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Abstract:- When COVID-19 appeared in November 

2019 in the city of Wuhan, in central China, no 

epidemiologist had predicted such a pandemic. 

Currently, no vaccine or drug is available, the 

treatment with azithromycin and hydroxychloroquine 

remains limited because it does not specifically target 

the viral pathogen. Most enveloped viruses express 

glycoproteins on their surface; lectins are proteins that 

specifically bind to glycosylated residues, many of which 

are proposed as a treatment for viral infections. Several 

antiviral lectins are successfully used against hepatitis 

C, influenza A / B, herpes, Japanese encephalitis, HIV 

and the Ebola virus. In this review, we will highlight the 

various viral infections treated with lectin-based drugs, 

as well as their modes of administration. In addition, 

and in order to inhibit the binding of COVID-19 to 

these receptors, we propose the use of some lectins as 

antiviral therapeutic agents, either by blocking 

receptors (glycoproteins) of the virus at the level of host 

cells or by masking the glycoproteins of the viral 

envelope. 
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I. INTRODUCTION 
 

Lectins are proteins or glycoproteins of non-immune 

origin having at least two binding sites which recognize a 

specific sequence of carbohydrate residues [1]. Lectins can 

be isolated from a wide range of natural sources, namely: 

bacteria, yeasts, fungi, higher plants [2], [3], [4], [5], [6], 

[7], [8], [9]. The physiological functions of lectins are still 

conjectural, however their role in growth [10], their 

intervention in cell adhesion and recognition [11], [12], 

phagocytosis [13], fertilization [14], ontogenesis [15], their 

modification during differentiation, their function in the 
secretion phenomenon and proteolytic stability [16] have 

been demonstrated. By their strict specificity for different 

glycans, lectins have become a first choice tool for the 

biochemical [17] and histochemical [18] characterization of 

cellular glycoconjugates. Lectin-glycoprotein interactions 

are the basis of many biological phenomena such as the 

adhesion of viruses to the surfaces of host cells. Many 

lectins inhibit replication of viruses by interacting with 

viral envelope glycoproteins [19], [20], [21], [22], [23]. 

Inhibition of this type of interaction by lectins will allow to 

develop new antiviral therapies.  In this review, we 

highlight whatever lectins have been used for their ability 

to block the access of certain viruses in their host cells. In 

addition, we propose some lectins that can potentially be 
used as a possible therapy for Covid-19. 

 

II. LECTINS AS ANTIVIRAL DRUGS 

 

Any viral therapy relies on the early inhibition of viral 

penetration in these target cells, and the choice of 

inhibitors, the identification and characterization of the 

molecules that block the entry of the Virus are essential. 

The spread of a virus and the progression of the disease 

depend on the direct interactions between the virus and the 

host cell receptors [24], these receptors are often 

glycoprotein in nature. The glycoproteins of the viral 
envelope are highly glycosylated, the lectins have binding 

properties to these carbohydrates involved in antiviral 

activity, thus blocking the interaction between the 

glycoproteins of the viral envelope and cell surface 

molecules involved in the entry of the virus. Targeting 

glycans of viral envelope proteins is a promising approach 

in the development of antiviral therapies. In addition, 

lectins are powerful tools for better understanding the first 

stages of the entry of viruses into host cells. Several lectins 

isolated from natural sources inhibit microbial and viral 

pathogens in vitro and in vivo [25], [26], [27], [28], [29], 
[30]. These lectins specifically bind to glycoproteins in the 

viral envelope, thereby blocking entry of the virus into host 

cells [31], [32], [33], [34], [35], [36]. In this review, we 

outline some viral infections treated with lectins. 

 

 Hepatitis C virus (HCV) 

Hepatitis C virus (HCV) is a linear, single-stranded 

RNA virus of positive polarity, with an icosahedral capsid 

and an envelope. The glycoproteins E1 (gp31) and E2 

(gp70) are membrane proteins used in the composition of 

viral envelopes. Like type I transmembrane proteins, they 
have an N-terminal domain and an hydrophobic C-terminal 

region for anchoring in the endoplasmic reticulum and 

related structures. The 27 N-terminal amino acids of E2 

constitute the hypervariable region, exposed on the surface 

of E2 and site of one of the main neutralizing epitopes of 

the virus [37]. E1 and E2 can form two types of complexes: 

E1 / E2 heterodimers made up of native proteins and 

stabilized by non-covalent interactions (productive 

pathway); heterogeneous aggregates linked by disulfide 

bridges and interacting with chaperone molecules (non-

productive pathway), which could play a role in negative 
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regulation of viral particle formation and replication [38], 

