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Abstract:-The main focus of this paper is to find 

optimal experimental designs for functional magnetic 

resonance imaging (fMRI) experiments with compound 

stimuli by considering uncertain error correlations. We 

target designs, which are robust against a 

misspecification of error correlation. The maximin 

approach was proposed in the literature to tackle this 

problem. Unfortunately, obtaining maximin designs is 

computationally very expensive and time consuming. 

We propose to adapt Gaussian process (Kriging) that is 

widely used in spatial statistics and computer 

experiments to reduce the computational resource 

needed to find such designs. The proposed method is 

compared with a previously used approach. We observe 

that, in terms of the performance of the achieved 

designs, the results are quite similar between the two 

methods. In addition, our proposed Kriging approach 

requires less CPU time, and it is very efficient in 

obtaining good fMRI designs for compound stimuli 

experiments. The proposed approach is demonstrated 

via case studies.  

 

Keywords:- A-Optimality, fMRI, Genetic Algorithm, 

Kriging, Maximin Criterion. 

 

I. INTRODUCTION 

 

One of the commonly used techniques in 

neuroimaging for studying the reactions of the human brain 

as it performs mental tasks is the functional magnetic 

resonance imaging (fMRI). Recently, there has been rapid 

growth in the number of neuroimaging studies 

accomplished by using fMRI, which involve contributions 

from researchers in neuroscience, psychology, physics, and 

statistics (Lindquist 2008). In an fMRI experiment, an 

experimental subject is placed inside the MRI machine. A 

sequence of mental stimuli, such as pictures or sounds 

interlaced with periods of rest or visual fixation, is then 

presented to the subject. While the subject is cognitively 

engaging with the stimuli, the MR scanner obtains a series 

of brain images every few seconds. The subject’s blood 

oxygenated level dependent (BOLD) time series is then 

collected from each brain voxel (a three-dimensional image 

unit). This time series is used to make inferences about the 

neuronal activities at the corresponding voxel. In many 

cases, the mental stimuli could be ‘simple’, with only one 

component, (e.g., a picture), or ‘compound’, with more 

than one component (e.g., a cue followed by a picture). 

 

The main focus in this paper is on fMRI studies with 

compound stimuli. For simplicity, we will assume that each 

stimulus involves two components although this 

assumption is not essential. As an example, each stimulus 

may consist of a brief cue and a mental task for the subject 

to complete after some specific time interval following the 

cue (to be explained in Section 2). For experiments 

involving such compound stimuli, the interest might be on 

examining how the subject’s brain reacts toward the mental 

tasks rather than the joint response to both the cue and the 

task. Our goal is to find the ‘best’ experimental designs for 

such studies. However, this is not an easy task. One reason 

for this is that an fMRI design is a long sequence of mental 

stimuli that determines the onset times and orders of the 

stimuli of one or more types. Typically, an fMRI design 

can include tens or hundreds of stimuli. The design space 

that consists of all possible sequences of stimuli is 

enormous and an exhaustive search over this space is 

impossible. Therefore, an efficient search approach is 

needed for obtaining designs with high efficiencies to allow 

valid and precise statistical inferences. There are several 

statistical objectives in the analysis of fMRI experiments. 

The most common objectives, which will also be 

considered in this paper, are 1) detecting the brain regions 

that are activated by the stimuli, and 2) estimating the 

hemodynamic response function (HRF). The HRF is the 

(noise-free) fMRI signals evoked by single, brief stimulus, 

and can be viewed as effects of the stimulus to the brain. It 

is well known that an fMRI design that is good for one 

study objective might perform poorly for the other 

objective (e.g., Liu and Frank, 2004). If the goal is to study 

both objectives, it follows that a good multi-objective 

design that strikes a good balance between the two 

competing study objectives is needed. In addition, some 

unwanted psychological confounds (e.g., anticipation and 

habituation), and other experimental settings that a 

researcher might have in mind (such as a given stimulus 

frequency in the design) may need to be taken into account 

at the design stage. Consequently, finding an optimal 

design best suited to the needs of the experimenter can be 

very challenging. To account for all these aspects, a good 

tool based on the genetic algorithm technique was 

developed by Kao et al. (2009). Kao and coauthors first 

rigorously formulated the statistical models considered at 

the design stage and the multi-objective optimality criteria 

for evaluating the goodness of competing designs and 

taking advantage of knowledge about the performance of 

fMRI designs to propose a very efficient approach for 

obtaining good multi-objective fMRI designs. Their 

approach is shown to outperform the previous methods. It 
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has been applied in obtaining efficient designs for fMRI 

experiments (e.g., Eck et al., 2013; Kubilius et al., 2011), 

and adopted or adapted in tackling several important fMRI 

design issues (e.g., Maus et al., 2010; Maus et al., 2012; 

Kao et al., 2013). In this work, we will modify this 

approach to efficiently obtain fMRI designs for 

experiments with compound stimuli. 

