ISSN No:-2456-2165

Countably Generated Commutative Ring in the Norm Over the Field

G. Soundharya, A. Ashtalakshmi Masters in Mathematics Thassim beevi abdul kader college for women Kilakarai,Ramanathapuram.

Abstract:- This paper is based on Norms over finitely generated commutative ring over field F.It will give the connection between the graph theory and ring theory under finite norms respectively.

Keywords:- Semigroup, Norm, Ring, Field.

I. INTRODUCTION

We introduce the notion of norms over finitely generated commutative ring over field F.Also we give the concept of right and left invariant of the ring over field F.

II. PRELIMINARIES

A. Definition

A group is a set of together with an operation * that combines any two elements a and b from another elements denotes a*b or ab. The set and operation (a,*) must satisfies four requirements

Closure: For all a, $b \in G$ a * $b \in G$ Associative: a, b, $c \in G$ (a*b)*c=a*(b*c) Identity element: e*a=a*e=a Inverse element: For each *a* in *G*, there exists an element *b* in *G*, commonly denoted a^{-1}

B. Definition

A semigroup is a set S together with a binary operation $F:S \times S \rightarrow S$ that satisfied associative property for all $a,b,c \in S$ (a^*b) $*c = a^*$ (b^*c).

C. Definition:

If $\|\!\cdot\!\|\!\colon G\to [0,\,+\infty)$ is a group-norm if it satisfy the following condition

D. Definition:

If $\|\cdot\|$: $G \to [0, +\infty)$ is said to be an abelian norm if $\|g_1g_2\| = \|g_2g_1\|$ for all $g_1, g_2 \in G$

E. Note:

Let G=(A, e,.) be a finite abelian group. Then ||a||=log ord(a) is a group norm.

F. Definition

If $(G, \|\cdot\|, e, *)$ is said to be right variant it satisfy d:G×G→R by $d_R(g_1, g_2)= \|g_1^{-1} * g_2\|$ for all $g_1, g_2 \in G$ where d denotes the distance function.

G. Remark:

The product of finite sequence of normed groups is a normed group.

III. MAIN RESULT

A. Definition:

A vector space V with a ring structure and a vector norm such that for all $v,w{\in}V,$

1.∥ vw∥ |≤∥v∥∥w∥

2. $\|v * w\| \le \|v\| + \|w\|$

3. If V has an additive identity 0 such that || 0 ||=0

4.If V has a multiplicative identity 1 such that ||1||=1, also $||v|| \ge 0$ with ||v||=0 iff v=e, $||v|^{-1} ||=||v||$

B. Note:

The field of real number ${\mathbb R}$ is a normed ring with respect to the absolute value.

The field of complex number ${\mathbb C}$ is a normed ring with respect to the modulus.

C. Definition:

A ring norm is said to be commutative norm if its satisfy $||r_1r_2|| = ||r_1 \cdot r_2||$ for all $r_1r_2 \in \mathbb{R}$

D. Lemma:

If $\|\cdot\|:R_n \to (-\infty, +\infty)$ by $\|a\|_{max} = \max\{a, n-a\}, a \in R_n$ then $(R_n, \|\cdot\|, e, +, *)$ is a normed ring.

> Proof;

(i) Let $a,b \in R_n$ since $|| a + b ||_{max} = \max\{a+b, n-(a+b)\}$ then,

 $\max \{a+b, n-(a+b)\} \le \max \{a, n-a\} + \max \{b, n-b\}$

 $\|a+b\|_{max} \leq \|a\|_{max} + \|b\|_{max}$

 $\therefore \parallel a + b \parallel_{max} \leq \parallel a \parallel_{max} + \parallel b \parallel_{max}$

 $|| ab ||_{max} = \max \{ab, n-ab\} \le \max \{a, n-a\}. \max \{b, n-b\} \le ||a|| ||b||$

(ii) If max {a, n-a} ≥ 0 for all $a \in R_n$ and max {a, n-a} =0 if and only if a=e=0

(iii) Let $a \in R_n$ we have $|| a^{-1} ||_{max} = || n - a ||_{max}$ $|| n - a ||_{max} = \max \{n-a, n-(n-a)\}$

$$=\max\{n-a, a\}$$

$$= \parallel a \parallel_{max}$$

ISSN No:-2456-2165

Hence $|| a^{-1} ||_{max} = || a ||_{max}$ $(R_n, ||\cdot||, e, +)$ is a normed ring Obviously, $(R_n, ||\cdot||, e, *)$ is a normed ring $\therefore (R_n, ||\cdot||, e, +, *)$ is a normed ring.

