure17)

Fig 34:- Integration Testing model with component

executed.

𝐶1

result(y = 1 = 𝑓𝑖𝑔𝑢𝑟𝑒17)

Fig 35:- System Testing model with component as a system

executed.

Version4:

1=x=<?php for(;$i<=10;){echo $i."
"; $i++;} ?>

Fig 36:- Component of version 4.

C1=component(1=x=<?php for(;$i<=10;){echo

$i."
";$i++;} ?>

)executed result(y=1= figure18)

Fig 37:- Integration Testing model with component

executed.

𝐶1

result(y = 1 = 𝑓𝑖𝑔𝑢𝑟𝑒18)

Fig 38:- System Testing model with component as a system

executed.

IV. CONCLUSION AND RECOMMENDATION

The importance of loop function in software based

system is undeniable. This could be seen via a major system

such as E-Commerce web system as well as small program

which were used in education for teaching and learning

purposes. In this research experiment, several different

versions and designs of loop program were developed in
order to understand the mechanism of the for() loop function

in PHP, and it was found that the for() loop would require

initialization and condition as their argument in order for the

loop to be executed without any error. However, the

initialization of value could be dismiss or absent in within

the argument of for() loop, with a condition that “the end of

line” (;) is written before the condition ($i<=10;), as to tell

the program that there is a line before the condition($i<=10;)

and it could be the initialization, in addition, regards to the

continuous execution even though without value assigned

for initialization, the value of $i in $i<=10 could be treated

as null or so called “zero” in terms of numerical in the first
iteration, which allowed the for () loop function in this

program to be executed until the final iteration. The

incremental function would be an optional in within the

argument which that its absentees does not lead to any error

in the program execution. However, without increment, it

would lead to infinity loop due to the condition ($i<=10;)

would be TRUE forever. In general, it is also suggested that

more studies or research to be done towards the looping

concept in order to understand deeply the loop function

mechanism in variety of scripting or programming

languages. This is important as knowing deeper or root
about looping concept would lead to better understanding

which could lead to better design [10].

ACKNOWLEDGEMENT

The main author would like to express his gratitude to

the Office of Research Development & Consultancy of INTI

International University (IU) and Faculty of Information

Technology INTI IU for the supports in terms of resources

allocation for the research as well as to Dr. A. Selamat

(P.I.S), former associate researcher at the Institute for

Mathematical Research (UPM) for important advice on
research. The authors would like to express their gratitude to

National Defence University of Malaysia for the priceless

supports and motivation in doing research.

REFERENCES

[1]. Halbert, D.C., 1984. Programming by

example (Doctoral dissertation, University of

California, Berkeley).

[2]. Sommerville, I., 2011. Software engineering 9th

Edition. ISBN-10, 137035152.
[3]. Ahmad, D.K., Janicke, H., Shah, N.B.Z. and Onn,

C.W., 2020. Perception of Software Agile

Methodology Understanding among IT practitioner in

Malaysia’s IT Industry. TEST Engineering &

Management, 82, pp.12787-12795.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY605 www.ijisrt.com 554

[4]. Amadin, I.F. and Nwelih, E., 2010. An Empirical

Comparison Of: HTML, PHP, COLDFUSION, PERL,

ASP .NET, JAVASCRIPT, VBSCRIPT, PYTON

AND JSP. Global Journal of Computer Science and

Technology, 10(12), pp.9-17..

[5]. Civanlar, M.R. and Haskell, B.G., AT&T Corp,

1999. Client-server architecture using internet and

public switched networks. U.S. Patent 5,995,606.
[6]. Laurie, B. and Laurie, P., 2003. Apache: The definitive

guide. " O'Reilly Media, Inc.".

[7]. Graham, D., Van Veenendaal, E. and Evans, I.,

2008. Foundations of software testing: ISTQB

certification. Cengage Learning EMEA.

[8]. Lavallee, R. and Peacock, T.C., UNIVERSAL

AUTOMATION Inc, 1989. Continuous flow chart,

improved data format and debugging system for

programming and operation of machines. U.S. Patent

4,852,047.

[9]. Cantone, D., Omodeo, E. and Policriti, A., 2013. Set

theory for computing: from decision procedures to
declarative programming with sets. Springer Science &

Business Media.

[10]. Ciesielski, V. and Li, X., 2004, June. Experiments with

explicit for-loops in genetic programming.

In Proceedings of the 2004 Congress on Evolutionary

Computation (IEEE Cat. No. 04TH8753) (Vol. 1, pp.

494-501). IEEE.

http://www.ijisrt.com/

	I. INTRODUCTION

