
Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

Survey on Asymmetric Cryptographic Algorithms in
Embedded Systems

Nelson Josias G. Saho
École Doctorale des Sciences de l’Ingénieur

Université d’Abomey-Calavi
Benin

nelson.saho@uac.bj

Eugène C. Ezin
Institut de Formation et de Recherche en Informatique

Université d’Abomey-Calavi
Benin

eugene.ezin@uac.bj

Abstract—Embedded systems spread out daily activities, both
wireless sensors and mobile equipments that collect and process
data for multiple purposes. Although data security on computers
and servers appears to be well controlled, securing them for
embedded systems with limited resources (e.g. memory, compu-
tational power, etc.) is a dare. In this paper, we investigated on the
asymmetric cryptographic algorithms in embedded systems. We
evaluated the performance of asymmetric cryptography algorithms
through Elliptic Curve Cryptography (ECC) versus the RSA
algorithm. Specifically, we investigated on some cryptosystems by
using ECC protocols such as Elliptic Curve Integrated Encryption
Scheme (ECIES), Elliptic Curve Digital Signature Algorithm
(ECDSA), Elliptic Curve Nyberg-Rueppel (ECNR) and RSA. We
then performed many tests that shown ECC algorithms are
more advantageous in terms of computing speed and memory
consumption over the RSA algorithm. We ended that ECC-
based cryptosystems offer an attractive alternative to the classical
asymmetric cryptography like RSA, as it uses a short key size to
achieve an equivalent level of security. This makes it an attractive
and efficient alternative for deployment in embedded systems.

Keywords—Asymmetric cryptography algorithms, Elliptic curve
cryptography, RSA algorithm, Embedded Systems, encryption
scheme, digital signature

I. INTRODUCTION

The increasing use of the Internet and the world wide web
(www) for daily activities and the proliferation of data gene-
ration sources generate new threats to privacy. Web services,
whether they are passive or active, in cyberspace can give others
a great deal of information [1].

Both personal and business users are likely victims of these
threats. How to prevent these potential threats is a major concern
in this era of acceleration of digital transformation and, at the
same time, the development of Big Data. For Tseng et al., the
increasing popularity of digital media has ushered in concern
over related issues [2]. Typically, the document confidentiality
is achieved by encryption.

Since the tools used by malicious users increasingly fussy,
data protection becomes more and more important. Whether
preventing unauthorized access to personal data, or ensuring the
integrity of corporate secrets, all applications require increased

security to protect data from talented intruders [3]. Therefore
securing data is becoming a major issue.

Moreover, nowadays, our life is pervaded by computer sys-
tems embedded inside many products. These embedded systems
are found in almost everything today, from cars to robotic
materials, embedded biomedical devices, mobile equipments or
wireless sensors handling. In embedded biomedical devices and
robotic materials handling, any subversion or denial of service
could result in loss of human life ... [4]. These systems are
becoming increasingly sophisticated and interconnected, both to
each other and to the Internet [5]. Securing these data becomes
a major problem given the multiplicity of their use.

For any user (personal or business), it is judicious to find
the best way to keep their data safe, i.e. ensure data integrity,
authenticity and confidentiality. Cryptography helps to provide
these triple function. What is the judicious manner with current
hardware and software available on markets to ensure data
security especially with embedded systems?

Many asymmetric cryptography algorithms such as RSA
algorithm [6], has been used for both encrypting data and
digitally signing them. But one of the drawbacks for classical
asymmetric cryptosystems is the use of large key lengths is
required to increase such a cryptosystem security. On the other
hand, protocol based on Elliptic Curve Cryptography (ECC)
decrease the key length while providing securities at the same
level as that of other cryptosystems provides [7]. In this paper,
we propose to explore different asymmetric cryptography algo-
rithms, to compare their performance to know the best way to
more secure data in embedded systems.

This paper is organized as follows. In section two we will
present the fundamental concepts including the materials and
methods used. In Section three we will present the different
results we have achieved. In Section four, a discussion and an
analysis of them will be presented. We will end this paper with
concluding remarks presented in Section five.

IJISRT20DEC110 www.ijisrt.com 544

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

II. FUNDAMENTAL CONCEPTS

To introduce this paper in Section one, we talked about
asymmetric cryptography algorithms and also discussed elliptic
curve cryptography. So, in this section we will present the
concept of asymmetric cryptography, the two processes based
on it, namely: encryption scheme and digital signature. We will
finish by presenting ECC.

A. Overview of asymmetric cryptography

Asymmetric cryptography, also called public key crypto-
graphy, uses a pair of related keys to cipher and decipher data:
one key is public and the second is private. The public key can
be shared with everyone while the private key is kept secret.
The purpose of the asymmetric cryptography is to protect a
plaintext (message) from unauthorized access or use. Some of
the examples for asymmetric key cryptosystem are RSA, El
Gamal, and ECC [8].

The public key can be used to encrypt a message; the
reversed key is used for decryption. The opposite operation
is possible and is called digital signature. The latter ensures
data authenticity and uses encryption mechanism to proof that
data are not altered. It is therefore, a reliable engagement
mechanism [9].

The benefits of public key cryptography include:

• the key distribution problem in case of symmetric crypto-
graphy is ruled out since there is no need to exchange our
keys anymore;

• security of the cryptosystem is improved because the
private keys are never sent to someone; and

• the possibly use of digital signature is guaranteed.

It also has drawback including:

• it is slower compared to symmetric cryptography; and
• if the private key is lost, a received message cannot be

deciphered.