E. Definition:

If $(\mathbf{R}, \|\cdot\|, \mathbf{e}, *)$ is said to be right invariant if $d: \mathbf{R} \times \mathbf{R} \rightarrow \mathbb{R}$ by $d_R(r_1, r_2) = \|r_1 * r_2^{-1}\|$ where $r_1, r_2 \in \mathbb{R}$ where d denotes the distance function.

F. Definition:

If $(\mathbf{R}, \|\cdot\|, e, *)$ is said to be left invariant if $d: \mathbf{R} \times \mathbf{R} \to \mathbb{R}$ by $d_L(r_1, r_2) = \|r_1 * r_2^{-1}\|$ where $r_1, r_2 \in \mathbb{R}$ where d denotes the distance function.

G. Lemma:

If $R=(B,\|\cdot\|, e,.)$ is right and left invariant with respect to [x,y] and [y,x] then

(i) $d_R(xy, yx) = 0$ iff xy = yx(ii) $d_R(xy, yx) = d_R(yx, xy)$ (iii) $d_R((xy)a, (yx)a) = d_R(xy, yx)$ for any $a \in \mathbb{R}$ (iv)Let a = [x,y] b = [p,q] c = [s,t] then $d(a,c) \leq d(a,b) + d(b,c)$

> Proof:

```
By 3.4 definition,
d_R(r_1, r_2) = || r_1 * r_2^{-1} ||
Let d_R(xy, yx) = 0
To prove that xy=yx
d_R(\mathbf{xy.\ yx}) = \parallel xy * \ (yx)^{-1} \parallel
              0 = \|xy * x^{-1}y^{-1}\|
            = \|xx^{-1}, yx^{-1}, xy^{-1}, yy^{-1}\|
0
0 = \| e \|
e = 0 then
xy=yx
conversely
xy = yx
to prove that
d_R(xy. yx) = 0
d_R(xy. yx) = d_R(yx. yx)
= || yx * (yx)^{-1} ||
 = \|yx * x^{-1}y^{-1}\|
= \|y(x * x^{-1})y^{-1}\|
  = \parallel yy^{-1} \parallel
   = \parallel e \parallel
    =0
(ii) d_R(xy, yx) = ||xy * (yx)^{-1}||
= \|xy * x^{-1}y^{-1}\|
                 = \parallel \mathbf{y}\mathbf{x} * y^{-1}x^{-1} \parallel
                 = \|yx * (xy)^{-1}\|
                 =d(yx.xy)
(iii)d_R((xy)a, (yx)a) = \|(xy)a^*[(yx)a]^{-1}\|
                            = \|(xy)a^*(x^{-1}y^{-1})a^{-1}\|
                            = \|(xy)a^* a^{-1} (x^{-1}y^{-1})\|
                            = \|(xy) (a^* a^{-1}) (x^{-1}y^{-1})\|
                            = \|(xy). (x^{-1}y^{-1})\|
                            = \|(xy). (yx)^{-1}\|
                            = d_R(xy. yx)
```

```
iv)let a=[x,y] b=[p,q] c=[s,t]

d(a,c)=||a*c^{-1}||

=||a.(b*b^{-1})*c^{-1}||

=||a*b^{-1}.b*c^{-1}||

\leq ||a*b^{-1}||+||b*c^{-1}||

=d (a.b) + d (b.c)

d(a,c)\leq d(a,b)+d(b,c)

Hence proved
```

> Remark:

If R is a commutative normed ring if and only if $d_R(xy, yx) = 0 = d_L(yx, yx)$ for all $x, y \in \mathbb{R}$

H. Lemma:

Direct product of two commutative normed ring over F $(R_1, \|\cdot\|_{1,e_1,*})$ and $(R, \|\cdot\|_{2,e_2}, \bullet)$ is a commutative normed ring over F with respect to a norm define an Rings $(R_1, *)$ and (R_2, \bullet) respectively.

