
Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY288 www.ijisrt.com 419

Macronumerical Summing Code

Mahadevan Subramanian

Faculty of Landscape Architecture

Asian School of Architecture & Design Innovations

Kochi, Kerala, India

Abstract:- There are many methods to minimise or

shrink binary codes or data compression. Making data

shrinkage is better for faster communications and

effective storage. Macronumerical summing code is a

relatively new technique to shrink binary code

structures and you can easily decode it to the original

size for without data loss. At present compression is

possible only once with the given binary sequence, but

using macronumerical summing code you can go on

reducing the data to the desired level by repeating the

process which is not possible with current available

tehnology. In addition there is the possibility to

segregate these data easily at the binary code level itself

to make a database sorting.

Keywords:- Macronumerical, Summing, Scan, Matrix,

compression,decompression.

 Abbreviations:

MSC (macronumerical summing code)

I. INTRODUCTION

There are many methods for data compression.

Huffmans algorithms, arithmatic coding, sequential data

coding and the researches are going on in a rapid pace.

Run length encoding is a kind of coding used in

bitmaps and the repetition of data item in succession will be

replaced with single code thus the length gets reduced.

Burrows-Wheeler transform work with data blocks as

these blocks are compressed bits represented by symbols

and be replaced wherever possible Lempel-Ziv algorithm
used the text as a dictionary replacing later ocuurance of a

string by numbers indicating its occurrence before and its

length. Zip and gzip is the other version of this algorithm

Arithmetic coding is one of the best available coding

and give a better data compression ratio But till now in all

the above methods the compression ratios has a limit.

While adopting Macronumerical summing code, you can

primarily code a sequence and achieve a number, combine

the result with other coded numbers and make a stack of the

codes (another matrix and make it optimal by making

matrices of 99*99, 999*999, 9999*9999 etc to get
maximum benefits of data compression with maximum

limited digits) which gives a fresh code and the process can

be continued till you get the optimum size ie. the level at

which you find the balance of decoding process and data

volume to come to the desirable level as the multiple

coding will drive you to more data processing. Another

major advantage of MSC is its ability to do lossless data

compression.

II. EXPLANATION OF MACRONUMERICAL

SUMMING CODE

As a primary step we will make a matrix of size 5*5

(refer Figure 1) and fill it with “0” or “X (as red dots)”

where “0” is the void cell and “X” represents “1”. Now we

check the number of filled cells in X axis, Y axis , Diagonal
from left top to right bottom (A diagonal) and diagonal

from right top to left bottom (B diagonal). Thus each

matrix is scanned for filled cells in four different directions

and arrive a number sequence . Refer Figure 1

“1223122221011221110012122010 (combining X axis, Y

axis, X diagonal and Y diagonal in that order) . You can

create the same matrix pattern when reversing the reading

process i.e. Make a matrix that reads exactly the same

sequence we have availed. While scanning a 5*5 matrix

we will get 5 digits each in X and Y axis and 9 digits each

in both A & B diagonal scanning. Thus a total of 28 digits.

When assigning values for each cells in the order from top
left to bottom right as 1,2,4,8,16,32,64,128…..sequence we

will get a number that equals to 5*5/3.33 digits = 7 (we

take only the integer part) as the maximum digits. While we

need 28 digits to express the 7 digit number (here we have

no advantages in summarising data)

Fig 1:- Reading available on scanning a 5*5 matrix in four

directions

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY288 www.ijisrt.com 420

Fig 2:- Reading two 5*5 matrices which has similar reading

though different orientation

There are certain orientations as above which give the

same reading for different cellular orientation. In the above

picture the blue dots have different cellular arrangements,

yet give the same reading and this pattern is called

isomeric. There can be numerous such isomeric patterns in

a larger matrix that give isomeric reading for different

orientations and these isomeric patterns make their own

permutation and combinations to make isomeric multiple

readings. We have made a method to segregate such

isomeric designs and give an additional reading then we

end up the issue related to the isomeric properties.