B. Overview of encryption scheme

Firstly, we have to generate the related keys: the private
and the public keys. Assume that Bob wants to send to Alice
encrypted message. Alice will generate the keys and will inform
Bob about her public key. Let Kpr and Kpb respectively be the
private and the public keys generated by Alice.

The plaintext Bob wants to send to Alice is encrypted into
ciphertext by using Alice’s public key, which will be decrypted
back into plaintext by Alice with her private key. Then:

C = EKpb
(P). (1)

P = DKpr (C). (2)

where P represents the plaintext, E the encryption method, D
the decryption method and C the ciphertext.

(1) is computed by Bob and (2) is computed by Alice to
recover the plaintext.

C. Overview on digital signature scheme

Digital signature is a reliable engagement mechanism [9].
It proves to a third party that a particular document has
been approved by an entity [10]. A digital signature has the
following characteristics: authenticity, non forgery, inalterability,
non reusable and irrevocability.

Let us assume Alice wants to send a message m to Bob. Bob
must be able to verify the authenticity of the message of Alice.
The classical method of digital signature can be described in
four steps [11]:
• setting up signature architecture;
• using of hash function;
• preparing signed message; and
• receiving signed message.
1) Digital signature establishment: To set up digital signa-

ture, they agreed on the following choices:
• an asymmetric encryption function C and a decryption

function D;
• a hash function denoted by H;
• since Alice wants to send a message m to Bob, she

generates the related keys: a private key Kpr and a public
key Kpb; and

• she transmits the public key Kpb to Bob by a channel which
cannot be necessarily secured, and keeps Kpr secret.

2) Hash function: A hash function is a one-way function
with the message as input and a digest message as output [12].
The output is called hash message or condensate. A valid hash
function will have to guarantee the impossibility to recover the
original message from the hash.

Adding a one-way function into the process allows its im-
provement since its absence would duplicate not only the size
of the signature but also increase the number of calculations to
be performed [13].

The most widely used hash algorithms are :
• Message Digest (MD5); It produced 128 bits as output from

a file of arbitrary size by processing it into blocks of 512
bits.

• Secure Hash Algorithm (SHA). It created a 160 bits stream
from a message of up to 264 bits in length by also
processing it into blocks of 512 bits.

Figure 1 illustrates the process of signing a message applying
a hash function.

3) Preparing signed message: Alice prepares the signed
message as follows [13]:
• she produces a condensate of m as follows: H(m);
• she encrypts H(m) with the function C by using Kpr. The

output is the signature of the message denoted Sm which
is defined by:

Sm = C(Kpr, H(m));

• she sends the signed message by placing the clear message
m and the signature Sm in any container.

msigned = (Sm,m).

IJISRT20DEC110 www.ijisrt.com 545

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

Fig. 1. Process of signing a message with hash function [13].

4) Receiving signed message: Once Bob received msigned,
to verify the message authenticity he proceeds as follows [13]:
• he computes the digest of the plaintext by using the agreed

hash function H: H(m);
• he decrypts the signature using the function D with

Alice’s public key Kpb. The decrypted message is DSm =
D(Kpb, Sm);

• he compares DSm with H(m). The signature will be
authentic if DSm and H(m) equal.
Proof:

DSm = D(Kpb, Sm)

= D(Kpb, C(Kpr, H(m)))

= H(m).

(3)

D. Overview on elliptic curve cryptography

Elliptic Curve Cryptography (ECC) is independently pro-
posed by Neal Koblitz and Victor Saul Miller in 1985 [14],
[15]. It includes a set of techniques allowing to secure data by
using less resources.

To explain the functioning of ECC, we will present firstly
the mathematical concepts of them, as well as the scalar
multiplication operation which is the most important operation
on curves. After this, we will indicate the set of cryptographic
protocols based on it.

1) Brief overview on elliptic curves: An elliptic curve E is
an algebraic curve that can be represented by the Weierstrass’
equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4)

We assume that the parameters a1, a2, a3, a4, a6 belong to a
field K on which a curve is defined.

Two elliptic curves with different shapes are illustrated in
Figure 2. The shape of the curve varies following to the chosen
parameters.

Equation (4) can be simplified. Shou Yanbo in his thesis [16]
showed that (4) becomes:

E : y2 = x3 + ax+ b, (5)

Fig. 2. Elliptic curve examples.

Fig. 3. Addition of points on elliptic curves.

where a et b ∈ Fp.
It is necessary to remember how the addition of two points

and the multiplication of a point by a scalar are carried out since
the set of elliptic curves is an additive group.

a) Addition of points: Let us consider an elliptic curve E
of (5) and two points P1(x1, y1) and P2(x2, y2) belonging to
this curve. The addition of P1 and P2 is the point P3(x3, y3)
of E (P3 = P1 + P2) defined as follows:

i. If x1 6= x2 then x3 =
(

y2−y1

x2−x1

)2
− x1 − x2

y3 =
(

y2−y1

x2−x1

)
(x1 − x3)− y1.

ii. If x1 = x2 but y1 6= y2 then P3 =∞.
iii. If P1 = P2 and y1 6= 0 then x3 =

(
3x2

1+a
2y1

)2
− 2x1

y3 =
(

3x2
1+a
2y1

)
(x1 − x3)− y1.

iv. If P1 = P2 and y1 = 0 then P3 =∞.

