
Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20DEC039 www.ijisrt.com 48

Security Considerations in Implementing Robust

Stateless APIs

Muhtar Hanif Alhassan
Department of Computer Science

National Open University of Nigeria

Abuja, Nigeria

Abstract:- This paper focuses on the salient security

implications of the inherent statelessness that

characterises Representational state Transfer (REST)

APIs. The ever rising popularity of the REST

architecture has resulted in its widespread application in

the development and deployment of web services for

implementing efficient enterprise solutions. REST

techniques enable applications to share resources of a

variety of nature seamlessly over the web thus making it

possible to provide integration and interoperability. The

REST API technique does not require storage of

complex states in memory and is also characterised by

simple logical structures. It is this inherent simplicity

that leads to issues with security that will be covered in

this paper.

Keywords:- Component; Formatting; Style; Styling; Insert.

I. INTRODUCTION

Web applications are increasingly dominating the ICT

enterprise solution arena for a few reasons. These

applications provide platform independence, enhanced

interoperability, and high levels of integration through

application programming interfaces (API). Thus, there is a

growing tendency to replace desktop software with Web

based solutions in supporting modern enterprise information

systems. As we brace ourselves to embark on inevitable

digital transformation in Nigeria there is the need to support
resource exchange among stakeholders so as to avoid

duplication of efforts and ensure optimum utilization of

resources.

The REST technique provides a set of rules that define

how resources are exchanged in a distributed system. REST-

based APIs enable mobile devices, web browsers, web
servers, and other hosts to create, read, update and delete

resources according to the REST rules. When conforming to

statelessness, no state of the client session is ever stored on

the server side. This implies that each client request must

contain the total information needed to process it.

Statelessness provides significant advantages some of
which are

• Enhanced Scalability The APIs can be scaled to millions

of concurrent users by deployment on multiple servers.

Any server can handle any request because there is no

inherent session related dependency.

• Simple Implementation REST APIs are less complex

because there is no need for server-side state

synchronization logic.

Figure 1 SOAP Message Structure

II. WEB SERVICES

Generally, a web service is a piece of software that

facilitates communication between two web entities or

devices on a network. Thus, a web service must include a

service provider, (the server) and a service requester, (the

client). Web services are language independent making it

possible to implement services in Java, PHP, C#, or any

other language while the client application is written in any

language too. In their initial appearance web services had

huge specifications and cumbersome formats such as WSDL

(Web Service Definition Language) for describing the

services and SOAP (Simple Object Access Protocol) f or
specifying the message formats. On the other hand, we can

describe the REST service in a plain text file and use any

message format we want, such as JSON, XML or even plain

text again. The simplified approach was applied to the

security of REST services as well; no defined standard

imposes a particular way to authenticate users.

III. SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

WEB SERVICES

A SOAP Web service is implemented as an XML-

based protocol and all security related data can be inherently

defined in the SOAP header element. The protocol enables

the development of interoperable software and is not tied to

any specific operating system or programming language.

The SOAP message has an envelope structure as

depicted in Figure 1. The message envelope is designed to

carry application payload in the body portion and control

information in the header portion. The header portion thus

http://www.ijisrt.com/

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20DEC039 www.ijisrt.com 49

can contain any number of SOAP header blocks that include

addressing, security, and other message requirements. The
SOAP security header is Web Service Security (WS-

Security, WSS) which an extension to SOAP for supporting

web service security. It is a part of Web service specifications

published by the Organization for the Advancement of

Structured Information Standards (OASIS).

The WSS extension enables SOAP to specify how

integrity and confidentiality can be enforced on messages and

allows the communication of various security token formats,

such as Security Assertion Markup Language (SAML),

Kerberos, and X.509. Its main focus is the use of XML

Signature and XML Encryption to provide end-to-end
security.

IV. RESTFUL WEB SERVICES

RESTful web services are implemented based on

REST Architecture which is centred around the concept of

resources. These web services are light weight, simple,

scalable and easy to maintain. These attributes make

RESTful web services popular for creating APIs for web-

based applications. The REST architecture is based on the

HTTP protocol and revolves around resources as it views
every component as a resource accessible via a common

interface using HTTP.

Thus, a typical REST system consists of a REST Server

that provides access to resources and a REST client that

accesses and / or modifies the resource. Each resource is

identified by either a URI (Uniform Resource Identifier) or a
global ID. A resource can typically represented as text, JSON

or XML. RESTful web services must be secured so as to

protect the data provided via RESTful endpoints. Clear

access rights must be defined especially for methods that

destroy or modify resources. Thus, proper authentication of

users allowed access to such methods is a high priority.