 

The use of compound stimuli is quite common in 

practice; see also, Huettel (2012) and Liu (2012). Rosenthal 

(2011) has adapted the approach by Kao et al. (2009) to 

obtain fMRI designs for such an important case. However, 

he followed previous studies to assume that the 

autocorrelation among the measurements in an fMRI time 

series can be specified at the design stage. Unfortunately, 

this assumption is not always valid. Here, we will address 

this issue and obtain good designs by considering uncertain 

error correlations. Our idea is to find a design that is 

relatively efficient for all possible values of the unknown 

autocorrelation coefficient(s). In particular, we will 

consider the maximin approach that is also considered in 

Berger and Tan (2004). This is to work on the worst-case 

scenario to find a design that maximizes the minimum 

relative efficiency (to be defined in Section 3), where the 

minimum is taken over all the possible values of 

autocorrelation coefficients. Maus et al., (2010) also 

considered this maximin approach. However, their method 

is computationally very expensive and time consuming. To 

reduce computational burden, we propose to combine the 

Kriging approach and the genetic algorithm approach of 

Kao et al. (2009) to find a maximin design. For comparison 

purposes, we obtain maximin fMRI designs using our 

approach, and the more expensive method by Maus et al., 

(2010). We observe that, in terms of the statistical 

efficiency of the achieved designs, the results are quite 

similar between the two methods. In addition, the proposed 

Kriging-based genetic algorithm approach requires much 

less CPU time and is very efficient in obtaining good fMRI 

designs with uncertain error correlation. 

 

II. BACKGROUND 

 

A. fMRI Designs for Simple Stimuli 

The simplest situation when performing an fMRI 

experiment is probably to consider ‘simple stimulus’ that 

involves only one component (e.g., a picture or a sound). 

For such cases, we would like to prepare a sequence of 

mental tasks of one or more types (e.g., different pictures). 

The stimuli are separated by, say, periods of rest or visual 

fixation. While the selected design is presented to the 

experimental subject, the MR scanner starts to collect data 

from each of the subject’s brain voxel at a fixed sampling 

rate of TR (e.g., 2) seconds. An example of an fMRI design 

sequence with two stimulus types (Q=2) can be written as 

𝑑 = {1002102. . . .0}, where 1 denotes the first stimulus 

type that will be presented to the subject at 0 s,16 s, and so 

on since 1 appears at the first and the fifth positions of d; 2 

indicates the second stimulus type that will be displayed at 

12 s, 24 s, and so on; and 0 (the control) means no stimulus 

onset. Here, we assume that the specified time between 

elements in d is ISI = 4 seconds. After its onset, each 

stimulus appears briefly (e.g., 1 s), immediately followed 

by the control (e.g., a rest period) that appears until the next 

stimulus onset. Suppose TR = 2 s, the MR machine will 

scan the same voxel of the subject’s brain every 2 seconds 

to collect fMRI signals. The fluctuation of the collected 

signals reflects the change in the concentration of 

oxygenated cerebral blood due to the neuronal activity in 

response to the mental stimulus. The noise–free fluctuation 

in the fMRI signals following a brief stimulus is typically 

described by a function of time called the hemodynamic 

response function (HRF). The HRF, which can be viewed 

as the effect of the stimulus, is of utmost importance to 

neuroscientist for understanding the inner workings of the 

human brain. One of the main assumptions considered 

when analyzing fMRI data is that, for the same voxel, the 

mental stimuli of the same type that are presented at 

different time points will have the same HRF. In addition, 

the heights of overlapping HRFs accumulate additively 

when multiple stimuli are presented in a time interval 

shorter than the duration of the HRF; the duration of a 

typical HRF is about 30 seconds (Henson & Friston, 2006).  