Furthermore ∀ P ∈ E, P +∞ = P .
Figure 3 illustrates the addition of two points P and Q (R =

P +Q) on the elliptic curve defined by y2 = x3 − 2x+ 1.
b) Scalar multiplication: Based on addition of points, we

can perform the multiplication, denoted by Q = kP on an
elliptic curve E where k ∈ Z+ and (P,Q) ∈ E2. Scalar
multiplication is in fact a sequence of addition of points [17]:

Q = k P = P + P + · · ·+ P.︸ ︷︷ ︸
k times

(6)

IJISRT20DEC110 www.ijisrt.com 546

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

TABLE I
THE KEY LENGTHS OF DIFFERENT ALGORITHM.

Algorithms Key lengths (bits)
Key lengths label 1 2 3 4 5
Symmetric 80 112 128 192 256
ECC 163 233 283 409 571
RSA 1 024 2 240 3072 7 680 15 360

It is important to specify that ECC resistance is linked to the
problem of the discrete logarithm on the group of the curve.
ECC seems to be a credible alternative to conventional public
key cryptography.

2) Elliptic curve cryptography protocols: Here are the main
cryptographic protocols based on elliptic curves theory.
• Diffie-Hellman key exchange protocol [18]
• El Gamal method [19]
• Elliptic Curve Integrated Encryption Scheme (ECIES) [20]
• Elliptic Curve Menezes-Qu-Vanstone (ECMQV) [21]
• Elliptic Curve Digital Signature Algorithm (ECDSA) [22]
• Elliptic Curve Nyberg-Rueppel (ECNR) [23]

E. Materials and methods

Our goal is to explore different asymmetric cryptography
algorithms, compare their performance to know the best way
to further secure data in embedded systems. We will show
why asymmetric cryptography and not symmetric cryptography
should be more suitable for embedded systems since the latter
is faster, and not greedy. We will survey the different asymme-
tric cryptography algorithms and perform a comparison study
between them to identify which one seems better for embedded
systems.

For the comparison study, we will use as inputs, the result of
the work archived by Arjen K. Lenstra and Eric R. Verheul [24].
They have identified equivalent key lengths, for symmetric,
RSA and ECC algorithms, which can provide the same level
of robustness. For better understanding, key lengths in the same
column (refer Table I) are expected to provide the same level
of robustness. We will set up cryptosystems with elliptic curve
algorithm and RSA algorithm by using equivalent key lengths
obtained by Lenstra et al. to evaluate the performance of these
for both encryption and digital signature.

The computer used by Lenstra et al. is equipped as fol-
lows [24]:
• 2.0 GHz Intel processor; and
• a RAM of 512 MB.
Their results are available at this URL1.

III. SIMULATION RESULTS

We will first present the reasons for the preference of
asymmetric cryptography over symmetric cryptography. Then,
it will be presented asymmetric cryptography algorithms non
based on elliptic curves before presenting the encryption scheme

1http://www.keylength.com/fr/1/ visited on August, 24th 2020.

with the RSA algorithm and one with the elliptic curve al-
gorithm i.e. the ECIES. Secondly, we will present the results
of digital signature. Then, we will compare these results to
determine the best way to secure data for embedded systems.

A. The preference of asymmetric cryptography

Let us recall that symmetric encryption uses a unique key
that must be shared between the people who need to take part
in communication. Unlike symmetric encryption, asymmetric
encryption, as mentioned in subsection II-A, uses a pair of keys.
Symmetric encryption is an old technique (the earliest known
evidence of the use of cryptography was found in an inscription
carved around 1900 BC in Egypt [25]).

Whether a beginner or a non-techie in the cryptography
science, choosing an encryption algorithm to secure data can
be a difficult task. This choice becomes more complex if he
has to opt between symmetric or asymmetric encryption. We
will discuss the major differences between these two encryption
methods, which one is more secured or more suitable as needed.

We retain here four major differences between symmetric and
asymmetric encryptions. Most of them are related to the key and
the computational time.

Symmetric and asymmetric encryption are both very efficient
depending on the task at hand, and this in different ways.
Asymmetric encryption is the more secured one, while sym-
metric encryption is faster [26]. Either or both can be deployed
alone or together.

The Table II below compares symmetric and asymmetric
encryptions.

We cannot conclude that one is more adequate than the other
because it is related to the need. Let us mention, however, that
in a configuration where on-board equipment will have to give
the guarantee that a datum collected or generated comes from
itself, asymmetric cryptography is indicated because in this case
the principles of the digital signature will be used. It is for this
reason that in this paper to identify a cryptosystem that will
ensure both the encryption and the digital signature, we focus
our attention on asymmetric cryptosystems.

B. Survey on asymmetric cryptography

M. A. Al-Shabi discussed the most important algorithms
used for the encryption and decryption process; he makes a
comparative study for most important algorithms in terms of
speed (implementation) and security (special keys) to determine
whether an encryption algorithm is good [28]. Moreover, the
computational resources, such a size of RAM memory, are an
integral consideration since they affect the algorithm efficiency.
So a consequent allocation of resources is necessary. He pro-
duced the result, part of which is recorded in the Table III.

By analysing this result, we have understood that the major
asymmetric algorithms he considered, like other authors are:
• RSA published and developed by Ron Rivest et.al [6];

2Since 2015, National Institute of Standards and Technology (NIST) recom-
mends a minimum of 2048-bit keys for RSA [27] an update to the widely-
accepted recommendation of a 1024-bit minimum since at least 2002.

IJISRT20DEC110 www.ijisrt.com 547

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

TABLE II
MAJOR DIFFERENCES BETWEEN SYMMETRIC AND ASYMMETRIC ENCRYPTION.

Difference element Symmetric encryption Asymmetric encryption

1. Used key
A single key is used for both en-
cryption and decryption of mes-
sage.

Two different keys, a public key and a
private key, are used. The public key is
used for encryption while the second is
used for decryption.