[39]. An early interaction between the surface of the 

envelope glycoproteins and the glycosaminoglycans located 

on the surface of target cells could be involved in the 

recognition and cellular tropism of the virus [40]. Envelope 

glycoproteins are involved in cell recognition and the 

interaction of viral particles with the receptor molecule (s) 

and the penetration of the virus into the cell. They play a 
role after internalization, in particular in the undressing of 

enveloped particles and in the assembly of virions. An early 

interaction between the surface of the envelope 

glycoproteins and the glycosaminoglycans located on the 

surface of target cells could be involved in the recognition 

and cellular tropism of the virus [40]. Plant or microbial 

lectins are known to exhibit potent antiviral activities 

against viruses with glycosylated surface proteins. Studies 

of Kachko et al., [41], have demonstrated that the lectin 

Galanthus nivalis (GNA) can be a better agent therapeutic 

due to the specificity for hepatitis C virus glycoproteins. 

GNA binds specifically to the disaccharide Mannoseα (1-3) 
terminal Mannose. Other studies have shown that lectins 

recognizing mannosylated residues have an affinity grade 

for hepatitis C virus glycoproteins like lectin Griffithsin sp., 

(GRFT) which specifically binds to α (1,2) mannobiose = 

(α-D-Man-1 → 2-D-Man, 2-O-α-D-Mannopyranosyl-D- 

mannopyranose) [42] and the lectin Cymbidium agglutinin 

(CA) which recognizes N-linked oligosaccharides with 

high mannose content [43]. 

 

 Influenza A / B virus 

Influenza viruses belong to the family of 
Orthomyxoviridae, represented by three genera, viruses A, 

B and C. Only influenza A and B viruses are responsible 

for influenza. These are enveloped viruses whose genome 

consists of a segmented single-strand negative RNA (8 

segments). Influenza A viruses are also classified into 

subtypes, depending on the nature of the hemagglutinin 

(HA or H) and neuraminidase (NA or N) surface 

glycoproteins. 

 

The H1N1 viruses preferentially bind to sialic acid α-

2,3-galactose β-1,3-N-acetyl galactosamine, this 

trissacharide is recognized by the lectin Maackia amurensis 
(MAA); while H3N2 viruses have specificity for sialic acid 

α, 2,6-galactose β1,4-N-acetyl glucosamine which is 

recognized by the lectin Sambucus nigra (SNA) [44]. The 

virus-sialic acid α, 2,6-galactose β1,4-N-acetyl glucosamine 

interaction is facilitated by the methyl groups of neuraminic 

acid [45]. 

 

 Herpes virus 

It is a double stranded DNA virus in which there are 

two types, the Herpes simplex virus type 1 (HSV-1) and the 

Herpes simplex virus type 2 (HSV-2). It can be the cause of 
l infection commonly called herpes. The jackfruit lectin 

(JFL) of Artocarpus heterophyllus has been shown to have 

inhibitory activity in vitro with a cytopathogenic effect 

against the herpes simplex virus type 2 (HSV-2) [46]. JFL 

specifically binds to viral glycoproteins with terminal 

disaccharides Galactoseβ (1, 3) N-acetyl galactosamine. 

Other terminal mannose-specific lectins have shown great 

antiviral activity of herpes, namely Griffithsin (GRFT) [47], 

Cyanovirin N (CV-N) [48], Typhonium divaricatum (L.) 

Decne [49], and Polygonatum odoratum (POL) [50]. 

 

 Japanese encephalitis virus 

The Japanese encephalitis virus (JEV) is an enveloped 

virus, the viral genome, represented by a positive single-

stranded RNA, is enclosed in a protein capsid. The outer 
envelope is formed by a glycoprotein (E) which constitutes 

the protective antigen [51], and formed by two potential 

glycosylation sites [52], which are important for fixation, 

fusion, penetration, cellular tropism, virulence and 

attenuation of the virus [53]. The JEV outer envelope 

glycoproteins are highly mannosylated. 

 

Griffithsine (GRFT) is a lectin specific for 

glycoproteins carrying the terminal oligomannose residues 

α-D-Mannoseα (1-2)D-Mannose,2-O-α-D-

Mannopyranosyl-D- mannopyranose. Hassan et al., [54], 

evaluated the antiviral activity (in vitro and in vivo) of 
GRFT against infection with the Japanese encephalitis virus 

(JEV); this study suggested that GRFT prevents JEV 

infection at the entry phase by targeting the virus, and that 

this lectin is an antiviral agent with a potential application 

in the development of therapies against JEV or other 

flavivirus infections. 

