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Abstract:- When all blocks are occupied inside a cache 

of a processor, the system uses a concept known as 

‘Replacement policy’ to evict an existing block inside 

the cache memory to bring the required block from the 

main memory. There are many replacement policies 

applied to caches which itself have many levels. The 

policy ‘Application Behavior Aware Re-Reference 

Interval Prediction’ is an extension of existing policy of 

‘Re-Reference Interval Prediction.’ The ABRIP policy 

has two levels of RRPV, implemented in two levels as we 

will see further. However, the ABRIP policy’s algorithm 

waits until all the cache blocks have max RRPV value 

hence ‘decaying’ the cache blocks. Proposed method 

intends to correct the decaying phenomenon by 

implementing Dynamic Non-decaying ABRIP or DND-

ABRIP. Gem5 simulator was used in system emulation 

mode with SPEC2006 Benchmarks. We see a 0.1% 

improvement in IPC, 1.4% improvement in Read hits 

and 0.3% improvement in Write Hits for DND-ABRIP 

over ABRIP. 
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I. INTRODUCTION 

      

With simplescalar or single core architecture being 

obsolete in todays modern processors, we have processors 

which have superscalar architecture, with both 

homogeneous and heterogeneous architectures. However, 

when you have a multicore environment, in the cache 

architecture the last level cache (LLC) is shared amongst all 

the cores, and then each core has two different levels of 

caches of their own, namely L2 and L1. Hence with the 

increase in number of cores, the burden on LLC increases 

and as a result efficient replacement policy need to be 

implemented to make the LLC less burdened. As multicore 

architectures have different processes i.e. workloads being 

executed, the data that is written/read from the cache blocks 

is of multiple nature. These cache blocks containing a 

variety of data can cause conflict between cores and can 

increase in the number of conflict misses. Current cache 

replacement techniques see the data reusability and make 

decisions to replace the cache blocks. However, this is only 

efficient in L1 and L2, at LLC where we have a variety of 

nature in cache blocks in terms of their reusability, 

conventional replacement techniques like LRU are not 

good enough to efficiently use the LLC of cache friendly 

and streaming type applications from SPEC2006 

benchmark suite. 

 

RRIP [1] or Re-Reference Interval prediction was one 

of the policies that was proposed, which was more efficient 

in taking account of the block reusability over LRU 

technique. However, the prediction accuracy depends upon 

the access rate of the application in case of RRIP policy. As 

a result, applications with frequent-access workloads 

interfere with applications with less frequent access 

workloads. Today almost every CMP both homogenous 

and heterogenous architectures have these kinds of mixed 

application with different access rates which utilize the 

LLC in different rates. Application Behavioral Re-

Reference Interval Prediction of ABRIP [2] for LLC was 

another method that was proposed to address the issue of 

diversity in data stored in cache blocks of LLC. It uses two 

levels of RRPV, one over cache block and other over the 

core with a scaled weight over the core level RRPV and 

decide whether the cache block is to be replaced or not. As 

a result, cores with higher access rates can be differentiated 

with cores with lower access rates and hence LLC can be 

used effectively. But the ABRIP policy has a small 

‘decaying’ issue which will be seen in detail in section III. 

      

In this paper we propose a slight modification to the 

ABRIP policy, which resolves the decaying problem in it. 

The technique is called as Dynamic Non-Decaying ABRIP. 

This not only reduces the interference between the different 

types of workloads, but also solves the decaying issue. To 

do that we monitor both of the RRPV [1],[2] values, at core 

and at the cache block level and get the final ABr value, by 

combining the both RRPV values with the weight on the 

core level RRPV, we decide the block to be replaced, 

however if none of the blocks are at the maximum 

threshold but all the cache blocks are filled, then we evict 

the cache block with the maximum amount of combined 

RRPV value from all the cache blocks. We also see the 

quadcore implementation of ABRIP and BRRIP, which 

enables us to observe these policies for a more flexible 

sample space. In this project we see that ABRIP and 

BRRIP perform in a similar range for already tested dual-

core environment. The DND-ABRIP policy shows an 

improvement of 0.1% over ABRIP in average IPC, while 

running on multiple quad-mixes. 
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Fig 1:- Observation of Importance of RRIP Policy Over Conventional LRU Policy with Access Pattern 

a1a2a2a1b1b2b3b4a1a2a2a1 [1] 

 

The rest of the paper is divided into the following 

sections. Section II shows the motivation behind this 

project. The Quadcore Implementation of BRRIP and 

ABRIP is shown in section III and DND-ABRIP is 

explained in section IV. The experimental methodology is 

explained in section V and section VI shows the results and 

observations. We conclude the paper in section VII.  