2. Complexity and exe-
cution speed

It’s a simple process. So the en-
cryption process is faster.

It is more difficult than symmetric encryp-
tion, and its process is less quick.

3. Length of keys

A shorter key length than an equi-
valent asymmetric cryptosystem is
used. The length of the used keys
depends on security requirements.

The length of the keys is much larger
than an equivalent symmetric cryptosys-
tem. The recommended RSA key size is
2048 bits or higher2.

4. Security
Since the secret key is shared, then
its sharing mechanism is the flaw
of symmetric cryptosystems.

The process is more secure than to sym-
metric encryption. There is nevertheless
the use of the key which is the weakness
of any cryptosystem, both symmetric and
asymmetric.

TABLE III
COMPARATIVE ANALYSIS OF ASYMMETRIC CRYPTOGRAPHY [28].

Algorithms Battery Con-
sumption

Time
Consumption Block Size Round Structure Attack

RSA Low Slowest Variable 1 Public Key
Algorithm Cycle attack

Diffie
Hellman High Medium Variable 1 Festial & Sub-

stitution
Man in the
middle

ECC Medium Fast Variable 1 Public Key
Algorithm Side channel

• Diffie Hellman published and developed by Whitfield
Diffie and Martin Hellman [18]; and

• ECC published and developed by by Neal Koblitz and
Victor Miller [14], [15].

Diffie Hellman algorithm battery consumption is high. This
is not indicated for the embedded systems. This bad parameter
accumulated with the medium computational time will heat up
the processor and thus affect the performance of the equipment.
We therefore do not recommend for embedded systems the al-
gorithms of Diffie Hellman. Then, our attention will be focused
on RSA algorithm and that is based on elliptic curves. We will
analyze more closely the performance of these two algorithms
to retain which of them is useful for embedded systems.

This comparative study on the performance between elliptic
curve cryptography algorithms over cryptography through RSA
algorithm will be done for both encryption scheme and digital
signature. After describing one algorithm in each case on which
the comparison study focused, we will indicate the performance
of each of them.

C. Description of encryption and digital signature algorithms
We will explain for the encryption scheme the algorithm of

RSA and an algorithm of elliptic curves and for the digital
signature we will do the same. So, for encrytion scheme, we
will describe RSA encryption and Elliptic Curve Integrated
Encryption Scheme (ECIES) and for the digital signature, we
will describe RSA digital signature and Elliptic Curve Digital
Signature Algorithm (ECDSA).

1) RSA encrytion: We have to generate the RSA keys first
of all. It is processed as follows [13]:

i. choose two distinct prime numbers p and q such as the
number of bits of the two integers is approximately equal;

ii. compute the encryption module n = p× q;
iii. determine the value of the Euler indicator in n by comput-

ing ϕ(n) = (p− 1)(q − 1) ;
iv. choose the encryption exponent, an integer e such as

e ∈]1, ϕ(n)[and gcd(e, ϕ(n)) = 1; and
v. compute the deciphering exponent d such as

e d ≡ 1(modulus n).
The public key of the encryption is the pair (n, e) whereas

the number d is its corresponding private key.

IJISRT20DEC110 www.ijisrt.com 548

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

a) Encryption process: Once Bob obtains Alice’s public
key, he can encrypt the plaintext m and then sends the cryp-
togram to Alice. He computes that cryptogram C using e, the
public key of Alice, by doing:

C ≡ me (modulus n). (7)

Then, Bob transmits the cyphertext C to Alice.
b) Decryption process: Alice can recover m from C by

using the exponent d. She computes D such that:

D ≡ Cd (modulus n). (8)

Proof: Let us recall that C ≡ me (modulus n). Then,

D ≡ Cd (modulus n)

≡ [(m)e]d (modulus n)

≡ m.

2) ECIES encrytion: The ECIES protocol is indeed a stan-
dardized version of Elgamal [29]. Suppose Alice wants to send
a message m to Bob in a secure way, they must agree on the
following information:
• KFC: key derivation function that allows to generate

several keys from a reference secret value;
• MAC message authentication code transmitted with data

to ensure its integrity;
• SYM : Symmetric encryption algorithm;
• E(Fp): elliptic curve used with the generator G whose
ordp(G) = n; and

• KB : Bob’s public key KB = kB G where kB ∈ [1, n− 1]
is his private key.
a) Encryption process: To encrypt the message m, Alice

proceeds as follows:
i. choose a random number k belonging to the interval [1, n−

1] and compute R = k G;
ii. compute Z = kKB ;

iii. generate the keys k1 and k2 such that
(k1, k2) = KDF (abscissa(Z), R);

iv. encrypt the message m by doing C = SYM(k1,m);
v. generate the MAC code t = MAC(k2, C); and

vi. send (R,C, t) to Bob.
b) Decryption process: To decrypt the message (R,C, t),

Bob proceeds as follows:
i. verify if R ∈ E(Fp). Otherwise reject the message;

ii. compute Z = kB R;

Z = kB R

= kB k G

= kKB .

iii. generate the keys k1 and k2 such as
(k1, k2) = KDF (abscissa(Z), R);

iv. generate the MAC code t′ = MAC(k2, C);
v. verify if t = t′. Otherwise reject the message; and then

vi. decrypt the message by computing
M = SYM−1(k1, C).