 

 Coronavirus 

Coronaviruses have been known in the veterinary 

community since the 1930s. In 2003, the identification of a 

coronavirus as the etiological agent of Severe Acute 
Respiratory Syndrome (SARS), circulating in a pandemic 

manner [55]. In 2012, a new human coronavirus, MERS-

CoV, emerged in the Middle East. It is responsible for a 

pathology similar to SARS [56]. These coronaviruses are 

characterized by a single stranded, unsegmented RNA 

genome; they are the largest genomes of RNA virus listed 

to date. Yohichi Kumaki et al., [57] have shown that the 

lectin Agglutinin Urtica Dioica (UDA) binds to N-

acetylglucosamine-like residues present on glycosylated 

envelope glycoproteins, thus inhibiting the binding of 

SARS-CoV to host cells. The elimination of the MERS-

CoV virus has been successfully achieved, using the lectin 
Galanthus nivalis agglutinin (GNA), which recognizes the 

disaccharide mannoseα (1-3) Mannose terminal of the 

glycoprotein of the viral envelope [58]. The surface 

glycoprotein (S) of the severe acute respiratory syndrome 

coronavirus (SARS-CoV) facilitates its penetration into 

host cells, by binding to the angiotensin 2 converting 

enzyme (ACE2) [59], [60], [61]. SARS-CoV and SARS-

CoV 2 differ from each other only by 25% with regard to 

viral proteins [62], in addition SARS-CoV 2 also binds the 

enzyme of angiotensin 2 conversion [63], [64]. Protein S of 

SARS-CoV has several N-glycosylated surface sites rich in 
mannose, hybrid N-glycans and complex N-glycans [65]. 

Glycoprotein S is the gateway to the virus, and a major 

target for antiviral drugs such as lectins, which it is 

proposed to be used to prevent binding of COVID-19 to 

these target cells. Among the lectins which can optionally 

bind to the glycoprotein S, there may be mentioned: 

Canavalia ensiformis (Con A), Pisum sativum (PSA), Lens 
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culinaris (LCA), Vicia faba agglutinin (VFA), Vicia cracca 

(VCA), Onobrychis viciifolia (OVA) and Lathyrus sativus 

(LEC). 

 

 Human immunodeficiency viruses (HIV) 

The viral envelope glycoproteins play an essential role 

in the phenomenon of its intrusion into host cells. In the 

case of HIV-1, the surface envelope glycoproteins gp120 
and gp41 are highly glycosylated, and play a key role in the 

fusion of the virus to infected cell membranes [66]. Indeed, 

powerful anti-HIV actions are attributed to lectins with 

specific recognition for mannose (Man) and / or N-

acetylglucosamine (GlcNAc) [67]. Lectins with 

antiretroviral activities have been identified and isolated 

from animals [68], plants [69], microorganisms [70] and 

are used as natural anti-HIV products. Many lectins have 

been researched as natural anti-HIV products, namely: 

griffithsin (GRFT), actinohivine (AH), concanavalin-A 

(ConA), cyanovirin-N (CV-N), microvirin (MVN) and 

banana lectin (BanLec). 
 

The griffithsin lectin (GRFT): extracted from the red 

alga Griffithsia sp., Is a lectin with six oligosaccharide 

binding sites recognizing the terminal oligomannose 

residues α-D-Mannoseα(1-2)-D-Mannose, 2 -O-α-D-

Mannopyranosyl-D-mannopyranose [71], [72], [73], [74], 

[75]. This lectin inhibits the binding of HIV-1 to these host 

cells. GRFT inhibits the CD4-dependent glycoprotein (gp) 

120, which is rich in mannose-type glycans. 

 

Actinohivine (AH): Is an anti-HIV lectin, isolated 
from actinomycetes of the genus longispora albida [76]. 

HA specifically binds to glycoproteins with several 

mannose-rich glycans [77]. The low toxicity of AH is 

explained by its extremely high specificity for 

glycoproteins having a high amount of glycans, and more 

specifically a high amount of mannose, as is the case for 

gp120 of HIV. Furthermore, AH does not fix certain human 

glycoproteins, which however are provided with numerous 

molecules of mannose because they do not have the same 

structure as gp120. Thus AH is developed as a microbicide 

preventing transmission and infection by HIV. 

 
Concanavalin-A (ConA): Among the first lectins 

discovered [78], which has a great affinity for the 

mannosylated glycan chains. Its inhibitory power of the 

human immunodeficiency virus type 1 (HIV-1) has been 

demonstrated by Pashov et al [79] Concanavalin A (ConA) 

behaves like neutralizing antibodies, which do not interact 

directly with the CD4 of gp120, but rather with the later 

stages of access of the virus in these target cells. The 

binding of ConA to viral envelope glycoproteins is less 

sensitive to mutations in glycosylation sites, due to its great 

affinity for mannose residues. 
 

Cyanovirin-N (CV-N): It is extracted from cultures of 

cyanobacteria (blue-green algae) Nostoc ellipsosporum 

[80]. Low concentrations of natural CV-N inactivate 

irreversibly various strains of the human immunodeficiency 

virus (HIV) type 1 as well as strains of HIV type 2. The 

antiviral activity of this lectin is due to its high affinity for 

the mannose-rich glycoproteins of the envelope of gp120 

viral surface. 