RESTful web services rely on the inherent security of the

API rather than including within the REST architecture.

Though RESTful API calls are typically secured with HTTPS

protocol, there is usually a need to implement some form of

session-based security. Popular solutions that provide this
include OAuth 2.0 and JWT which we shall discuss later.

V. SECURITY VULNERABILITIES IN REST-

BASED APIS

The current popularity of APIs as the drivers of web

applications and their integration to support resource

exchanges over the Internet means that organizations

consider API security as the single biggest challenge that

should be tackled in the years ahead. A 2018 survey by

Jitterbit found that 64% of organizations are creating APIs

for both internal and external consumption. It was also
established that while about 25% of the respondents are not

creating APIs at all, 40% leverage APIs for their

operations.[3]

The widespread deployment of REST APIs means that

sensitive data such as credit card information, health records,
financial information, business information, and many other

categories gets exchanged over the network at a colossal

scale making it necessary for developers to pay attention to

the security issues that are inherent in the process. Some of

these issues include:

• HTTP requests and HTTP responses are accessible to

potential hackers and since REST APIs rely on HTTP to

exchange information usually saved and sometimes

executed on many servers this could lead to many unseen

breaches and leaks.

• The REST API server can be attacked from the client

side by the consumer of the REST API just as the attack
could be from the REST API server under the control of

an attacker who creates a malicious app to be consumed

by REST API client.

• Since APIs inherently provide a mechanism for exchange

of resources the other side typically has full control of

resource presentation, which makes it possible for the

injection of malicious payload that could attack resource

handling.

• Potential vulnerabilities can occur during controller

mapping (from /to the HTTP message with the resource

URI).
• There is also a risk of attack when instantiating the object

representing the target resource and invoking the

requested operation.

• Furthermore, vulnerabilities arise during the generation

of state representation for the target resources.

• Another point of vulnerability is during the accessing and

or modification of data in the backend system hosting the

resource state like when saving into the database storage.

VI. REST API SECURITY THREATS

In this section, we consider the potential threats that
must be considered when implementing a robust REST-

based API. As organizations increasingly depend on APIs

for their business needs, developers must proactively prepare

to confront these threats. System and application developers

in collaboration with corporations, foundations and

volunteers have come together to form the Open Web

Application Security Project (OWASP) a nonprofit

foundation that works to improve the security of software.

[2]

Some of the key (OWASP defined) threats facing

REST APIs are listed below:

1. Injection Attack This threat is realised by embedding

malicious code into an unsecured application to facilitate

attacks such as SQL injection and cross-site scripting.

The attacker tries to manipulate the system by

transferring untrusted data into the API as part of the

request. If the interpreter processes the corrupted input
this can result in the attacker gaining unauthorised access

to information or the ability to modify data.

2. Denial of Service (DoS) Attacks The aim of the attacker

in this case is to render the RESTful API non-functional

http://www.ijisrt.com/

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20DEC039 www.ijisrt.com 50

by overwhelming it with enormous messages with

requests that contain invalid return addresses.
3. Broken Authentication In this case the attacker is able to

bypass or take control of the authentication methods

implemented in the web programme. Thus web tokens,

API keys, passwords , etc can be compromised.

4. Sensitive Data Exposure This threat is brought about by

poor or missing sensitive data encryption. The encryption

should normally be available for sensitive data both in

transit and at rest.

5. Broken Access Control This threat is characteristic of

missing or inadequate access control leading to the

attacker gaining control of other users account, and the

ability to alter access privileges, change data and carry
out other malicious operations.

6. Parameter Tampering This is an attack that seeks to

manipulate the parameters that are exchanged between

the client and the server so as to change application data

like user credentials, permissions, sensitive values , and

so on. The success of the attack depends on the integrity

and logic of the validation mechanisms implanted in the

API.

7. Man-In-The-Middle (MITM) Attack In this attack the

attacker secretly relays and possibly alters the

communications between the client and the server even
though they believe that they are directly communicating

with each other. Thus the attacker intercepts the private

and confidential data that is passed between the two

parties. MITM attacks occur in two stages: interception

and decryption of the sensitive data. A MITM attack can

succeed only when the attacker impersonates each

endpoint sufficiently well to satisfy their expectations.

thereby circumventing mutual authentication.

