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Abstract:- Multi-Label Learning (MLL) solves the 

challenge of characterizing every sample via a 

particular feature which relates to the group of labels at 

once. That is, a sample has manifold views where every 

view is symbolized through a Class Label (CL). In the 

past decades, significant number of researches has been 

prepared towards this promising machine learning 

concept. Such researches on MLL have been motivated 

on a pre-determined group of CLs. In most of the 

appliances, the configuration is dynamic and novel 

views might appear in a Data Stream (DS). In this 

scenario, a MLL technique should able to identify and 

categorize the features with evolving fresh labels for 

maintaining a better predictive performance. For this 

purpose, several MLL techniques were introduced in 

the earlier decades. This article aims to present a survey 

on this field with consequence on conventional MLL 

techniques. Initially, various MLL techniques proposed 

by many researchers are studied. Then, a comparative 

analysis is carried out in terms of merits and demerits 

of those techniques to conclude the survey and 

recommend the future enhancements on MLL 

techniques. 

 
Keywords:- Multi-label learning, Label correlations, 

Multiple instances, Machine learning, Multi-label problem 

transformation. 

 

I. INTRODUCTION 

 

Conventional supervised learning is the most well-

known machine learning concepts where every item is 

denoted by a certain feature vector related to the specific 

CL. Though this learning is popular and successful, in 

several uses, specific feature might have many CLs. For 

exemplar, a scene photo is normally interpreted with many 
CLs [1]; a file might contain various themes [2] and a 

music segment might fit to various fields [3]. To handle 

these types of data, MLL has been emerged which is also 

the learning concept and concerned more interest in modern 

decades [4]. 

 

In MLL, every item is denoted by a particular feature 

when related to the group of CLs rather than the specific 

CL in the traditional supervised learning. The process is 

identifying the appropriate CL groups for unknown 

features. In the previous years, MLL has increasingly 
involved considerable interests from machine learning and 

broadly used in various issues such as automated 

interpretation for audio-video data [5] including image, 
bioinformatics, web mining, rule mining, information 

retrieval and tag recommendation, etc. Earlier studies of 

MLL mostly focused on the issue of ML manuscript 

labelling and considered the predetermined set of CLs. But, 

in several real-time applications, a dynamic scenario is 

taken into account in which fresh CLs might occur with 

well-known CLs in a predicted feature of a DS.  

 

In a dynamic scenario, a learning technique has the 

ability to reprocess and adjust a pre-trained framework to 

the varying atmosphere [6]. In the ML configuration, the 

technique should have the ability to reform a pre-learned 
framework into the fresh features are found and novel 

classifiers are constructed for each fresh CLs. In the 

dynamic MLL configuration, there are no ground truths for 

CLs in the DS at each time excluding the actual training 

set. So, the primary challenges are identifying and 

modelling fresh CLs. Particularly, the most complex is 

identifying the features with any fresh CL. Because, there is 

no past information of the fresh CL and it often co-appears 

with few well-known CLs, it is extremely complex to split 

features with fresh CLs from those with well-known CLs 

only. Due to the inappropriate identification, the error will 
increase as increasing fresh CLs in a DS. Therefore, 

designing the effective frameworks for enhancing the 

identification performance in a DS is also a difficult 

process. To tackle this problem, various MLL techniques 

with promising solutions have been accounted to identify 

the correlations between the labeled and unlabeled features. 

This paper discusses different MLL techniques used for 

increasing the accuracy while using multiple CLs for data 

features. It also focuses on the merits and limitations of 

these techniques to suggest further improvement on MLL. 

 

II. A REVIEW ON VARIOUS TECHNIQUES FOR  

MULTI LABLE  LAEARNING 

 

Tsoumakas et al. [7] proposed a scheme, namely 

RAndom k labELsets (RAkEL) where k was the subsets 

size. In this scheme, two different strategies were 

considered that leads to disjoint and overlapping labelsets. 

The main goal of this scheme was splitting a huge amount 

of CLs into the amount of small-sized labelsets in a random 

manner. Then, the ML classifier was constructed via the 

Label Powerset (LP) scheme for training each labelset. 

Moreover, decisions of all LP classifiers were accumulated 
and fused for classifying the CLs of an unknown features. 
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Kong et al. [8] recommended a TRAsductive Multi-

label (TRAM) classification for assigning many CLs to 
every feature through labeled and unlabeled data. In 

TRAM, the CLs of the unlabeled features were estimated 

efficiently using the labeled and unlabeled data. Initially, 

the TRAM classification was formulated as an optimization 

dilemma of identifying the CL notion configurations. After 

that, the closed-form result was derived and efficient 

technique was proposed for assigning the CLs to the 

unlabeled features. 