 

B. A linear Model for Estimation 

For the objective of estimating the HRF, we first need 

to define the HRF parameters associated with the heights of 

the HRF by using the discretization interval ∆T, where ∆T 

is the greatest time making both ISI/∆T and TR/∆T integers 

(Kao et al., 2009). We note that the heights of the HRF that 

contribute to the observed fMRI signals occur at 0 s and 

every ∆T s following a stimulus onset. A linear model that 

is commonly used for the estimation of the HRF is:  

 

𝑌 =  𝑋1 ℎ1 +  𝑆𝛾 +  𝑒,                          (1) 

 

where 𝑌 is a 𝑇 ×  1 vector represents the BOLD time 

series from a voxel,  𝑋1 =[𝑋11 … . 𝑋1𝑄] is 0 − 1 design 

matrix with 𝑋1𝑞 representing the design matrix for qth-type 

stimulus (𝑞 =  1, … , 𝑄), ℎ1 = (ℎ′11, … . , ℎ′
1𝑄)′ is the HFR 

parameter vector with ℎ1𝑞 = ( ℎ1𝑞1, ℎ1𝑞2, … , ℎ1𝑞𝑘)′ where k 

denotes the number of the HRF heights and defined as 𝑘 =
1 + ⌊𝐻/∆𝑇⌋ ; H represents the duration of the HRF (e.g., 32 

s), 𝑆𝛾 is the nuisance term describing the trend or drift of 

the time series with S being a known matrix and 𝛾 an 

unknown parameter vector, and e is a 𝑇 ×  1 vector 

represents the correlated noise. 

 

C. A linear Model for Detection 

A commonly considered model for identifying the 

activated regions in the brain is:  

              

𝑌 =  𝑍1𝜃1 +  𝑆𝛾 +  𝑒,                          (2) 

 

where 𝑍1 =  𝑋1ℎ0; ℎ0 is a k× 1 vector representing 

the assumed shape of the HRF; and 𝜃1 = (𝜃11, … . , 𝜃1𝑄  )′ 

denotes a vector of unknown response amplitudes. All the 

remaining terms in (2) are as in (1). The basis ℎ0 is 

commonly assumed to be the canonical HRF of the widely 

used software package SPM 

(http://www.fil.ion.ucl.ac.uk/spm/) for fMRI data analysis.  

 

http://www.ijisrt.com/
http://www.fil.ion.ucl.ac.uk/spm/


Volume 5, Issue 4, April – 2020                                           International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT20APR478                                                   www.ijisrt.com                     363 

D. fMRI Designs for compound  Stimuli 

Studying the fMRI experiments that have compound 

stimuli has caught the attention for many researchers (Liu, 

2012; Huttel 2012). In the case of compound stimulus, each 

stimulus has more than one component. For instance, a 

compound stimulus with two components may contain a 

cue followed by a mental task of interest or the presentation 

of a simple question followed by the subject’s response.  

 

For simplicity, we will consider two-component 

compound stimuli. In this case, an fMRI design can be 

written in the same way as designs for simple stimuli such 

as 𝑑 =  {11021 . . . }, but 1 here represents the cue followed 

by the first type of stimulus, and 2 denotes the cue followed 

by the second type of stimulus. The two components are 

separated by a time interval which, following Rosenthal 

(2011), is denoted by CTSI. This time interval could be 

fixed throughout the experiment or could vary from one 

stimulus to another. As an example for fixed CTSI, let us 

consider the aforementioned design that has two different 

stimulus types 𝑑 =  {11021 . . . } with ISI = 6 s, and CTSI 

= 2 s. The first component of type-1 stimuli will be 

presented at 0 s, 6 s, and 24 s and so on. The second 

component of type-1 stimuli will be presented at 2 s, 8 s, 

and 26 s and so on. In addition, the first component of type-

2 stimuli will be presented at 18 s and so on. The second 

component of type-2 stimuli will be presented at 20 s and 

other corresponding time points where ‘2’ occurs. For cases 

where CTSI can vary across stimuli, we will consider a 

sequence that has the same length as d to indicate the CTSI 

for each stimulus in d. Specifically, for design 𝑑 =
 {11021. . . }, the sequences for CTSI may look like CTSI =
{43042. . . }. In this case, the subject will receive the second 

component of type-1 stimulus at 4 s, 9 s, and 26 s while that 

for the second component of type-2 stimulus will be shown 

to the subject at 22 s. The entry of the CTSI sequence is 0 

when the corresponding entry in d is 0 since there is no 

stimulus presentation. 

