
Volume 5, Issue 1, January – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JAN275 www.ijisrt.com 186

Image Detection for Defence and

Surveillance Using Machine Learning

Aashay Pawar

Research Intern, DRDO

B.E. Pune Institute of Computer Technology

Abstract:- Enlightening lives, growing connectivity

around the creation, that’s the boundless promise

offered by data driven technology. Images and videos

are a part of life, even at technology, at the stake of

privacy. This is indeed required for application as well

as security purpose. An image may consist a lot of

information or sometimes absolutely nothing. Making

use of high-speed machines such as computers can make

things easy, but alone a computer can do nothing. A

computer can achieve such a skill to extract features

using a key technology named” Machine Learning”.

This paper specifically features a way in which defence

systems can make use of this technology for security and

surveillance purpose.

I. INTRODUCTION

Computer vision is an interdisciplinary arena that

pacts with how computers can be made to advance high

level understanding from digital images or videos. The idea

is to systematize tasks that the human visual systems can do

so as a computer should be able to diagnose that this is

some object. We're going to see how a computer reads an

image now. This is very interesting to notice the image that

is there in front of your screen right, our normal human can

easily tell that there is something in this image but can
computers really see this? Well the answer is no.

Computers see a matrix of numbers between 0 to 255 right.

For a coloured image there will be firstly 3 channels

namely red, green and blue and there'll be a matrix

associated with each of these channels. Each element of

this matrix represents the intensity of brightness of that

pixel. All of these channels will have their separate

matrices and these will be stacked on to each other to create

a three-dimensional matrix. So, a computer will now be

able to interpret a coloured image as a 3D matrix. One

thing to know here that, for a black and white image, there
is only single channel and image formed is a 2D matrix.

OpenCV is the library which is used for computer

vision. It was first developed in the year 1999 at Intel by

Gary Brad Sky and the initial announcement came out in

2000. OpenCV supposed extensive diversity of

programming languages such as C++, Python, Java etc and

also supports diverse platforms including Windows, Linux,

etc. OpenCV python is nothing but a Python wrapper for

the original OpenCV C++ execution. In OpenCV, all the

images are converted to numpy array. This makes it calmer
to assimilate it with supplementary libraries that practices

numpy, for instance SciPy and matplotlib.

II. BASIC IMAGE DETECTION

A. Face Detection Using OpenCV
We first need to have an image loaded. Declare it with

image file path. Create a cascade classifier which contain

the features of the face. Using OpenCV, we will read the

image and the features. It will look up for the row and

column values for the face numpy ndarray, basically the

face rectangle coordinates. Steps as below:

cascade_face =

cv2.CascadeClassifier(“haarcascade_frontalface_default.x

ml”)

sampleimg = cv2.imread(“photo.jpeg”)
grayimg = cv2.cvtColor(sampleimg,

cv2.COLOR_BGR2GRAY)

face = cascade_face.detectMultiScale(grayimg,ScaleFactor

= 1.05,minNeighbors=5)

Now we need to add a rectangle shape box to the face.

For this we need to call rectangle function for the image

specifying the coordinates.

B. Capturing Video with OpenCV

A video is nothing but multiple images or multiple

frames which are displayed very quickly so that it looks
like a video. We will be using lutes to build a window

where images will appear really fast so that we can see it as

a video. now let us see how we can capture a video using

OpenCV. the first thing we need to do is import OpenCV.

Then we shall create a VideoCapture object and this

number basically tells the computer to use the built-in

camera. If we want to use an external camera, we just need

to change the number inside VideoCapture(number). We

can also give path to a video file if the file exists in the

system.

samplevideo = cv2.VideoCapture(0)

check, frame = samplevideo.read()

Here, check is a bool data type that returns true if

python is able to recite the video capture object otherwise

it'll return false. Frame is a numpy array. It represents the

first image that video captures. Since we saw that video is

nothing but multiple images which appear is really fast and

it looks like a video. So, what happened here Python was

able to read the video capture object that's why we have got

the output as true basically a check has returned true. To
create a frame window, we want to generate a frame object

which will deliver the images of the video capture object

and we will recessively show each frame of the video being

http://www.ijisrt.com/

Volume 5, Issue 1, January – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JAN275 www.ijisrt.com 187

captured. Using imshow function we can show all the

frames. In demand to capture a video, we shall be using a

while loop. The state would be such that except check is

true, python shall play the frame.

Fig 1:- Process Flow

First of all, we need to save the initial frame. The

moment we switch on the camera the first frame the first

image that will appear, we will save it. Then we'll convert

that image to a Gaussian blur image. we'll take the frames
with the object and converted into Gaussian blur image so

basically this is done to give us the accurate results. we'll

estimate the variance between the initial frame and the

frames that will appear after the first frame since the first

frame is stored already. then we are going to calculate the

time an object appears and exits the frame. we'll save that

in a data frame and we are going to visualize the data

frame.

III. DEFINING A FILTER

A. Defining a Target

A Target is defined as an object inside the image,
information of which we wish to retrieve. In this case our

Target is the tank, refer the below image. A target can be

anything, it could be a vehicle, or a fixed base. Comparing

grayscale images or defining a filter that matches any

particular object is a better option to detect something that’s

unwilling.

B. Creating a Target Filter

A target filer is a replica or a duplicate image of our

desired target. As said, it can be anything. This must be

something that we want to detect in our entire operation.

Taking numpy ndarray of our target filter and numpy
ndarray of the image taken can help us find our target.

Fig 2:- Shows a Target Being Detected by the Camera

http://www.ijisrt.com/

Volume 5, Issue 1, January – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JAN275 www.ijisrt.com 188

After successfully conversion of our arrays, one way

to find our target is to compare both the arrays. Since this

technique does not completely gives a desired output, other

method is dimensionality reduction.