 

Zhang et al. [9] proposed the MLL with Label specific 

FeaTures (LIFT). At first, specified features to every CL 

was extracted using clustering scheme on its desirable and 
undesirable features. After, training and testing were 

performed via querying the clustering outcomes. Moreover, 

a group of classifiers were encouraged with each deriving 

from the basic features of known CL. 

 

Liu et al. [10] proposed the maximum CL distance 

Back-Propagation (BP) scheme for classifying many CLs. 

This scheme was devised via fine-tuning the overall 

mistake factor of the classical BP via taken into consider 

the penalty term recognized through increasing the space 

between the desirable and undesirable CLs. Also, the 
weights were controlled and the network’s overview 

efficiency was improved. 

 

Pham et al. [11] proposed an appropriate yet efficient 

implementation of the maximum likelihood method in 

terms of handling the determination of the system factors 

and repeatedly learning a feature-level classifier one by one 

on consecutive fashion for all CLs including the fresh CL. 

The major contributions were developing a system that 

accounts the occurrence of fresh CL features and proposing 

an accurate inference method.    

 
Xu et al. [12] suggested a Three-way Incremental 

Learning Algorithm (TILA) for radar emitter detection 

which is flexible for increase in emitter characteristics, 

types and samples. This algorithm was dealt with 

fundamental cases of incremental learning such as sample 

increment, type increment and feature increment. In TILA, 

the data description variables were incrementally updated 

based on which discriminating features were chosen and 

the emitter types were detected. 

 

Mu et al. [13] proposed an alternate method via 
unsupervised learning for solving the categorization under 

Streaming Emerging New Classes (SENC). In this method, 

a fully-random trees, namely SENCTrees were employed 

that can able to operate in the unsupervised and supervised 

learning independently. Also, the isolation-based anomaly 

detection scheme was used for constructing the classifier 

and detector. The anomalies of recognized CLs from 

features of fresh CLs were explicitly differentiated by using 

the SENCForest which is composed of SENCTrees. This 

model was modernized with no primary training set since 

there was no necessary of training fresh models. 
 

Huang et al. [14] proposed an efficient Bayesian 

framework for categorizing many CLs using Local 
desirable and undesirable Pairwise Label Correlations 

(LPLC). During the training phase, the desirable and 

undesirable CL correlations of every ground truth CL were 

obtained for each training sample. During the test phase, K-

Nearest Neighbor (KNN) and their equal desirable and 

undesirable PLC for every test sample was initially 

detected. After that, the prediction was achieved by 

increasing the posterior likelihood computed on the CL 

allocation and the LPLCs represented in the KNN.   

 

Zhu et al. [15] suggested a novel MLL with GLObal 

and loCAL CL correlation (GLOBAL) that deals with the 
complete- and missed-label scenarios. The major functions 

of GLOBAL were: i). Used the low-rank structure of the 

CL matrix for obtaining a denser and abstract latent CL 

representation including the normal result to missed CL 

retrieval, ii). Achieved the global and local CL correlations 

and thus the CL classifier might use data from each CL, iii). 

Trained the CL correlations with no usual and complex 

manual description of the correlation matrix, iv). Integrated 

all these functions into a single joint learning challenge and 

used effective alternate reduction scheme. 

 
Tan et al. [16] developed the Semi-supervised Multi-

label categorization via Incomplete Label Information 

(SMILE). Initially, label correlation was estimated from 

incompletely labeled features and their missed CLs were 

restored. Afterwards, the labeled and unlabeled features 

were used for constructing the region graph. Subsequently, 

the recognized CLs and restored labeled features including 

the unlabeled features were obtained for training a graph-

based semi-supervised linear classifier. The missed CLs of 

training features were restored according to the region 

graph. Also, the CLs of fully unlabeled fresh features were 

directly predicted. 
 

Wu et al. [17] designed a new Cost-sensitive MLL 

with Positive and Negative Label (CPNL) pairwise 

correlations for resolving the MLL challenge. Initially, the 

cost-sensitive loss matrix was computed and integrated 

with the loss function for resolving the class-imbalance 

issue. After that, 2 sparse symmetric similarity matrices 

were computed related to the PNL correlations, 

respectively. Also, 2 regularizers were added for explicitly 

exploring the PNL pairwise correlations in the multiple 

assumptions of the CL distance. Additionally, the kernel 
addition of the linear framework was proposed for 

exploring the complex nonlinear input-output correlations. 