 

II. MOTIVATION 

      

Today there is a dire need of faster computing systems 

and hence there is a need to improve the speed of the 

system by any means. Some conventional means are 

improving the device physics of the transistors, scaling 

them down to accommodate more transistors inside the 

chip area and improving the processor architecture. When it 

comes to improvement in processor architecture, most 

improvements are done inside the main processor to 

improve speed and efficiency, and the memory architecture 

is overlooked. Even though cache memories are on the chip 

of the processor, they occupy very less space and hence, the 

priority to improve the performance of a processor is given 

to the main processor core and not the cache memory 

systems [8],[9],[10]. We need to also take into 

consideration of the fact that because the main processor 

core is given more priority, one cannot increase the number 

of cache memory cells as it would take up unnecessary area 

which can be better used for processor development. 

     

Whenever data needs to fetched from the main 

memory to the LLC, the amount of cycles the operation 

consumes is very high. Hence there is a need to improve 

the utilization of LLC in CMP’s for both homogenous and 

heterogenous cores without actually increasing the size or 

physics of the device, but by actually tampering the 

algorithms by which the cache systems work to utilize them 

more efficiently. Even with a single core environment we 

can see the effectiveness of RRIP policy as compared to the 

conventional LRU policy that is currently being used. 

DND-ABRIP is based on ABRIP which is based on RRIP. 

As we can see from Fig 1, RRIP policy has more hits for 

the same data blocks than LRU. 

      

The data are in the pattern of 

a1a2a2a1b1b2b3b4a1a2a2a1, which means that some of the 

data blocks are being re-referred than other blocks, but after 

a certain amount of clock cycles. As a result, if those data 

blocks are kept inside the cache just long enough so that 

they are ‘not’ evicted from the cache when the core 

demands it. This is done by taking a new parameter for the 

cache blocks which is called as the Re-Reference 

Prediction Value or RRPV[1]. Unlike LRU where you 

would know that the data is either recently used or not, 

RRPV gives you a better insight on how recently it was 

referred. If the RRPV value was given by ‘m’ number of 

bits, then total possible RRPV values would be 2m-1. So, if 

we consider that m = 2, then it means that total RRPV 

values would be from 0 to 3, which is 4 (same as in figure 

1), hence it can stay inside the cache until the RRPV value 

has reached maximum which is 3. As a result, a block 

which is re-referred before its evicted, gets its RRPV value 

back to 0, and hence kept for a longer time inside the cache 

incase of another re-reference.  

      

When we take ABRIP into consideration with the 

standard RRIP policy, ABRIP policy implements the 

RRPV values at two levels, one at the core, and one at the 

cache block itself (same as RRIP). Hence there is an 

additional RRPV parameter at the core. This is called as 

two-level RRPV. As discussed in section I, that single core 

systems have become obsolete, the multicore environments 

have a better way to separate the data blocks in terms of 

their re-reference by the core RRPV values. So, if we 

consider that in a dual core system, one of the cores is 

working with a heavy working set, with new data needed to 

fetched frequently and another core with a light working set 

and the same data in the cache can be re-used, then there 

can be interference issues inside the LLC because of the 

difference in nature of the data that is fetched in. 
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Fig 2:- Observation of ABRIP in a Multicore Environment with Betterment over RRIP on the Workload Patter 

a1b1b2b3a2b4b5b6a2b7b8b9a1 [2] 

      

As we can see in figure 2, the ABRIP policy in a 

multicore environment (dual core) is showing a more 

efficient performance than RRIP. The access pattern of data 

is a1b1b2b3a2b4b5b6a2b7b8b9a1…., with workload ‘a’ 

given to the first core and ‘b’ to the other. We can see from 

the type of access pattern the difference between the nature 

of the data blocks that are fetched into the LLC. When we 

look at RRIP, it has no efficient mechanism to differentiate 

between the cores, and hence workload ‘a’ is evicted before 

it is re-referred. However, if we see at ABRIP, because of 

RRPV at core level, we can now correctly differentiate 

between the cores and the access rates of the cores. If a core 

demands a data block and it is present in the cache (hit), 

then both the core RRPV and block RRPV are made 0, 

hence the cache friendlier data workloads remain the cache 

longer as compared to less friendlier workloads or 

streaming type workloads. The core RRPV value or the Cr 

is weighted with a weight ‘α’, as a result, the core RRPV 

value is of greater significance as compared to the block 

RRPV value in determining which block to be evicted. 