3) RSA Digital signature algorithm: Generally, there are
three stages involved in digital signature processing which are
key generation, signature generation and signature verification.

a) RSA key generation: The key generation using RSA
algorithm is the same as described in subsection III-C

b) RSA signature generation: To sign any message m with
RSA, it is sufficient to encrypt the hash with d, the private key.
Let s be this signature.

s ≡ [hash(m)]d (modulus n), (9)

where hash is a hash function.
Once the message m is signed, the sender will transmit it

with its signature to the recipient. For the purpose of this paper
we use SHA − 256 as recommended by Federal Information
Processing Standards (FIPS) 180-4 [30].

c) RSA signature verification: To verify if the received
message is authentic, the recipient must decrypt the received
signature with the public key of the sender according to the
following relation:

h ≡ se (modulus n). (10)

Proof: Let us recall that s ≡ [hash(m)]d (modulus n),
and e× d = 1.

h ≡ se (modulus n)

≡ [hash(m)d]e (modulus n)

≡ hash(m).

To verify the authenticity the sender of the message, the
recipient has to apply the retained hash function (hash) to the
plaintext m and checks whether the previously calculated value
(h) is equal to the current result.

4) ECDSA algorithm:
a) ECDSA key generation: Let us consider the retained

elliptic curve in (5). For the keys generation, one proceeds as
follows:

i. select a number x, strictly smaller than the order n of the
curve; and

ii. compute P such as P = xG, G being the generator of the
curve.

Thus, our key pair is (P, x) where P is the public key and x
the private key.

b) Generating an ECDSA signature: Generating the
ECDSA signature S of a message m is doing as follows:

i select a random number k belonging to the interval
[1, n− 1];

ii compute R(x1, y1) such as R = k G;
iii compute r = x1 (modulus n). If r = 0 then return to the

step i;
iv compute k−1 (modulus n);
v compute SHA − 1(m), and convert it into an integer e

(instead of the SHA-1 one may use SHA-256 or SHA-
512); and

vi compute s = k−1(e+ x r) (modulus n). If s = 0 then go
to the step i.

IJISRT20DEC110 www.ijisrt.com 549

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

TABLE IV
RUNNING TIME DURING KEY GENERATION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA ECC RSA

163 1 024 0.219 0.958

233 2 240 0.257 1.615

283 3 072 0.197 6.122

409 7 680 0.224 162.357

571 15 360 0.156 2029.909

S = (r, s).

c) ECDSA signature verification: To verify S, one pro-
ceeds as follows:

i. check if r and s are integers within the interval [1, n− 1];
ii. compute SHA− 1(m), and convert it into an integer e;

iii. compute w = s−1 (modulus n);
iv. compute u1 = ew (modulus n) and

u2 = r w (modulus n);
v. compute X(x1, y1) such as X = u1G+ u2P ; and

vi. if X = 0 then S is not valid. Otherwise, calculate
v = x1 (modulus n).

S is valid if v = r.

D. Performance studies

We make the comparison between RSA and ECIES algo-
rithms for the encryption scheme, ECDSA and ECNR algo-
rithms over RSA algorithm for digital signature. The comparison
is done by considering the execution time of each algorithm. The
computer which is used for the various tests is equipped with:
• a dual core processor of 2.4 GHz; and
• 2 GB of RAM.

Since other processes are running on the computer, the compu-
tational time retained is the average time after a certain number
of execution of the different cryptosystems.

1) Encryption scheme: For this process, we have two steps:
encryption and decryption. But we have firstly to generate a pair
of key. The different comparisons are done following also the
same steps, namely:
• key generation step;
• encryption step; and
• decryption.

We wrote programs in Java [31] implementing the algorithms.
We encrypted one text file of 4 KB and after we have decrypted
it. Then, we can calculate the computational time of each step.

a) Key generation: The results of the comparisons carried
out in terms of computational time during the key generation
stage are mentioned in Table IV.

From these results, we got the curve in Figure 4.

Fig. 4. ECC and RSA curves respect to running time during key generation
stage.

TABLE V
RUNNING TIME DURING ENCRYPTION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA ECC RSA

163 1 024 1.147 0.063

233 2 240 1.265 0.031

283 3 072 1.395 0.031

409 7 680 1.375 0.031

571 15 360 1.265 0.015

Remark 1: By minutely analyzing the Figure 4, we have noted
that the key generation by the elliptic curves algorithm ECIES
is much faster than the key generation in the RSA algorithm.
While this time increases exponentially in the case of RSA, it
grows linearly with an almost zero slope at the level of the ECC
algorithm. Therefore, from the point of view of key generation
stage, it is evident that the algorithm based on elliptic curves is
more optimal.

b) Encryption process: The results of the comparisons
carried out in terms of computational time during the encryption
stage, with RSA and ECIES algorithms, are mentioned in
Table V.

From these results, we got the curve in Figure 5.
Remark 2: A careful analysis of the Figure 5 shows us that

the data encryption by the RSA algorithm is faster than the
encryption with an algorithm based on elliptic curves. But notice
that the gap between the two computational times is relatively
one second, then not so significant. Hence, from the point of
view of encryption stage, we can conclude that both algorithms
have the same performance but the RSA-based algorithm is a

IJISRT20DEC110 www.ijisrt.com 550

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

Fig. 5. ECC and RSA curves respect to running time during encryption stage.

TABLE VI
RUNNING TIME FOR DECRYPTION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA ECC RSA

163 1 024 0.015 0.062

233 2 240 0.029 0.032

283 3 072 0.019 0.047

409 7 680 0.026 0.375

571 15 360 0.047 2.66

bit faster than that-based on the elliptic curves.
c) Decryption process: The results of the comparisons

carried out in terms of computational time during the decryption
stage are mentioned in Table VI.