 

Zhang et al. [18] suggested a new technique for joint 

learning of CL-specific features and CL correlations. The 

objective of this technique was designing an optimization 

method for learning the weight distribution strategy and the 

correlations among CLs were considered by constructing 

the additional features simultaneously. The CL-specific 

features were learned by the sparsity regularized 

optimization in ML setting. The MLL challenge was 
modeled as an optimization method where the feature’s 

weights and CL correlations-based features were 
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represented as 2 groups of fresh features. These fresh 

features were updated by using an iterative optimization 
method. Moreover, CL correlations were denoted via extra 

features created in the optimization and a KNN was applied 

for obtaining the CL correlations-based features of test 

sample. 

 

Weng et al. [19] recommended a LF-LPLC for MLL 

that merges the CL-specific features and LPLC 

simultaneously. Initially, the actual feature space was 

converted to the low-dimensional CL-specific feature 

space. After that, the local correlation between every couple 

of CLs was exploited using KNN. Then, the CL-specific 

features of every CL were extended through merging the 
relevant information from another CL-specific features. At 

last, a binary classifier was constructed to test the unlabeled 

features for every CL according to its CL-specific features. 

 

Wang et al. [20] designed a novel scheme to learn the 

ML classifiers using the confidential data. In this scheme, 

the similarity constraints were used for obtaining the 

correlation between accessible data and confidential data. 

Also, the sorting criteria were used for obtaining the 

dependences among many CLs. By merging both the 

criteria into the classifier’s training, the valid data and the 
dependences among many CLs were achieved for building 

an improved classifier or group of classifiers during 

training. During testing, only accessible data was 

considered. 

 

Ma & Chow [21] proposed a new CL retrieval scheme 

in the semi-supervised configuration. This scheme has the 
ability to execute the CL matrix prediction in the labeled 

and unlabeled space at the same time. Additionally, the 

semantic correlation were exploited for increasing the 

sturdiness to semantic breaks and variable CL correlations. 

During the fitness factor formulation, l_1-norm and 

nonnegative limits were used for obtaining the secret 

interactive graphs in semantic-level and revealing the 

interpretation. Also, an iterative method was applied for 

ensuring all variables were reliable. 

 

Zhu et al. [22] recommended the MLL with Emerging 

New Labels (MuENL) for detecting and classifying the 
features with ENLs. In MuENL, three functionalities were 

performed such as classifying the features on presently 

recognized CLs, identifying the occurrence of a fresh CL 

and building a novel classifier for every fresh CL which 

operates cooperatively with the classifier for recognized 

CLs. Also, this method was extended to MuENLHD for 

handling sparse high-dimensional DSs by dimensionality 

reduction via streaming kernel Principal Component 

Analysis (PCA). 

 

Table 1 gives the merits and demerits of the studied 
MLL techniques. 

 

 

 

Ref. 

No. 
Techniques Merits Demerits Dataset Used performance 

[7] RA𝑘EL Computationally 

efficiency. 

It cannot be used in 

practice due to 

complex training 

issue. 

Scene, yeast, 

TMC2007, 

medical, Enron, 

mediamill, reuters 

and bibtex 

Indicative micro F1 

and macro F1 

measures 

[8] TRAM Efficient performance 

using both labeled and 
unlabeled data. 

It cannot generalize to 

fresh samples. 

Annotation, yeast, 

yahoo, RCV1-v2 
dataset and scene 

Micro F1, Hamming 

Loss (HL), Ranking 
Loss (RL) and 

average precision 

[9] LIFT High efficiency. The CL correlations 

were not considered 

during creation of CL-

specific features. 

CAL500, 

language log, 

Enron, image, 

scene, yeast, 

Slashdot, corel5k, 

RCV1 dataset, 

bibtex, corel16k, 

eurlex, tmc2007 

and mediamill 

HL, one-error, 

coverage, RL, mean 

precision and macro-

averaging Area 

Under Curve (AUC) 

[10] Maximum CL 

distance BP 

algorithm 

More effective. Overall computational 

cost was high while 

increasing the number 
of training features. 

Yeast, human and 

plant 

One-error, RL, 

average precision, 

HL, F1 and AUC 

[11] Maximum 

likelihood method 

It can find many fresh 

CLs rather than one fresh 

CL only. 