      

However, as you can see in the same figure (Fig 2), 

between memory requests a2 and b4, the RRPV values of 

the cache blocks for both instances are ‘2’, which isn’t 

maximum, and the eviction only takes place whenever the 

RRPV values reaches maximum. This is a issue as it will 

have to wait an additional clock cycle to increment the 

RRPV values to maximum. This is a slight glimpse of the 

decaying issue which will be explained in section IV in 

further detail. On seeing the case shown in figure 2, we see 

that the system is of dual core, but if we increase the 

number of cores to 4 or 8, there can be more interference 

and more cores with different diverse data types in the 

same LLC, which can lead to further clock cycles being 

delayed because of the decaying. As a result, DND-ABRIP 

is proposed, which addresses the decaying issue. 

 

III. QUADCORE IMPLEMENTATION OF  

RRIP AND ABRIP 

      

As explained in section II and I, that most systems 

today are on quadcore or more. Furthermore, the increase in 

number of cores increase the sample space for number of 

benchmarks running at the same time, which can give us 

newer insights in the working of both RRIP and ABRIP 

polices. In [2], we see the ABRIP policy for a dual core 

environment, showing an average of 16% improvement 

over RRIP. This paper shows the working of both RRIP 

and ABRIP over quad cores. 
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Fig 3:- Quadcore IPC Comparison of ABRIP and RRIP 

 

 
Fig 4 Observation of Decaying in a Typical Mixed Workload Operation 

 

 
 

As we can see from figure 3, ABRIP still holds to be 

the better replacement policy as compared to RRIP even in 

the quadcore environment. The importance of having a 

quadcore simulation is that the LLC size doesn’t change 

much, however when you have a greater number of cores 

working at different levels of workloads at the same time, 

the data inside the LLC becomes more and more diverse. 

We can also see the interactive effects of having three 

programs that are cache friendly and one streaming 

(3CF+1STR) and on the complete other way around one 

cache friendly and 3 streaming type programs 

(1CF+3STR). 

      

From figure 2 we can see that ABRIP policy favors 

the cache friendly type of behavior where one cache 

friendly and one streaming type workloads is executed. 

From the similar result that we see from figure 3 we can 

say that ABRIP keep the cache friendlier workloads as 

compared to streaming ones despite having more than one 

cache friendly workloads. However, if all the workloads are 

cache friendly, the management of ABRIP and the 

effectiveness of separating the LLC in favor of cache 

friendly data workloads fail as all the workloads are of 

cache friendly types. 

   

IV. DYNAMIC NON-DECAYING ABRIP 

 

A. The Decaying Issue in ABRIP 

As it is evident from figure 4, the processor waits until 

one of the cache blocks reaches the maximum RRPV value, 

hence if the entire cache is filled but none of them have 

RRPV value as maximum, then those cache blocks will not 

be evicted and the RRPV values will be incremented in 

subsequent clock cycles until one of them reaches 

maximum RRPV value. The phenomenon of the cache 

blocks waiting for getting their RRPV value to maximum is 

called the decaying issue and it is observed both in ABRIP 

and RRIP (figure 2). This is also evident from the algorithm 

proposed for ABRIP [2] where we can see that if the cache 

blocks do not reach the maxAbr value, they will not be 

evicted.  

      

We can also have a situation where all cache blocks 

with very low RRPV values, but the entire cache block is 

filled, hence it has to wait for more clock cycles as 
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compared to figure 4 unless one of them reaches a 

maximum ABr or RRPV value. Hence the decaying of 

cache blocks is for a long time, further making the 

processor wait and decreasing the overall IPC of the 

operations of the multicore architecture. We also see the 

effect of multiple cores working on the same size of LLC 

(usually in the range of up to 20 Mbytes), which results in a 

higher variety in the nature of the workloads of the data 

present or fetched inside the cache blocks. As a result, it is 

necessary to monitor the decaying issue as higher number 

of cores for the same size of LLC creates larger bottlenecks 

and larger decaying periods. 