 

In a similar manner as the simple stimulus case, we 

assume that at an activated brain voxel, each component 

evokes a change in the fMRI signal, which is described by 

the hemodynamic response function HRF. Additionally, 

components of the same type evoke the same HRF 

throughout the experiment, and the heights of overlapping 

HRFs sum linearly. We now follow Rosenthal (2011) to 

extend models (1) and (2) to accommodate compound 

stimuli.  

 

E. Linear Models for Compound Stimuli 

To accommodate compound stimulus, we generalize 

models (1) and (2) respectively to be as follows:  

 

𝑌 =  𝑋1ℎ1 + 𝑋2ℎ2 + 𝑆𝛾 + 𝑒;                        (3) 

 

𝑌 =  𝑍1𝜃1 + 𝑍2𝜃2 + 𝑆𝛾 + 𝑒.                        (4)  

 

Model (3) is for estimating the HRFs and model (4) is 

for detecting brain voxels that are activated by the 

components of the stimuli. Here, 𝑿𝟏 and 𝑿𝟐 are the design 

matrices for the first and the second components of the 

stimuli with 𝒉𝟏 is the HRF parameter vector for the first 

components, 𝒉𝟐 is the HRF parameter vector for the 

second components, 𝒁𝒊 = 𝑿𝒊𝒉𝟎, with 𝒉𝟎 being the 

assumed shape of the HRF, 𝜽𝟏 represents the HRF 

amplitudes corresponding to the first components and 𝜽𝟐 is 

for the second components. This formulation is for cases 

where the first components are different across stimuli of 

different types. All the remaining terms in (3) and (4) are as 

in (1) and (2).  

 

F. Design Selection Criteria 

The elaboration in the previous sections has discussed 

two very common statistical models that used respectively 

for estimation and detection. In this section, we would 

explicate the variance-covariance matrix of the generalized 

least square estimator of the parametric functions of 

interest. The variance-covariance matrix of parameter 

estimates when models (3) and (4) are considered can be 

written as follows:  

 

    𝜎2𝑀 =  𝜎2 𝐶[ 𝑊′𝑉′(𝐼 − 𝑃𝑉𝑆)𝑉𝑊]− 𝐶′,                     (5) 

 

where W = [𝑋1 𝑋2 ] in the case of estimation, and W= 
[𝑍1𝑍2] in the case of detection. C is a user specified 

coefficient matrix of linear combinations. All other terms 

are as in (4). We would like a design that helps to yield the 

most precise parameter estimates by optimizing a 

statistically meaningful design selection criterion (e.g., A-

optimality or D-optimality). The GA proposed by Kao et al. 

(2009) can help to achieve such designs when simple 

stimulus is considered. We adapt this algorithm to solve our 

problem. The objective of doing so is to search over the 

design space for highly efficient fMRI designs with 

compound stimuli. The abovementioned design criteria are 

used to evaluate the efficiencies of competing designs for 

the estimation and detection purposes. We describe our 

methodology in detail in the next section. 

 

III. METHODOLOGY 

 

A. Uncertain Corelation Coefficients 

The fMRI signals acquired from the same voxel of an 

experimental subject tend to be correlated (Henson, 2003). 

To take this correlation into account, some previous studies 

(e.g., Worsley et al., 2002) considered the first order 

autoregressive process (AR1). In Kao et al. (2009), the 

autocorrelation coefficient of the AR1 error is assumed to 

be 𝜌 = 0.3. However, this correlation coefficient may vary 

from voxel to voxel, and is uncertain at the design stage. 

Therefore, a design that is good for a given autocorrelation 

of a voxel might be inefficient for another voxel (Maus et 

al., 2010). 