Computational cost 

was increased linearly 

while increasing the 

amount of bag CLs. 

MSCV2, letter 

carroll, and letter 

frost datasets, 

MNIST 

handwritten 

dataset 

 

HL and AUC 

http://www.ijisrt.com/


Volume 5, Issue 7, July – 2020                                              International Journal of  Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT20JUL198                                                                www.ijisrt.com                   1017 

[12] TILA Better efficiency and 

insensitivity to data input 

sequence. 

Total time complexity 

was high. 

Airborne radar 

emitter dataset 

and ground radar 
emitter dataset. 

Average true positive 

rate, runtime 

[13] SENCForest 

unsupervised and 

supervised learning 

Performs effectively in 

long-streams with an 

adequate memory 

settings. 

It cannot distinguish a 

number of fresh 

classes. 

Synthetic, 

KDDCup 99, 

forest cover, 

MHAR and 

MNIST datasets 

EN_Accuracy and F-

measure 

[14] Effective Bayesian 

model using LPLC 

Better performance. Computational 

complexity was high. 

Flags, cal500, 

emotions, yeast, 

corel5k, RCV1, 

corel16k, 

delicious, 

bookmark and 

imdb 

HL, accuracy, exact-

match, F1, macro F1 

and micro F1 

[15] GLOBAL Better accuracy. It cannot handle the 
case that CL 

correlations were 

asymmetric. 

Yahoo, Enron, 
corel5k and image 

datasets 

RL, average AUC, 
coverage and average 

precision 

[16] SMILE Reduced runtime and 

crucial to leverage 

unlabeled data with CL 

correlation. 

It cannot exploit high-

order CL correlations. 

Cal500, bibtex 

and delicious 

datasets 

RL, coverage, 

average precision, 

accuracy and adapted 

AUC 

[17] New Cost-sensitive 

MLL model with 

CPNL pairwise 

correlations 

Better performance in 

terms of average 

precision and RL. 

It does not discover 

CL correlations 

locally for 

incorporating with 

CPNL. 

Emotions, image, 

scene, yeast, 

Enron, arts, 

education, 

recreation, science 

and business 

datasets 

HL, subset accuracy, 

F1-example, RL and 

average precision 

[18] Sparsity regularized 
optimization method 

and KNN-like 

method 

Better feasibility and 
efficient. 

Improved method was 
needed for identifying 

the CL correlations-

based features of test 

sample. 

Emotions, 
genbase, medical, 

TCM1, TCM2, 

yeast, arts, 

computers, 

corel5k, 

education, 

science, social and 

society datasets 

HL, coverage, one-
error, RL and 

average precision 

[19] LF-LPLC Improved learning 

performance. 

Computational 

complexity was high. 

Image, CAL500, 

emotions, 

language log, 

Enron, scene, 

yeast and Slashdot 

datasets 

HL, RL, one-error, 

coverage and average 

precision 

[20] New scheme using 
the combined 

similarity 

constraints and 

ranking constraints 

Reduced RL. Accuracy was not 
effective. 

Pascal VOC 2007, 
LabelMe, corel5k 

and CK+ datasets 

Example-based 
accuracy, F1-score, 

accuracy and RL 

[21] New label recovery 

scheme under a 

semi-supervised 

configuration 

Increased robustness and 

average accuracy. 

High computational 

complexity. 

Corel5k, ESP 

game, CAL500, 

yeast and REV1-

v2 datasets 

Average precision, 

AUC 

[22] MuENL and 

MuENLHD 

High efficient in the 

dynamic learning setting. 

It requires additional 

time for nonlinear 

mapping updation in 

the DS. 

Birds, CAL500, 

emotions, Enron, 

yeast and Weibo 

datasets 

Average precision 

and F1-measure 

Table 1:- Comparison of Various MLL Techniques 
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III. CONCLUSION 

 
In this article, a survey on recent MLL techniques is 

presented including with their merits and demerits to 

suggest the future scope. Based on this comparative 

analysis, it is concluded that the novel MuENL and 

MuENLHD can easily handle the sparse high-dimensional 

DSs via dimensionality minimization by streaming kernel 

PCA. Also, it can solve the practical issue of MLL using 

fresh labels efficiently. However, the choice of a proper 

configuration is an essential to improve the performance 

and it requires additional time for nonlinear mapping 

updation in the DS. As a result, it would require further 

research to solve these issues by utilizing advanced 
techniques that could increase the MLL performance 

efficiently. 
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