From these results, we got the curve in Figure 6.
Remark 3: We obtain opposite results in comparison with

those obtained during the encryption stage (refer Remark 2).
The decryption by the ECC algorithm is more faster than
the one with RSA. With a RSA key size greater than 409
bits, the decryption time becomes more and more considerable.
Therefore, from a decryption point of view, we conclude that
ECC-based algorithms perform better.

2) Digital signature: As previously mentioned in the des-
cription of algorithms in subsection III-C, we have three main
stages in their implementation, namely:
• the key generation stage;
• the signature generation stage; and
• the signature verification stage.

We will use two common algorithms of elliptic curves, ECDSA
and ECNR, and compare their performance with RSA-based
algorithm.

Fig. 6. ECC and RSA curves respect to running time during decryption stage.

TABLE VII
RUNNING TIME FOR KEY GENERATION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA
ECC

RSA
ECDSA ECNR

163 1 024 0.466 0.528 0.958

233 2 240 0.337 0.65 1.615

283 3 072 0.318 0.579 6.122

409 7 680 0.374 0.538 162.357

571 15 360 0.317 0.559 2029.909

The comparison in terms of running time is also done
according to the three stages. The written programs in Java using
the same library JCE [31] implement these algorithms.

a) Key generation: The results of the comparisons carried
out in terms of computational time during the key generation
stage are mentioned in Table VII.

From these results, we got the curve in Figure 7.
Remark 4: By analyzing the Figure 7, we have noted that

the key generation by the elliptic curves algorithms is much
faster than the key generation stage on RSA-based algorithm.
The performance between both elliptic curve algorithms i.e.
ECDSA and ECNR, is not very different. As we noted in
Remark 1 during key generation stage of encryption process,
while this time increases exponentially in the case of RSA, it
grows linearly with an almost zero slope at the level of the
ECC algorithm. Therefore, according to the generation key, the
ECC-based algorithms are much more optimal.

b) Signature generation: The results of the comparisons
carried out in terms of computational time during the signature
generation stage are mentioned in Table VIII.

IJISRT20DEC110 www.ijisrt.com 551

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

Fig. 7. ECC (ECDSA and ECNR) and RSA curves respect to running time
during key generation curve.

TABLE VIII
RUNNING TIME OF SIGNATURE GENERATION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA
ECC

RSA
ECDSA ECNR

163 1 024 0.009 0.057 0.036

233 2 240 0.01 0.061 0.037

283 3 072 0.01 0.060 0.067

409 7 680 0.014 0.067 0.479

571 15 360 0.018 0.083 3.015

From these results, we got the curve in Figure 8.
Remark 5: The table VIII shows that ECDSA, which is ECC-

based algorithm, produces better results than both algorithms
ECNR and RSA. It can remark however that when the length
of the key of the ECNR algorithm is greater or equal than 409
bits, the signature generation time of this algorithm is better
than RSA-based algorithm. Elsewhere, the RSA algorithm is a
bit faster than the ECNR algorithm. In any case, the performance
of both algorithms is not too different up to a given key length
(409 bits) and beyond, ECNR becomes more efficient. In fact,
we basically understand that ECC performs better than RSA in
terms of signature generation.

c) Signature verification: The results of the comparisons
carried out in terms of computational time during the signature
verification are presented in Table IX.

From these results, we got the curve in Figure 9.
Remark 6: They all have almost the same performance espe-

cially the ECDSA and RSA algorithms. But the RSA results are
better and the ECNR algorithm is the most greedy in terms of

Fig. 8. ECC (ECDSA and ECNR) and RSA curves respect to running time
during signature generation stage.

TABLE IX
RUNNING TIME OF SIGNATURE VERIFICATION STAGE.

Key lengths (bit) Running time (sec)

ECC RSA
ECC

RSA
ECDSA ECNR

163 1 024 0.0053 0.047 0.007

233 2 240 0.005 0.069 0.004

283 3 072 0.008 0.049 0.006

409 7 680 0.017 0.054 0.01

571 15 360 0.025 0.056 0.015

running time. When it comes to signature verification, the RSA
algorithm is much more efficient than ECC-based algorithms.
In fact, it just does a modular exponentiation.

IV. DISCUSSION AND ANALYSIS

We first ruled out symmetric cryptosystems in the context
of this paper because they do not allow us to guarantee
authenticity and non-repudiation. Gaur et al. achieved that
public-key cryptography is viable on small devices without
hardware acceleration [32]. Among the most used asymmetric
cryptosystems like RSA, Diffie-Hellman, ECC, recommended
by Al-Shabi [28], we discarded the Diffie-Hellman algorithm
because it was not adequate to embedded systems because of
its energy consumption.

There is nevertheless the Elgamal [19] algorithm. This cryp-
tosystem has been used by the free software GNU Privacy
Guard. But its current versions only implement elliptical curves.
It has the same year of publish with the elliptical curves. Unlike
RSA encryption, it has never been under patent protection. It

IJISRT20DEC110 www.ijisrt.com 552

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

Fig. 9. ECC (ECDSA and ECNR) and RSA curves respect to running time
during signature verification stage.

is nowadays considered like ECC algorithms. In this paper,
however, our focus was on the RSA and ECC cryptosystems.

After an analysis of the key lengths suggested by Lenstra et al.
in [24] (see table I), we denote that for equivalent cryptosystems,
algorithms based on elliptic curves require less bits in terms
of key length than those based on RSA. Nonetheless, for the
same algorithms on elliptic curves, to offer the same robustness
it is necessary about twice the key length of the symmetric
algorithm key. From our achieved results, the generation of the
keys and the calculation of the message signature are faster with
the algorithms on elliptic curves than with the RSA algorithm.