 

Our target is thus to find robust designs that are 

relatively efficient over a set of possible values of the 

autocorrelation coefficient. To this end, we will consider a 

maximin approach used in Maus et al. (2010). This method 

helps to find designs that protect against the worst case 

over a specified range for 𝜌 to obtain a design that 

maximizes the minimum relative efficiency in estimating 
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model parameters; the minimum is taken over a selected 

grid on the range of 𝜌. Specifically, Maus et al. (2010) 

generated the locally optimal designs 𝑑𝝆 by the genetic 

algorithm proposed by Kao et al. (2009) for the given 𝜌 

values ranging from 0 to 0.5 in steps of size 0.01. Each 

locally optimal design is the best design for the given 𝜌-

value on the selected grid. These locally optimal designs 

are necessary for calculating the relative efficiencies of 

each candidate design. In particular, for each 𝜌 value, the 

relative efficiency of a candidate design d is:  

 

𝑅𝐸 (𝑑;  𝜌)  =  𝜙(𝑑;  𝜌)/𝜙(𝑑𝜌;  𝜌),                        (6) 

 

where 𝜙 (. ) is the optimality criterion (e.g., A-

optimality or D-optimality). Our goal is to obtain a design 

maximizing the minimal RE over 𝜌 ∈  [0, 0.5]. This means 

that, for each candidate design, we will need to obtain its 

RE values over all the grid points on the specified range 

(i.e., [0, 0.5]) of 𝜌. The minimal value of these RE-values 

can then be determined. We then select a design that 

maximizes this minimum RE-value. When the minimum 

RE-value of a design is very close to 1, this design 

performs well for the different values in the range of 𝜌. 

Clearly, the previously described process will need to be 

repeated for every candidate design and thus is 

computationally expensive. For that reason, we will adapt 

the widely used approach in spatial statistics and computer 

experiments, which is known as Kriging approach to reduce 

the time needed for finding the desired optimal designs.  

 

B. Gaussian Process (Kriging) 

The emphasis on designing products using computer 

models has been steadily on the rise in the past decade due 

to their capability to ease the exploration of alternative 

designs and reduce the need for expensive hardware 

patterns (Jones, Schonlau, and Welch, 1998). Typically, 

deterministic computer models that produce the same 

output for the same input parameters are widely considered. 

These computer models normally require much time for 

producing an output. Therefore, a good approximation 

model to ‘predict’ the future output based on several 

existing outputs is helpful (Stantner, Williams, and Notz, 

2003). One of the well-known approximation models is the 

Kriging model that has gain much popularity in 

approximating deterministic computer models and 

optimization purposes. One advantage is that a Kriging 

model can interpolate the observed or known data points 

(Martin & Simpson, 2005). Briefly speaking, Kriging is a 

method to build an approximation of a target function from 

a given finite set of evaluations of the function. It helps to 

approximate the result at an unmeasured location using the 

observed values at some (surrounding) locations. The 

method is initially developed by geologists to estimate the 

underground concentration of a valuable mineral over an 

area of interest given a set of sampled sites from the area 

(Matheron, 1963), and is now widely used in the domain of 

spatial analysis and computer experiments (Goldberger, 

1962). The technique is also known as Gaussian process 

regression.  

 

C. Some Background Information about Kriging 

A Kriging model is a generalized linear regression 

model that accounts for the correlation in the residuals 

between the regression model and the observations 

(Goldberger, 1962). The mathematical form of a Kriging 

model can be written as:  

 

    𝑦 (𝑎) = ∑ 𝑓𝑗 (𝑎)𝛽𝑗 + 𝑍(𝑎)
𝑝
𝑗=1 = 𝒇′(𝑎)𝜷 + 𝑍 (𝑎),         

(7) 

where 𝑓1 (. ), … . , 𝑓𝑝 (. ) are known regression functions, 

𝜷 = (𝛽1, … . . , 𝛽𝑝)′ is a vector of unknown parameters. 𝑍(. ) 

corresponds to a stationary Gaussian with mean zeros, 

variance 𝜎2 and correlation function R (.); that is: 

 𝐶𝑜𝑣 (𝑎1, 𝑎2)  =  𝜎2 𝑅 (𝑎1 , 𝑎2).                          (8) 

      

Here, R (𝑎1 , 𝑎2) is the spatial correlation function and 

is commonly assumed to be: 

          𝑅 (𝑎1 , 𝑎2) =  𝑒−∝|𝑎2−𝑎1|2
, 𝑤ℎ𝑒𝑟𝑒   ∝ >  0               

(9) 

     

The correlation function parameter ∝ controls the 

smoothness of the surface. A large ∝ value tends to yield a 

smooth surface. In this paper, we follow some previous 

studies to assume that the correlation function is given. 

This implies that ∝ is known and does not need to be 

estimated. 