VII. STRATEGIES FOR SECURING REST APIS

We have seen that RESTful Web services rely on
HTTP URL Paths to operate. It is therefore clear that to

safeguard them we need to take similar steps used in

protecting regular websites. Some of these measures include:

• Input Validation All inputs to the server must be validated

to prevent SQL and NoSQL injection attacks. Though

validation is aimed at protecting the server, it makes sense

to have a validation layer on the client so as to

interactively indicate errors and give advice on how to

improve the input. The primary goal of validation is to

verify that the value of a data item belongs to a given set

of acceptable values. For an API this means verifying that
data items coming to the application from external sources

have acceptable values. This is achieved by defining data

validation rule for every type of data item coming into the

system.

• Authentication The stateless nature of HTTP and RESTful

services necessitates the use of either sessions or tokens to

implement authentication. In session based authentication,

the server creates a session for the client after login. Thus

a session ID is created and stored on the server. The

session ID is then embedded in a cookie which is sent to

the client where it is stored. While the client remains
logged in, the cookie is sent along with every subsequent

request and the server compares the session ID embedded

in the cookie against the session information stored in

memory. Figure 2 illustrates the basic implementation of
session-based authentication. Session based authentication

was the traditional way of coping with statelessness. Then

at every request the server must check the session before

sending the response. Thus every time a user is

authenticated, the server creates a record and stores it

usually in memory resulting on increased overhead when

there are many users authenticating. More importantly,

server based authentication poses a a big hinderance on

scalability because session information is stored in

memory. Having vital information in session memory

limits the ability to replicate servers and provide

scalability. Keeping session information on a user on a
particular server would require us to keep sending that

user to the same server that they logged in at (called

session affinity) thereby hindering replication and load

balancing.

Currently a more popular approach is to use JSON

Web Token (JWT) instead of sessions for providing

authentication. Figure 3 shows how this is done. Here the

server generates JWT with a secret and sends the JWT to the

client. The client keeps the JWT in local storage and

subsequently includes the token in the header of every

request. To provide the appropriate response the server then

validates the JWT with every request from the client. The

validation is carried out by checking if the JWT signatures

match. Thus the user’s state is not stored on the server but

resides in the token stored on the client side. The server
simply keeps the secret signature of the JWT. Token

authentication is thus completely stateless and supports

scalability. Load balancers are able to pass a use along to

any available server since there is no need for state or

session information anywhere.

http://www.ijisrt.com/

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20DEC039 www.ijisrt.com 51

• Keeping Out Sensitive Data from the URL The URL

should never contain username, password, session token
and other sensitive data. Such important values should

only be passed to the Web service using POST methods.

• Place Restriction on Verbs The use of methods like GET,

POST, and DELETE should be restricted. The GET

method which tends to encourage placing parameters in

the URL should never be used delete data. It is also

important to ensure that any PUT, POST, and DELETE

requests are protected from Cross Site Request Forgery.

XML serialiser so as to avoid XML injection. Similarly,

for JSON encoders it is important to use a proper JSON

serializer for encoding user-supplied data to avoid

arbitrary Javascript remote code execution.

VIII. THIRD PARTY AUTHORISATION

There are numerous situations in which the resource

owner might want to provide authorisation to a third party

for limited access to some restricted resources. Traditionally

this would involve the resource owner having to share

credentials with the third party. Such an arrangement pauses

issues that include

1. the need to store resource owner’s credentials on the

third party applications for subsequent use
2. the inherent need to use password-type authentication

with its characteristic security weakness

3. the resource owner is unable to restrict duration and

scope of access once the credentials have been

transferred to the third party application

4. there is very little support for revoking access to an

individual third party without revoking access to all other

third parties.

5. a security breach on any third party application would

result in compromising the end-user’s password and all

of the data protected by the password.

From the above it soon became clear that a solution is

required that does not rely on the use of passwords and their

subsequent exchange in supporting third party access to

selected resources spread across the globe.

Developers building web, desktop, or mobile
applications need a system that will support access to

protected data from API servers for use by these applications

without requiring the users to login with passwords. On the

other hand API developers need to allow application

developers secure access to users’ data without sharing their

passwords.

Clearly the issues at hand can be broadly categorized in

to authentication and authorization requirements that must

be ratified to provide security and data integrity.

In what follows we look at some solutions that have
been developed to address the above issues.

IX. OAUTH

OAuth is short for Open Authorisation which is an

open standard authorisation framework built around token-

based authorisation on the Web. The framework enables

third party services to use an end user’s account information

without exposing the user’s password. OAuth acts as an

intermediary on behalf of the end user by providing the third

party with an access token that authorises the scope of

information to be shared. For this arrangement to work the

client application must have registered with the API

(Resource and Authorisation Servers) in the first place.