In their paper to evaluate and compare the performance of
algorithms based on RSA and elliptic curves, Nicholas Jansma
and Brandon Arrendondo have proposed two implementations
using two cryptosystems [33]. They came to the conclusion that
algorithms based on elliptic curves can have the same level of
security as those based on RSA with a much shorter key.

R. Sinha et al. achieved the paper “Performance Based
Comparison Study of RSA and Elliptic Curve Crypto-
graphy” [34] in which they analyzed the results obtained by
Nicholas Jansma and Brandon Arrendondo. In this paper, we
examined the cryptosystem to identify the best way to secure
more the data.

Considering Bandwidth saving, ECC offers considerable
bandwidth savings over RSA and considering computational
overheads, ECC offers Roughly ten times than that of RSA
can be saved [35]. Considering key sizes, System parameters
and key pairs are shorter for the ECC than RSA and after the
different results obtained at the level of the encryption and de-
cryption and those obtained for the digital signature, we deduced
that the elliptic curve algorithms are more efficient than the one
based on the RSA. Also, we found that the digital signature
ECDSA is more efficient than the ECNR. This is why among the
algorithms based on the elliptic curves, the ECDSA algorithm
was adopted and published as an international standard in ANSI

X9.623.

V. CONCLUDING REMARKS

We surveyed asymmetric cryptographic algorithms and per-
formed a comparison study between them. We achieved RSA
cryptosystems and some others by using cryptography protocols
based on elliptic curves like: ECNR, ECDSA and ECIES.

From the obtained results, we deduced that the systems
based on elliptic curves, thanks to the mathematical approaches
advantages offered by said curves, are an efficient alternative
compared to RSA-based cryptosystems.

Setting up a robust cryprosystem no longer necessarily in-
volves the use of significant machine resources. Indeed, for an
equivalent level of robustness between two cryptosystems, one
based on the elliptic curves algorithms and the other on the
RSA-based algorithm, the first (that based on the elliptic curves)
uses a shorter key length.

Since embedded systems do not have sufficient memory
and computational power to perform the calculations required
by RSA-based cryptosystems with big numbers, elliptic curve
cryptosystems are perfectly suitable for them. And even if this
machine resources could allow it, they should be used for other
purposes for better performance of these embedded equipment.

However, let us remember that in both cases, these crypto-
systems are based on the use of keys, pledge of their security.
The use of a key is in fact the weakness of all cryptographic
systems. Blockchain technology appears to correct this weak-
ness. We can therefore study in future work whether its use
is possible with embedded systems to guarantee ever more the
security not only of this equipment but also and above all of
data that it collects since they are now widely used for this
purpose.

REFERENCES

[1] Attaran, M., VanLaar, I.: Privacy and security on the Internet:
how to secure your personal information and company data. In-
formation Management & Computer Security 7(5) 241–247 (1999),
https://doi.org/10.1108/09685229910292907

[2] Tseng, Y.-C., Chen, Y.-Y., Pan, H.-K.: A secure data hiding scheme for
binary images. IEEE Transactions on Communications 50(8), 1227–1231
(2002), https://doi.org/10.1109/TCOMM.2002.801488

[3] Stanton, P., Yurcik, W., Brumbaugh, L.: Protecting multimedia data
in storage: a survey of techniques emphasizing encryption. In: Pro-
ceedings SPIE, Storage and Retrieval Methods and Applications for
Multimedia, 5682, pp. 18–29. SPIE, California, United States (2005),
https://doi.org/10.1117/12.587207

[4] Skowyra, R., Bahargam, S., Bestavros, A.: Software-Defined IDS for
securing embedded mobile devices. In: 2013 IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, pp. 1–7, (2013)
https://doi.org/10.1109/HPEC.2013.6670325

[5] Koscher, K. A.: Securing Embedded Systems: Analyses of Modern
Automotive Systems and Enabling Near-Real Time Dynamic Analysis.
University of Washington, (2014)

[6] Rivest, R., Shamir, A., Adleman, L. M.: A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM
21(2), 120–126 (1978), https://doi.org/10.1145/359340.359342

3Public Key Cryptography For The Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA)

IJISRT20DEC110 www.ijisrt.com 553

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

[7] Sharma, S., Krishna, C. R.: An Efficient Distributed Group Key Man-
agement Using Hierarchical Approach with Elliptic Curve Crypto-
graphy. In: IEEE International Conference on Computational Intelli-
gence & Communication Technology, pp. 687–693, Ghaziabad, (2015),
https://doi.org/10.1109/CICT.2015.116

[8] Sasi, S. B., Dixon, D., Wilson, J.: A General Comparison of Symmetric
and Asymmetric Cryptosystems for WSNs and an Overview of Location
Based Encryption Technique for Improving Security. Journal of Engineer-
ing (IOSRJEN), 04, (2014)

[9] Techopedia dictionary, https://www.techopedia.com/
definition/5426/digital-signature. Last accessed 31 Aug 2020

[10] Universign website, https://www.universign.com/fr/2017/ signature-
electronique-expliquee-patron/ Last accessed 31 Aug 2020

[11] Merkle R.C.: A Digital Signature Based on a Conventional Encryption
Function. In: Pomerance C. (eds) Advances in Cryptology — CRYPTO
’87. CRYPTO 1987. Lecture Notes in Computer Science, 293, Springer,
Berlin, Heidelberg. (1988) https://doi.org/10.1007/3-540-48184-2 32

[12] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Defi-
nitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In: Roy B., Meier W.
(eds) Fast Software Encryption. FSE 2004. Lecture Notes in Com-
puter Science, 3017. Springer, Berlin, Heidelberg, pp. 371–388 (2004),
https://doi.org/10.1007/978-3-540-25937-4 24