IV. DEEP LEARNING & CONVOLUTIONAL

NEURAL NETWORK

A. Dropout Architecture of ConvoNet

In deep learning, CNN or ConvoNet is a feed forward

artificial neural network, mostly pragmatic to analysing

filmic imagery. CNN uses a difference of multilayer

perceptron intended to entail minimal processing also

acknowledged as Space Invariant Artificial Neural

Networks (SIANN). CNNs use fairly a minute pre-

processing algorithm as compared to other image sorting

algorithms. These resources that the network studies the

filters that in old-style algorithms were hand plotted. This is

a major advantage. We want three straightforward
components to outline a basic convolutional network:

 Convolutional Layer

 Pooling Layer

 Output Layer

 Convolutional Layer

Assume we have an image; we describe a weight

matrix which extracts certain features from the images.

This weight shall now run across the image such that all the

pixels are visited at least once to give a convolved output.

The weight matrix acts like a filter in an image extracting
exact information from the original image matrix. A weight

combination might be extracting edges, another one might a

certain colour while another one might just blur the

undesirable noise. The weights are cultured such that the

loss function is minimised comparable to an MLP.

Therefore, weights are cultured to extract features from the

original image which support the network in accurate

prediction. When we have several convolutional layers the

original layer extract more generic features whereas as

when the network gets deeper, the features extracted by the

weight matrices are more and more composite and more
suitable to the problem at hand.

 Pooling Layer

Every so often when the images are too huge, we need

to diminish the number of trainable parameters. It is then

anticipated to occasionally introduce pooling layers

between succeeding convolutional layers. Pooling is done

for the only purpose of reducing the spatial size of the

image. Pooling is done autonomously on each depth

dimension; therefore, the depth of the image remains

unaffected. The most public form of pooling layer

commonly applied is the max pooling.

 Output Layer

After multiple layers of convolution and padding, we

need the output in the form of a class. The convolutional

and pooling layer would solitarily be able to extract

features and reduce the number of parameters from the

original images. However, to produce the final output we

need to apply a fully connected layer to generate an output

equal to the number of classes we need. It turns out to be
tough to reach that number with just the convolutional

layers. Convolutional layer generates 3D activation maps,

while we just need the output as whether or not an image

belongs to a particular class. The output layer acts as a loss

function like categorial cross entropy, to compute the fault

in prediction. Once the forward pass is complete the back-

propagation commences to apprise the weight and biases

for mistake and loss reduction.

V. MOTION ANALYSIS

Numerous errands related to gesture approximation

where an image sequence is managed to harvest and

estimation of rapidity either at each point in the image 3D

scene or even of the camera that produces the images.

 Egomotion: Defining the 3D rigid gesture of the camera

from an image arrangement formed by the camera.

 Tracking: Following the actions of a reduced set of

interest points or items in the image sequence.

 Optical flow: To govern each point how that point is

moving absolute to the image plane. This motion is a

outcome of both how the equivalent 3D point is moving
in the act and how the camera is moving absolute to the

scene.

VI. DECLARATIONS

These targets are set solely for the purpose of research

and study. The aim of the project is to find new ways of

getting the same solution is a better way and achieve

excellent accuracy. The cameras are either fitter on a drone

or a helicopter which takes images continuously and are

available at ground in our datasets. There are quite a few
things we need to take care of for entire process to run

successfully. One such factor is weather conditions. This

project was carried out in clear weather and in day time.

For night time detections, night vision cameras were added

to the prototype. Though accuracy achieved highest was

during day time, it was merely less in dark.

VII. CONCLUSIONS

With this approach of Machine Learning, images can

be easily classified and information be extracted. Similar

models can be built to achieve more accuracy with
enhancement in parameters and hardware. The above

experiment requires a computer with good specifications

for making things faster.

http://www.ijisrt.com/

Volume 5, Issue 1, January – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JAN275 www.ijisrt.com 189

REFERENCES

[1]. J. K. Aggarwal and R. 0. Duda, Eds., "Special issue

on digital filtering and image processing," IEEE

Trans. Circuits Syst., vol. CAS-2 pp. 161-304,1975.

[2]. G. J. Agin and T. 0. Binford, "Computer description

of curved objects," in Proc. 3rd Int. Joint Conf.

Artificial Intelligence, 1973, pp. 629-640.
[3]. G. J. Agin and R. 0. Duda, "SRI vision research for

advanced industrial automatic," in Proc. 2nd USA-

Japan Computer. Conf., Aug. 26-28, 1975, Tokyo,

Japan.

[4]. H. C. Andrews, Computer Techniques in Image

Processing. New York: Academic, 1970.

[5]. Introduction to Mathematical Techniques in Pattern

1343 IEEE TRANSACTIONS ON COMPUTERS,

DECEMBER 1976 Recognition, New York: Wiley,

1972.

[6]. H. C. Andrews, Ed., "Special issue on digital picture
processing," Computer., vol. 7, pp. 17-87, May 1974.

[7]. H. C. Andrews and L. H. Enloe, Fjds., "Special issue

on digital picture processing," Proc. IEEE, vol. 60, pp.

766-898, July 1972.

[8]. A. G. Arkadev and E. M. Braverman, Learning in

Pattern Classification Machines. Moscow: Nauka,

1971.

[9]. D. I. Barnea and H. F. Silverman, "A class of

algorithms for fast digital image registration," IEEE

Trans. Computer., vol. C-21, pp. 179-186, 1972.

[10]. B. G. Batchelor, Practical Approach to Pattern

Classification. New York: Plenum, 1974.

http://www.ijisrt.com/