Registration involves providing the services with the client

application’s name, website, callback URL as a minimum.
Then the API sends back to the client application a Client ID

and Client Secret code that will be required every time the

client makes a request.[5]

Figure 4 shows how OAuth2 facilitates authentication.

It supports four types of grants to third parties. These are:

1. Authorisation Code Grant used for applications running

on web servers

2. Password Grantis used to exchange a user’s credentials

for an access token. In this case the client application has

to collect the user’s password and send it to the

authorization server. This type of grant it is not

recommended because of the need for password

exchange and is only in use by banking systems that are

yet to implement best practice in OAuth2.0

3. Implicit Grant previously recommended for native apps

and JavaScript apps where the access token is returned
immediately without an extra authorization code

exchange step. This is now considered too risky and

many servers do not support it.

4. Client Credentials Grant is used by clients to obtain an

access token outside of the context of a user. This is

typically used by clients to access resources about

themselves rather than to access a user’s resources.

http://www.ijisrt.com/

Volume 5, Issue 12, December – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20DEC039 www.ijisrt.com 52

X. OPENID CONNECT

This is an identity layer on top of the OAuth 2.0

protocol which allows Clients to verify the identity of the

End-User based on the authentication performed by an

Authorization Server, as well as to obtain basic profile

information about the End-User in an interoperable and

REST-like manner. OpenID Connect is thus required to

provide authentication so as to augment authorisation that is

the focus of OAuth. OpenID Connect provides the following

additional features: [6]

• ID token

• Userinfo endpoint for additional user information

• Standard set of scopes
• Standardized implementation of authentication

The ID token is normally provided in JWT format and

has three main parts, namely the header, the payload and the

signature all encrypted. Thus integration of OAuth2.0 and

OpenID connect ensures that the authorisation server is also

capable of providing authentication.

XI. CONCLUSION

RESTful web services are based on HTTP and

therefore exhibit statelessness which makes their

implementation simple. These services have become

ubiquitous as they facilitate communication among ever

increasing numbers of web entities and devices on the

Internet. Thus through these APIs sensitive data,

organisational or personal, gets exchanged over the Internet

at a colossal scale. It is therefore clear that API security is a
big challenge for all organisations. In this paper we have

looked at the main vulnerabilities and threats that these

services face and identified some of the approaches used in

tackling them. Also highlighted are the salient issues of

authentication and authorisation which can be quite tricky

when implementing REST APIs. Securing authentication

and authorisation requires a combination of front-end and

back-end methods in an optimum way to ensure that

sensitive data, such as a token, is only exchanged through

the more secure back-channel while the less sensitive data

like authorisation code, redirect URLs, request scope, etc
can be routed via the front-channel.

It is evident that back-channel authentication allows

for server-to-server communication and thus removes the

need for browser redirections. Many popular and widely

used service providers use back-channel authentication to

allow access to their services. Furthermore, back-channel
protocols provide mutually authenticated end-to-end security

via TLS (Transport Layer Security) because the

communication is point-to-point. It is hoped that ICT

strategists and practitioners in Nigeria will pay special

attention to applying these measures to enhance the tendency

of resource exchanges among organisations thereby boosting

resource utilisation and mitigating against duplication of

efforts.

REFERENCES

[1]. 120 HIRSCH, Fredrick, KEMP, John and ILKKA, Jani:

’Mobile Web Services- Architecture and

Implementation,’John Wiley and Sons, 2006.

[2]. KANG, A., CRUZ, D., MUNZ, A.: ’RESTing on your

laurels will get you Pwned!, RSA Conference, 2014

JITTERBIT: ’2018 State of API Integration’, Jitterbit

Report, 2018

[3]. HARI, Subramanian: ’REST API Security

Vulnerabilities’, Inter Systems Cache: ’OAuth2.0

Introduction’ 1996-2020 InterSystems Corporation,

Cambridge, MA

[4]. OpenID Foundation: https://openid.net/connect/faq/

http://www.ijisrt.com/

	I. INTRODUCTION
	II. WEB SERVICES
	III. SIMPLE OBJECT ACCESS PROTOCOL (SOAP) WEB SERVICES
	IV. RESTFUL WEB SERVICES
	V. SECURITY VULNERABILITIES IN REST-BASED APIS
	VI. REST API SECURITY THREATS
	VII. STRATEGIES FOR SECURING REST APIS
	VIII. THIRD PARTY AUTHORISATION
	IX. OAUTH
	X. OPENID CONNECT
	XI. CONCLUSION
	REFERENCES