      

As we can see from the above proposed algorithm a 

cache block will only be evicted if there is a block with 

maximum ABr value (max_ABr), else there would be no 

eviction. As a result, if the cache is full, and none of the 

cache blocks are of maximum ABr or RRPV values, then 

the processor will wait for a few cycles while incrementing 

the respective values and then evict the bock with the 

maximum ABr value. 

 

B. Dynamic Non-Decaying ABRIP 

In order to remove the decaying issue, we make a 

slight change in the victim selection algorithm of the 

ABRIP policy which is given in Algorithm 2 

 

Algorithm 2 Victim selection policy for DND ABRip 

 

Iterate 

 

1. Perform same ABr calculation for each block as that of 

ABRIP 

2. If block ABr=max_ABr then 

Block = candidate 

Return victim 

Increment Cr and Br values 

Go to Iterate 

3. Else if block ABr > Candidate ABr then 

Block = candidate 

Return victim 

Increment Cr and Br values 

Go to Iterate 

 

 
Fig 5:- IPC Comparison between ABRIP and DND-ABRIP 

 

From the above algorithm we can see that while victim 

selection the processor will record the candidates ABr 

value and compare it with other blocks’ ABr values, if any 

other block has ABr value = maximum it will immediately 

be selected for eviction, however if none of the blocks have 

maximum ABr value, then the cache block which has the 

maximum ABr value among all blocks in the cache will be 

selected for eviction. Hence removing the need of waiting 

to increment the RRPV or ABr values and solving the 

decaying issue. 

 

 

 

 

V. EXPERITMENTAL METHODOLOGY 

 

A. Simulating Environment 

To demonstrate the working of algorithm 2, we have 

used Gem5 simulator. It is a multicore simulating 

environment with 4 cores working at a time, however, the 

environment supports invoking of additional cores if 

needed. The architecture used is X86 architecture with 

Gem5 using allotted main memory (RAM) of 512 Mbytes. 

It is observed under DerivO3 (out-of-order) execution type 

structure. 
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The L1 I and L1D private caches are of 64 and 32 

Kbytes respectively with both working with 2-way 

associavity. The L2 private cache is of 2 Mbytes and has 8-

way associavity and the LLC is of 16 Mbytes with 16-way 

associavity. We compare the ABRIP and DND-ABRIP 

policies over the LLC. 

 

B. Benchmarks  

We use 5 benchmark workloads in a combination of 7 

types of mixes as shown in table 1. We run each benchmark 

for about 100 million instructions after fast forwarding 1 

billion instructions in order to prevent the initial 

compulsory misses. We see the observation of each of the 

benchmark in a dual core environment which is same as 

that of [2]. The spec2006 benchmarks are linked with the 

gem5 simulator by adding a python script which enables us 

to observe and run these benchmarks via Gem5. 

 

Mix No Benchmarks Mix Type 

1 Bzip2+GCC Cf+Cf 

2 Milc+lbm Str+Str 

3 Milc+Gromacs Str+Str 

4 Bzip2+lbm Cf+Str 

5 GCC+lbm Cf+Str 

6 Bzip2+milc Cf+Str 

7 GCC+milc Cf+Str 

Table 1:- Benchmark Mixes used 

 

VI. RESULTS 

 

The IPC Comparison or improvement in instruction 

per cycles is given in figure 5. We see that DND-ABRIP is 

overall on an average 0.1% better than ABRIP in terms of 

IPC betterment. The number of read and write hits are 

improved by 1.4 and 0.3% respectively. Such a small 

improvement is observed as DND-ABRIP only removes 

decaying of a few clock cycles in the entire operation 

which gives only a slight improvement in the performance.  

 

VII. CONCLUSIONS 

      

There are two conclusions that can be drawn from this 

project. 

      

As we can see from figure 3, the ABRIP is better than 

the existing policies. This was seen with workloads of 

different natures combined and executed simultaneously to 

give the result. The Quadcore assessment shows that not 

only ABRIP is scalable to a greater number of cores but it 

also has same improvement over RRIP i.e. 16%. 

      

The second conclusion that can be drawn, as we can 

see from figure 5 is DND-ABRIP improves 0.1% overall 

IPC over ABRIP, as it saves a few clock cycles i.e. it 

doesn’t allow the cache blocks to decay. Interestingly the 

heterogenous combination of Cf+Cf type workload has a 

decreased performance over ABRIP, which is as the same 

nature of ABRIP as ABRIP also has a decreased 

performance over RRIP in this situation.  