      

Suppose that the ‘training set’ of data is obtained at 

given input sites {𝑎1,𝑎2,..., 𝑎𝑛}. The resulting outputs are Y 

= (y (𝑎1), y (𝑎2)..., y (𝑎𝑛))′. Given these sampled outputs 

we may predict the output at another location a by: 

𝑦̂(𝑎) = 𝜆′(a) Y.                          (10) 

      

When using the Kriging approach, 𝜆 (a) is selected by 

minimizing the mean square error (MSE) for prediction, 

MSE [𝑦̂(𝑎)]  =  𝐸[𝜆′(𝑎) 𝒀 –  𝑦 (𝑎)]2,                (11) 

with the unbiasedness constraint, 

𝐸 [𝑦̂(𝑎)  −  𝑦 (𝑎)] =  𝐸 [𝜆′(𝑎) 𝒀 –  𝑦 (𝑎)]  =  0.                

(12) 

 

If λ (a) solves the minimization problem of (11) 

subject to the unbiasedness constraint of (12), then 𝜆′(a) Y 

is called the best linear unbiased predictor (BLUP) of 𝑦(𝑎). 

By solving for λ(a) and substituting into (10), the BLUP of 

𝑦(𝑎) is given by 

 

𝑦̂(𝑎) = 𝒇′𝜷̂ + 𝒓′ 𝑹−𝟏 (𝒀 − 𝑭𝜷̂),                          (13)                                                       

 

where F is the expanded n× 𝑝 matrix of regressors 

having (i,j)th element 𝑓𝑗(𝑎𝑖)  for 1≤ 𝑖 ≤ 𝑛, 1≤ 𝑗 ≤ 𝑝, r is 

the n× 1 vector of correlations between the sample points 

and an untried point 𝑎 , which is defined as r(a) = 

{𝑅(𝑎, 𝑎1), 𝑅(𝑎, 𝑎2), . . . , 𝑅(𝑎, 𝑎𝑛)}′, R is the correlation 

matrix, which is composed of spatial correlation functions 

evaluated at each possible combination of the known 

points, and the remaining terms as defined earlier in (7). 
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Usually, the results of Kriging include the expected 

value (“Kriging mean”) and variance (“Kriging variance”) 

computed for every point within a given region. The 

maximum likelihood estimate of 𝜷̂ is 

 

                          𝜷̂ = (𝑭′𝑹−𝟏 𝑭)−𝟏 𝑭′𝑹−𝟏𝒀,                           

(14) 

 and the MSE or variance of the estimate 𝑦̂(𝑎) is as 

follows: 

𝑀𝑆𝐸[𝑦̂ (𝑎)] = 𝜎2{1 − [𝒇′(𝑎) 𝒓′(𝑎)] [
𝟎 𝑭′

𝑭 𝑹
] [

𝒇(𝑎)

𝒓(𝑎)
].          

(15)                                                       

The maximum likelihood estimate of 𝜎2 is 

          𝜎 2̂ = (
1

𝑛
) (𝒀 − 𝑭 𝜷̂  )′ 𝑹−𝟏 (𝒀 − 𝑭 𝜷̂)                        

(16) 

 

D. Ordinary Kriging 

Ordinary Kriging is probably the most commonly 

used form of Kriging that leads to satisfactory results in 

many cases. An ordinary Kriging model is a special case of 

model (7) by taking 𝑝 = 1 and 𝑓1(𝑎) = 1. 

 

Consequently, the mathematical form of the ordinary 

Kriging model is: 

                              𝑦 (𝑎) = 𝛽1 + 𝑍(𝑎).                                    
(17)                                                                     

 

We will make use of this ordinary Kriging model to 

facilitate the search for maximin fMRI designs. 

 

E. The proposed approach 

We now describe our idea on utilizing the Kriging 

approach to reduce the time needed for obtaining maximin 

robust fMRI designs with uncertain AR1 autocorrelation 

coefficient 𝜌. First, we generate the locally optimal designs 

for a small sample of 𝜌-values; e.g., ρ = 0, 0.1,…, 0.5. 

Then, we calculate the RE-values of each candidate design 

for these six values of 𝜌. An ordinary Kriging model is then 

fitted to these RE-values to approximate the min-RE of the 

design d. We then search for a design that maximizes the 

approximated min-RE. This calls for an effective search 

algorithm. For this purpose, we consider to adapt the 

genetic algorithm by Kao et al. (2009). Our approach is 

thus a combination of a Kriging method that helps to 

approximate the objective function, and the genetic 

algorithm, that helps to efficiently search over the 

enormous design space for a design optimizing the 

approximated objective function. We demonstrate the 

usefulness of the proposed approach via case studies. 