> Proof:

Let $R_1 \times R_2 = \{(u_1.u_2) \mid u_1 \in R_1, u_2 \in R_2\}$ define a norm on $R_1 \times R_2$ by norm $\|u\| = (u_1.u_2)\| = \|u_1\|_1 + \|u_2\|_2$, $u = (u_1.u_2) \in R_1 \times R_2$ (by 3.1(2)definition)

```
i)let u. v \in (R_1 \times R_1) then u= (u_1.u_2), v= (v_1.v_2) with
u_1, v_1 \in R_1 u_2, v_2 \in R_2
\|uv\| = \|(u_1, u_2)(v_1, v_2)\|
= \|(u_1 * v_1), (u_2, v_2)\|
= \| (u_1 * v_1 \|_1 + \| (u_2 \cdot v_2) \|_2
\leq \|(u_1)\|_1 + \|(v_1)\|_1 + \|(u_2)\|_2 + \|(v_2)\|_2
= (\|(u_1)\|_1 + \|(u_2)\|_2) + (\|(v_1)\|_1 + \|(v_2)\|_2)
= \| (u_1.u_2) \| \| (v_1.v_2) \|
= \|u\| + \|v\|
Hence ||uv|| \le ||u|| + ||v|| for all u, v \in R_1 \times R_2
Obviously || uv || \le || u || || v ||
ii) Let u \in R_1 \times R_2 then u = (u_1, u_2) with u_1 \in R_1 u_2 \in R_2
Since R_1 and R_2 are normed ring over F
We know that ||u|| \ge 0 and ||u|| = 0 if and only if a = (e_1 \cdot e_2)
iii)Let u = (u_1, u_2) \in R_1 \times R_2, then
\|\mathbf{u}^{-1}\| = \|(\mathbf{u}_1^{-1}, \mathbf{u}_2^{-1})\|
      = \|u_1^{-1}\|_1 + \|u_2^{-1}\|_2
      = \|u_1\|_1 + \|u_2\|_2
||u^{-1}|| = ||u||
```

Hence direct product $R_1 \times R_2$ is a normed rings over F. Now we have to prove that if it is finite and commutative. Let R_1 and R_2 be a normed ring over F and $(R, \|\cdot\|_i, e_i)$ where i=1,2,3... n can be written as $\prod_{i=1}^n R_i = R_1 \times R_2 \times ... R_1$ $\prod_{i=1}^n R_i = \{(u_1, u_2..., U_n) \text{ where } u_i \in R_i \text{ for each } i\}$ The algebraic operations $\prod_{i=1}^n R_i$ for $u, v \in \prod_{i=1}^n R_i$ is defined component $uv=(u_1, u_2, ... u_n)(v_1, v_2, ... v_n)=(u_1v_1, u_2v_2, ... u_n, v_n)$ define a norm for the finite product of normed ring over F $\prod_{i=1}^n R_i$ as follows. $\|u\| = \|(u_1, u_2... u_n)\| = \|u_1\|_1 + \|u_2\|_2 + ... \|u_n\|_n$ Where $u_i \in R_i$ for each i

 $(\mathbf{R}_1, \|\cdot\|, e_i)$ where i=1,2,3...n is also normed ring over F.

ISSN No:-2456-2165

I. Analogy:

The product of finite sequence of normed ring $(R_1, \| {\cdot} \|$,e_i) is normed ring over F.

J. Theorem:

If R is a Finitely generated commutative ring over F then $R \cong Z^r \times Z_{n_1} \times Z_{n_2} \times \ldots \times Z_{n_s}$ for some positive integers r such that $n_1 \ge n_2 \ge \ldots n_s \ge 2$ and $n_{i+1}|n_i$. Also it is unique.

K. Analogy:

Let R be a finitely generated commutative normed ring over F. then there exists norm $\|\cdot\|$ on R such that (R, $\|\cdot\|$) is a normed ring over F.

REFERENCES

- [1]. Birkhoff Garrett. A note on topological groups. Composition Math. 3(1936).427-430
- [2]. Milnor John. A notye on curvature and fundamental groups. Journal of Differential Geometry.2 (1) (1968).1-7.
- [3]. Lawrence John.Countable abelian groups with a discrete norm are free. Proceeding of the American mathematical Society. (1984). 352-351.
- [4]. Zorzitto Frank. Discretely normed abelian groups. Aequationes Mathematicae.29 (1) (1985). 172-174.
- [5]. Batagelj Vladimir. Norm andf distances over finite groups. Inst. Department. Univ. 1990.
- [6]. Bokamp Thomas. Extending norms on groups. Note Matematea. 14 (2) (1994). 217-227
- [7]. NourouziKourosh and Alireza Pourmoslemi. Probabilistic Normed groups. Iranian Journal of Fuzzy systems. 14 (10 (2017).99-113.
- [8]. Kaplansky irving. Infinite Abelian groups. Courier Dover Publications.2018.
- [9]. Batagelj Vladimir. Normes and distances over finite groups. J. Combin. Inform. System sei..20(1995). No. 1-4.243-252.