For larger matrices (over 37 * 37) the digits originated

out of scan will be lesser than the digits availed through

summing the value of filled cells. Here the digits required

for scanning will be 2(37+37+37+37+36+36)-36=404 (we

will get two digits while scanning each rows and there will

be one row missing in diagonal scans thus the number 36

and we need to represent only one digit in the diagonal

pattern where it is below 10 cells rows and an advantage of

four nine digits = 36 which we deducts from total number

of digits) We get 411 digits while summing values of the

filled cells to the maximum. Thus in this process we will
get a digital advantage of 7 (411-404).

While the matrix size increases this advantage in

digits increases. For example while scanning a 99*99

(maximum matrix for 2digit number) matrix we need to

spend 2(99+99+99+99+98+98)- 36 =1148 digits while you

get 2943 digits out of reading the 1148 digits thus an

advantage of 1795 digits which is a quite crushing of data

to 39 % ! (61 % advantage)

But is it possible to equalise a smaller number to a
bigger number. Not at all possible, but what happens here is

the isomeric patterns or orientation replicates the number so

that different isomeric patterns give the same reading. Here

we take the advantage as the required data has a specific

meaning and if the reading does not give the ideal result,

we can neglect that pattern and consider it as a NON

SENSE CODE. While we get the desired result from a

specific pattern we consider it as a SENSE CODE. This

selection and elimination of certain patterns gives us the

advantage of data summarisation and we make the data

coding or summing ultimately! (Applicable for small

matrices as processing takes time and irrelevant for larger

data)

To be more precise and incurring less data processing,
we can divide the matrix into 4 parts (in 99*99 matrix let it

be a 49*49 matrix and leave the central one row or column

which does not interfere in the isomeric pattern) and mark

the cells in the isomeric pattern only in the first quarter(left

hand top set of matrix). Make a reading in decimal code

thus we will have an additional 721 digits which makes the

total digits required for coding to 1869. Though the

advantage of micronisation of numbers become less, still it

is advantageous and reduces data processing time. In this

case we will get an advantage of 1074 digits. Though this

is a smaller or 37 % digital reduction still beneficial while
stacking a very large data! As the matrix size increase the

compression ration increases proportionately.

Fig 3:- 99*99 matrix where the yellow region is the

separated matrix of 49*49

We can repeat the process of MSC and reach to a

minimum required size. But multiple reduction using the

available compressed data will increase processing

procedures. Ultimately we will come to a balanced or
equilibrium state of compression so that the data

compressing and processing become optimal for our usage.

III. CONCLUSION

You can compress any larger binary code to smaller

binary code using this technique and ultimately you can

stack the resultant number to further by repeating the

process and ultimately reaching a code size that is far

reasonable to transfer and store.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY288 www.ijisrt.com 421

REFERENCES

[1]. Amandeep Singh Sidhu, Er.Meenakshi Garg,

Research Paper on Text Data Compression Algorithm

using Hybrid Approach.IJCSMC,Vol.3,Issue

12,December 2014,Pg.01-10

[2]. Bruno carpentieri. 2018. Efficient Compression and

Encryption for Digital Data Transmission, Hindawi,
Volume 2018(Article ID 9591768)

[3]. David Hemmendinger. Professor Emeritus,

Department of Computer Science, Union

college,Schenectady New York, Co editor of

Encyclopedia of Computer Science, 4th ed.(2000)

[4]. I Made Agus Dwi Suarjaya 2012. A New Algorithm

for Data Cpmpression Optimization. International

Journal of Advanced Computer science and

Applications, Vol.3.No.8,2012

[5]. Storer, J. A., and Szymanski, T. G. 1982. Data

Compression via Textual Substitution. J. ACM 29, 4
(Oct.), 928-951.

[6]. Tanaka, H. 1987. Data Structure of Huffman Codes

and Its Application to Efficient Encoding and

Decoding. IEEE Trans. Inform. Theory 33, 1 (Jan.),

154-156.

[7]. Witten, I. H., Neal, R. M., and Cleary, J. G. 1987.

Arithmetic Coding for Data Compression. Commun.

ACM 30, 6 (June), 520-540.

[8]. Ziv, J., and Lempel, A. 1977. A Universal Algorithm

for Sequential Data Compression. IEEE Trans.

Inform. Theory 23, 3 (May), 337-343.

http://www.ijisrt.com/