 

IV. CASE STUDIES 

 

For all simulations, we assume that a compound 

stimulus consists of a brief cue and a mental task for the 

subject to complete after some specific time interval 

following the cue. The interest is on examining how the 

subject reacts toward the mental tasks (the second 

component) rather than the joint response to both the cue 

and the task. For evaluating the goodness of competing 

designs, we consider the A-optimality criterion. Model (3) 

and (4) are considered respectively for estimating the HRF 

of the second component of each compound stimulus, and 

for detecting brain voxels activation of this second 

component. The duration of the HRF is set to 32 seconds, 

which is the duration of the canonical HRF in SPM. The 

nuisance term 𝑆𝛾 of models (3) and (4) is assumed to allow 

for a second-order polynomial drift. The noise is assumed 

to follow a stationary AR (1) process with uncertain 

autocorrelation coefficients 𝜌 ∈  [0, 0.5]. For the following 

simulations, we consider designs with Q = 1, 2 and 3 

stimulus types corresponding to design lengths of L = 255, 

242 and 255 events, respectively. For all designs, The ISI is 

set to 8s, the TR is set to 2s, and each individual CTSI is 

allowed to equal 2, 4, or 6 seconds. 

 

Algorithmic parameters of the genetic algorithm (GA) 

used in the simulations are: G (size of generation) = 20, q 

(percentage of mutation) = 1%, and N (number of 

immigrants per generation) = 4. The algorithm is run until a 

stopping rule is met, e.g., no significant improvement is 

made (for more details see Kao, 2009). The algorithm 

keeps track of the design with the best fit over all 

generations.  

 

We modify the MATLAB program provided by Kao 

(2009), and combine it with the software package DACE 

for Kriging approximations (Lophaven, Nielsen, and 

Sondergaard, 2002).  We implement our simulations by 

using MATLAB (version R2012b) on a desktop computer 

with a 3.0 GHz Intel Pentium 4 quad-core processor. 

 

A. CaseI: Estimation 

The first set of case studies focuses on estimating the 

HRF of the second component of each compound stimulus 

by using model (3). We first consider the approach of Maus 

et al. (2010) for obtaining maximin designs. This is to 

generate 51 locally optimal designs for each stimulus type 

for 𝜌 = 0, 0.01, … , 0.5 by using the genetic algorithm of 

Kao et al. (2009). These 51 locally optimal designs allow to 

provide an approximated min-RE for each candidate. We 

then adapt the genetic algorithm to search for a design 

maximizing the min-RE approximated by this time-

consuming ‘grid method’. 

      

We then use our proposed method to obtain maximin 

designs. Instead of obtaining the abovementioned 51 

locally optimal designs, we obtain only six locally optimal 

designs for 𝜌 = 0, 0.1, …, 0.5. For each candidate design, 

we then can calculate the six RE-values using the six 

locally optimal designs. By using the Kriging 

approximation, these six RE-values then help to 

approximate the 51 RE-values for 𝜌 = 0, 0.01, …, 0.5. This 

latter approximation is done by using the abovementioned 

DACE software package. The default settings of the DACE 

package are considered. This includes a default value for ∝
 =10 that controls the smoothness of the surface to be 

approximated. The genetic algorithm is then adapted to 

search for a maximin design that maximizes the 

approximated min-RE. Hereinafter, we will call this latter 

method the ‘Kriging method’. 
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For comparing the maximin designs obtained by the 

Kriging and grid methods, we re-evaluate the min-RE of 

the designs obtained by the Kriging method by using the 51 

locally optimal designs for 𝜌 = 0, 0.01, … ,0.5. Table I 

represents the (re-evaluated) min-RE values of the designs 

obtained by the two methods for Q=1, 2 and 3. We also 

report the CPU time needed by the two methods in hours. 

 

Q Grid method Kriging method 

1 
min-RE = 0.9747 min-RE = 0.9790 

CPU=4.21 hours CPU=1.65 hours 

2 
min-RE = 0.9796 min-RE = 0.9745 

CPU=15.43 hours CPU=1.43 hours 

3 
min-RE = 0.9747 min-RE = 0.9765 

CPU=15.46 hours CPU=3.16 hours 

Table 1:- The results for estimating HRF using the grid 

method vs. the Kriging method 

 

When comparing the min-RE value for both methods, 

we observe that the values are quite similar and close to 1. 