[13] Saho, N. J. G., Ezin, E. C.: Securing Document by Digital Sig-
nature through RSA and Elliptic Curve Cryptosystems. In 2019 In-
ternational Conference on Smart Applications, Communications and
Networking (SmartNets), pp. 1-6, Sharm El Sheik, Egypt, (2019)
https://doi.org/10.1109/SmartNets48225.2019.9069749

[14] Hankerson, D. R., Vanstone, S. A., Menezes, A. J.: Introduction
and Overview. In: Guide to Elliptic Curve Cryptography. Springer
Professional Computing. Springer, New York, pp. 1–23 (2004)
https://doi.org/10.1007/0-387-21846-7 1

[15] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computa-
tion, 48(177) 203–209 (1987) https://doi.org/10.1090/S0025-5718-1987-
0866109-5

[16] Shou, Y.: Cryptographie sur les courbes elliptiques et tolérance aux pannes
dans les réseaux de capteurs. UFC, pp. 27–29 (2014)

[17] Joye, M.: Introduction élémentaire à la théorie des courbes
elliptiques. UCL Crypto Group Technical Report Series, (1995)
http://sciences.ows.ch/mathematiques/CourbesElliptiques.pdf

[18] Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6), 644-–654 (1976).

[19] Elgamal, T: A public key cryptosystem and a signature scheme based on
discrete logarithms. In IEEE Transactions on Information Theory, 31(4),
pp. 469-472, (1985), https://doi.org/10.1109/TIT.1985.1057074

[20] Martı́nez, V. G., Encinas, L. H., Ávila, C. S.: A Comparison of the Stan-
dardized Versions of ECIES. In : Proceedings of the Sixth International
Conference on Information Assurance and Security, Atlanta, (2010)

[21] Crypto++ page, https://www.cryptopp.com/wiki/Elliptic Curve Menezes-
Qu-Vanstone. Last accessed 30 Aug 2020

[22] Bassham, L., Johnson, D., Polk, T.: Representation of Elliptic Curve
Digital Signature Algorithm (ECDSA) Keys and Signatures in Internet
X.509 Public Key Infrastructure Certificates. Internet Draft. Available at
http://www.ietf.org, (1999)

[23] Ateniese, G., de Medeiros, B.: A Provably Secure Nyberg-Rueppel Signa-
ture Variant with Applications. In: Proceedings of Advances in Cryptology
– ASIACRYPT 2004. Revised version: https://eprint.iacr.org/2004/093.pdf

[24] Lenstra, A., Verheul, E.: Selecting cryptographic key sizes.
Journal of cryptology, 14, 255-–293, (2001). Available at
http://infoscience.epfl.ch/record/164526/files/NPDF-22.pdf

[25] Prerna, P., Agarwal, P.: Cryptography Based Security for Cloud Computing
System. International Journal of Advanced Research in Computer Science,
8(5), pp. 2193–2197, (2017) https://doi.org/10.26483/ijarcs.v8i5.3388

[26] Chandra, S., Paira, S., Alam, S. S., Sanyal, G.: A comparative
survey of Symmetric and Asymmetric Key Cryptography. 2014 In-
ternational Conference on Electronics, Communication and Compu-
tational Engineering (ICECCE), Hosur, India, pp. 83–93, (2014)
https://doi.org/10.1109/ICECCE.2014.7086640

[27] Barker, E., Dang, Q.: NIST Special Publication 800-57 Part 3 Revision 1:
Recommendation for Key Management: Application-Specific Key Man-
agement Guidance. National Institute of Standards and Technology, pp.
12, (2015) https://doi.org/10.6028/NIST.SP.800-57pt3r1

[28] Al-Shabi, M. A.: A Survey on Symmetric and Asymmetric Cryptography
Algorithms in information Security. International Journal of Scientific
and Research Publications (IJSRP) 9(3), ISSN: 2250-3153, pp. 576–589,
(2019) https://doi.org/10.29322/IJSRP.9.03.2019.p8779

[29] Saho, N. J. G., Ezin, E. C.: Comparative Study on the Performance
of Elliptic Curve Cryptography Algorithms with Cryptography through
RSA Algorithm. CARI 2020 - African Conference on Research in Com-
puter Science and Applied Mathematics, Oct 2020, Thiès, Senegal (hal-
02926106)

[30] FIPS 180-4, https://nvlpubs.nist.gov/nistpubs/FIPS/ NIST.FIPS.180-4.pdf.
Last accessed 17 Sep 2019

[31] DOUDOUX, J.-M.: Développons en Java, JCE (Java Cryptography Exten-
sion), https://www.jmdoudoux.fr/java/dej/chap-jce.htm. Last accessed 31
Aug 2020

[32] Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing elliptic
curve cryptography and RSA on 8-bit CPUs. In: Marc Joye and Jean-
Jacques Quisquater, Cryptographic Hardware and Embedded Systems -
CHES 2004, 3156 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 119–132 (2004)

[33] Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve
and rsa digital signatures. (2004)

[34] Sinha, R., Srivastava, H. K., Gupta, S.: Performance Based Comparison
Study of RSA and Elliptic Curve Cryptography.International Journal of
Scientific & Engineering Research, 2(5), 720-–725 (2013)

[35] Kute, V. B., Paradhi, P. R., Bamnote, G.: A software comparison of RSA
and ECC. International Journal Of Computer Science And Applications,
2(1), 61-–64 (2009)

IJISRT20DEC110 www.ijisrt.com 554