 

Microvirin (MVN): It is a lectin isolated from the 

cyanobacterium Microcystis aeruginosa, it is capable of 

inhibiting HIV-1 infection, and also inhibits the formation 

of syncytium between T cells persistently infected by HIV- 

1 and uninfected CD4 (+) T cells [81]. This lectin 
specifically binds to surface glycoproteins carrying 

mannose α (1-2) mannose disaccharides. Therefore, MVN 

can be considered a useful lectin for potential microbicidal 

use due to its broad and potent antiviral activity. 

 

Banana lectin (BanLec): It is a lectin isolated from the 

banana fruit, Musa acuminata [82]. This lectin binds to 

glycoproteins with a high content of mannosylated 

carbohydrates, such as the human immunodeficiency virus 

type 1 (HIV-1). BanLec inhibits HIV-1 infection by 

binding to the glycosylated viral envelope and blocking cell 

entry; it is used as an antiviral microbicide to prevent the 
sexual transmission of HIV-1 [83], [84]. 

 

Generally, these lectins contain multiple glycan 

binding sites allowing them to form multivalent interactions 

with gp120; such interactions give lectins the ability to 

neutralize different strains of HIV-1 and HIV-2. 

 

 Ebola virus 

Ebola is a negative-stranded RNA virus from the 

Filoviridae family, which is the cause of fatal hemorrhagic 

fevers. The envelope glycoproteins are highly glycosylated 
(GP1 and GP2), they ensure binding to receptors (GP1) and 

fusion of the host-virus cell membrane (GP2). Surface 

glycoproteins (GP) are highly glycosylated, and are rich in 

mannosylated N-glycans [85]. Banana lectin (BanLec), has 

been used as an antiviral agent because it binds to the 

mannose-rich glycans present on viral surface 

glycoproteins, thus exerting anti-Ebola virus effects by 

inhibiting both entry and transcription / virus replication 

[86]. In addition, other authors have used the lectin 

Amaryllis (HHL), which binds only to α-mannose residues; 

and prove the effectiveness of the administration of 

physiological doses of Mannose-binding lectin (MBL) 
products with high concentrations to individuals infected 

with the Ebola virus [87]. 

 

III. HOW TO ADMINISTER THESE LECTINS? 

 

For lectins to be used as drugs, they must obey three 

main physiological conditions: (1) must not be toxic (2) 

must not be degradable by proteolytic enzymes (3) and do 

not cause immunogenicity. The purpose of choosing the 

general or systemic route is for the lectin used as an 

antiviral (the active ingredient) to pass through the 
bloodstream and to reach its site of action intact. Studies of 

macaques with simian immunodeficiency virus (SIV) have 

shown that the use of the gel cyanovirin-N lectin prevents 

rectal transmission of SHIV in macaques (88); the same 

lectin inhibits viral development in mice affected by the 

Zairian strain of Ebola virus (Ebo-Z), after its 

administration by subcutaneous injection [85]. Griffithsin 

http://www.ijisrt.com/


Volume 5, Issue 5, May – 2020                                             International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 
IJISRT20MAY426                                                  www.ijisrt.com                   1283 

(GRFT), a lectin of the Griffithsia species, inhibits the 

replication of the human immunodeficiency virus-1 (HIV-

1) by intraperitoneal injection [89]. Other lectins have been 

used by intranasal administration to prevent respiratory 

infections in the case of infections with viruses of the 

Coronavirida family [90], and of influenza A [91]. 

 

IV. CONCLUSION 
 

Lectins have shown great potential to inhibit, prevent 

multiple infections, and / or improve the general health of 

people with viral infections. The covid-19 envelope 

glycoprotein S is rich in mannose, hybrid, and complex N-

glycans. This glycoprotein is the key to the viral life cycle 

and a major target for antiviral drugs such as lectins. The 

choice of these lectins must imperatively respect the 

specificity of the glycoproteins of the viral envelope. In 

order to prevent the binding of COVID-19 to these target 

cells, it would be appropriate to use lectins whose binding 

specificity is mannose or / and hybrid and complex N-
glycans. Therefore, we propose the following lectins as a 

therapeutic agent because of their specificities for the 

Covid-19 glycoproteins: Canavalia ensiformis (Con A), 

Pisum sativum (PSA), Lens culinaris (LCA), Vicia faba 

agglutinin (VFA), Vicia cracca (VCA), Onobrychis 

viciifolia (OVA) and Lathyrus sativus (LEC). Given the 

number of lectins used as therapeutic agents against several 

viruses, it is not surprising that others can be used as covid-

19 drugs. 
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