This indicates that all the obtained designs are very 

efficient. From Table I, we also observe a huge reduction in 

the CPU time needed for generating a maximin design 

when the Kriging approach is employed. We note that, the 

reported CPU does not include the time needed for 

generating locally optimal designs. When using the grid 

method, a total of 51 locally optimal designs are needed. 

This requires about 5, 10, and 18 hours for Q = 1, 2, and 3, 

respectively. For the Kriging method, we only need six 

locally optimal designs. Our proposed method saves much 

computational resource without sacrificing the efficiency of 

the obtained designs. Fig. 1 provides a similar comparison 

result between the two methods. There, the blue bars 

correspond to 𝑚𝑖𝑛{ 𝑅𝐸(𝑑𝐾𝑟𝑖𝑔𝑖𝑛𝑔;  𝜌)}/

𝑚𝑖𝑛{ 𝑅𝐸(𝑑𝑔𝑟𝑖𝑑;  𝜌)}, where 𝑑𝐾𝑟𝑖𝑔𝑖𝑛𝑔 and 𝑑𝑔𝑟𝑖𝑑 are 

maximin designs obtained by the Kriging and grid methods, 

respectively. The relative CPU time for obtaining 𝑑𝐾𝑟𝑖𝑔𝑖𝑛𝑔 

to 𝑑𝑔𝑟𝑖𝑑 is also shown in Fig. 1.  

 

 
Fig 1:- Grid vs. Kriging methods for estimation purpose. 

 

The figure suggests that the efficiencies of the 

achieved designs by the Kriging method are similar to those 

obtained by the grid method with a greatly reduced CPU 

time. In particular, the reductions in the CPU times are 

61%, 91%, and 80% for Q=1,2 and 3, respectively. 

 

B. CaseII: Detection  

In a similar manner as we did for the estimation case, 

we obtain maximin designs for detecting brain activations 

by using the grid method and our proposed Kriging-based 

genetic algorithm approach. We then compare the two 

methods. Table II represents the min-RE values and CPU 

times of the grid and Kriging methods for Q=1, 2 and 3. 

The results suggest that the obtained maximin designs yield 

high statistical efficiencies in detecting brain activations 

and the maximal min-RE values achieved by the two 

methods are quite similar. In addition, the CPU time 

required by the Kriging method is much less than that of 

the grid method. 

 

Q Grid method Kriging method 

1 
min-RE = 0.9859 min-RE = 0.9708 

CPU=3.49 hours CPU=0.44 hours 

2 
min-RE = 0.9843 min-RE = 0.9801 

CPU=14.82 hours CPU=0.95 hours 

3 
min-RE = 0.9918 min-RE = 0.9912 

CPU=10.77 hours CPU=1.25 hours 

Table 2:- The results for detecting the activated brain 

regions using the grid method vs. the Kriging method 

 

Fig. 2, which is to be read as Fig. 1, suggests that the 

efficiencies of the achieved designs by the Kriging method 

are similar to those obtained by the grid method. In 

addition, the Kriging method helps to reduce the CPU times 

by 88%, 94%, and 88% respectively for Q = 1,2 and 3. 

Again, our proposed method uses much less CPU time to 

obtain high-quality maximin designs.  

 

 
Fig 2:- Grid vs. Kriging methods for detection purpose. 
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V. CONCLUSION AND DISCUSSION 

 

In this paper, we propose the use of a Kriging 

approximation method combined with a knowledge-based 

genetic algorithm in order to reduce the computational 

resource needed for obtaining good fMRI designs involving 

compound stimuli with uncertain autocorrelation 

coefficients. 

 

We consider two common statistical objectives in the 

analysis of fMRI experiments, which are the estimation of 

the HRF and detection of the activated brain regions. For 

these two common objectives, our proposed method can 

obtain maximin designs that perform similarly to designs 

obtained by the grid method considered by Maus et al., 

(2010). But what makes using Kriging method very 

attractive is that the CPU time required by the Kriging 

approach is much less than that of the grid method. 

 

When approximating the objective function to be 

optimized, we consider the ordinary Kriging model. This 

selection leads to results that are quite satisfactory for both 

estimation and detection purposes. There might be other 

approximation methods that can be applied to the current 

situation and may provide slightly better results which is a 

future research of interest.  
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