ACKOWLEDGEMENT 

      

I would firstly like to thank and dedicate this project 

to my guide, Dr. Shoba Gopalakrishnan, who despite of her 

doing a PhD and taking numerous lectures, always took the 

time to help me with the project and her guidance has been 

the biggest factor in the progress of the project. I would 

also like to thank my Co-Guide, Prof. Arti Phadke, for all 

her positive criticisms towards my presentation skills for 

both Reports and PPTs and also for her continued guidance 

and support during the year. I would then like to thank the 

experts, both departmental expert Prof. Anil Thosar and 

external expert Prof J, Kundargi for their support and 

guidance towards the project over the years. I would 

especially want to thank all of the aforementioned faculty 

members and Dean Dr. Sudha Gupta and Dr. R. Karandikar 

and Head of the Department, Dr. J. H. Nirmal for their 

support for me, when I had contracted bronchitis in 

between of the project and co-operating with me in the 

delay of the First Stage Presentation because of the 

aforementioned disease. I would like to thank my 

classmates and my family for their support and motivation 

and encouragement I had during the low points of the 

project and helping me to try again and again.  

 

REFERENCES 

 

[1]. Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., 

Joel Emer, "High Performance Cache Replacement 

using Re-Reference Interval Prediction" 2010 IEEE 

International Symposium on Computer Architecture 

(ISCA), Saint-Malo, France, 2010 

[2]. P. Lathigara, S. Balachandran and V. Singh, 

"Application behavior aware re-reference interval 

prediction for shared LLC," 2015 33rd IEEE 

International Conference on Computer Design 

(ICCD), New York, NY, 2015, pp. 172-179.doi: 

10.1109/ICCD.2015.7357099 

[3]. Newton, S. K. Mahto, S. Pai and V. Singh, "DAAIP: 

Deadblock Aware Adaptive Insertion Policy for High 

Performance Caching," 2017 IEEE International 

Conference on Computer Design (ICCD), Boston, 

MA, 2017, pp. 345-352. doi: 10.1109/ICCD.2017.60 

[4]. X. Zhang, C. Li, H. Wang and D. Wang, "A Cache 

Replacement Policy Using Adaptive Insertion and Re-

reference Prediction," 2010 22nd International 

Symposium on Computer Architecture and High-

Performance Computing, Petropolis, 2010, pp. 95-

102. 

doi: 10.1109/SBAC-PAD.2010.21 

[5]. M. Bakhshalipour, P. Lotfi-Kamran and H. Sarbazi-

Azad, "Domino Temporal Data Prefetcher," 2018 

IEEE International Symposium on High Performance 

Computer Architecture (HPCA), Vienna, 2018, pp. 

131-142. doi: 10.1109/HPCA.2018.00021 

[6]. T. Zheng, H. Zhu and M. Erez, "SIPT: Speculatively 

Indexed, Physically Tagged Caches," 2018 IEEE 

International Symposium on High Performance 

Computer Architecture (HPCA), Vienna, 2018, pp. 

118-130. doi: 10.1109/HPCA.2018.00020 

http://www.ijisrt.com/


Volume 4, Issue 10, October – 2019                                      International Journal of  Innovative Science and Research Technology                                                 

              ISSN No:-2456-2165 

 

IJISRT19OCT1699                                                 www.ijisrt.com                     120 

[7]. N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma 

and D. Sanchez, "KPart: A Hybrid Cache Partitioning-

Sharing Technique for Commodity Multicores," 2018 

IEEE International Symposium on High Performance 

Computer Architecture (HPCA), Vienna, 2018, pp. 

104-117. doi: 10.1109/HPCA.2018.00019 

[8]. W. Stallings, “Cache Memory,” in Computer 

Organization and Architecture, 8th ed., Upper Saddle 

River, NJ, USA: Pearson Prentice Hall, 2006, pp.117  

[9]. Nicholas Carter, “Cache Memory Organization,” in 

Computer Architecture and Organisation: Schaum's 

Outlines Series, 2nd ed., McGraw-Hill Publications 

[10].  Carl Hamache, “Cache Memory Organization,” in 

Computer Organization, 5th ed., McGraw-Hill 

Publications 

http://www.ijisrt.com/

