
Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 114

Dynamic Non-Decaying ABRIP for Shared

Level 3 Cache Memory Systems

Nirmol Munvar*, Shoba Gopalakrishnanǂ, Arati Phadkeͳ

Department of Electronics Engineering,

K. J. Somaiya College of Engineering

Abstract:- When all blocks are occupied inside a cache

of a processor, the system uses a concept known as

‘Replacement policy’ to evict an existing block inside

the cache memory to bring the required block from the

main memory. There are many replacement policies

applied to caches which itself have many levels. The

policy ‘Application Behavior Aware Re-Reference

Interval Prediction’ is an extension of existing policy of

‘Re-Reference Interval Prediction.’ The ABRIP policy

has two levels of RRPV, implemented in two levels as we

will see further. However, the ABRIP policy’s algorithm

waits until all the cache blocks have max RRPV value

hence ‘decaying’ the cache blocks. Proposed method

intends to correct the decaying phenomenon by

implementing Dynamic Non-decaying ABRIP or DND-

ABRIP. Gem5 simulator was used in system emulation

mode with SPEC2006 Benchmarks. We see a 0.1%

improvement in IPC, 1.4% improvement in Read hits

and 0.3% improvement in Write Hits for DND-ABRIP

over ABRIP.

Keywords:- Replacement Policy, Re-Reference Interval

Prediction, Application Behavioral Re-Reference Interval

Prediction, decaying, Dynamic Non-decaying ABRIP.

I. INTRODUCTION

With simplescalar or single core architecture being

obsolete in todays modern processors, we have processors

which have superscalar architecture, with both

homogeneous and heterogeneous architectures. However,

when you have a multicore environment, in the cache

architecture the last level cache (LLC) is shared amongst all

the cores, and then each core has two different levels of

caches of their own, namely L2 and L1. Hence with the

increase in number of cores, the burden on LLC increases

and as a result efficient replacement policy need to be

implemented to make the LLC less burdened. As multicore

architectures have different processes i.e. workloads being

executed, the data that is written/read from the cache blocks

is of multiple nature. These cache blocks containing a

variety of data can cause conflict between cores and can

increase in the number of conflict misses. Current cache

replacement techniques see the data reusability and make

decisions to replace the cache blocks. However, this is only

efficient in L1 and L2, at LLC where we have a variety of

nature in cache blocks in terms of their reusability,

conventional replacement techniques like LRU are not

good enough to efficiently use the LLC of cache friendly

and streaming type applications from SPEC2006

benchmark suite.

RRIP [1] or Re-Reference Interval prediction was one

of the policies that was proposed, which was more efficient

in taking account of the block reusability over LRU

technique. However, the prediction accuracy depends upon

the access rate of the application in case of RRIP policy. As

a result, applications with frequent-access workloads

interfere with applications with less frequent access

workloads. Today almost every CMP both homogenous

and heterogenous architectures have these kinds of mixed

application with different access rates which utilize the

LLC in different rates. Application Behavioral Re-

Reference Interval Prediction of ABRIP [2] for LLC was

another method that was proposed to address the issue of

diversity in data stored in cache blocks of LLC. It uses two

levels of RRPV, one over cache block and other over the

core with a scaled weight over the core level RRPV and

decide whether the cache block is to be replaced or not. As

a result, cores with higher access rates can be differentiated

with cores with lower access rates and hence LLC can be

used effectively. But the ABRIP policy has a small

‘decaying’ issue which will be seen in detail in section III.

In this paper we propose a slight modification to the

ABRIP policy, which resolves the decaying problem in it.

The technique is called as Dynamic Non-Decaying ABRIP.

This not only reduces the interference between the different

types of workloads, but also solves the decaying issue. To

do that we monitor both of the RRPV [1],[2] values, at core

and at the cache block level and get the final ABr value, by

combining the both RRPV values with the weight on the

core level RRPV, we decide the block to be replaced,

however if none of the blocks are at the maximum

threshold but all the cache blocks are filled, then we evict

the cache block with the maximum amount of combined

RRPV value from all the cache blocks. We also see the

quadcore implementation of ABRIP and BRRIP, which

enables us to observe these policies for a more flexible

sample space. In this project we see that ABRIP and

BRRIP perform in a similar range for already tested dual-

core environment. The DND-ABRIP policy shows an

improvement of 0.1% over ABRIP in average IPC, while

running on multiple quad-mixes.

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 115

Fig 1:- Observation of Importance of RRIP Policy Over Conventional LRU Policy with Access Pattern

a1a2a2a1b1b2b3b4a1a2a2a1 [1]

The rest of the paper is divided into the following

sections. Section II shows the motivation behind this

project. The Quadcore Implementation of BRRIP and

ABRIP is shown in section III and DND-ABRIP is

explained in section IV. The experimental methodology is

explained in section V and section VI shows the results and

observations. We conclude the paper in section VII.

II. MOTIVATION

Today there is a dire need of faster computing systems

and hence there is a need to improve the speed of the

system by any means. Some conventional means are

improving the device physics of the transistors, scaling

them down to accommodate more transistors inside the

chip area and improving the processor architecture. When it

comes to improvement in processor architecture, most

improvements are done inside the main processor to

improve speed and efficiency, and the memory architecture

is overlooked. Even though cache memories are on the chip

of the processor, they occupy very less space and hence, the

priority to improve the performance of a processor is given

to the main processor core and not the cache memory

systems [8],[9],[10]. We need to also take into

consideration of the fact that because the main processor

core is given more priority, one cannot increase the number

of cache memory cells as it would take up unnecessary area

which can be better used for processor development.

Whenever data needs to fetched from the main

memory to the LLC, the amount of cycles the operation

consumes is very high. Hence there is a need to improve

the utilization of LLC in CMP’s for both homogenous and

heterogenous cores without actually increasing the size or

physics of the device, but by actually tampering the

algorithms by which the cache systems work to utilize them

more efficiently. Even with a single core environment we

can see the effectiveness of RRIP policy as compared to the

conventional LRU policy that is currently being used.

DND-ABRIP is based on ABRIP which is based on RRIP.

As we can see from Fig 1, RRIP policy has more hits for

the same data blocks than LRU.

The data are in the pattern of

a1a2a2a1b1b2b3b4a1a2a2a1, which means that some of the

data blocks are being re-referred than other blocks, but after

a certain amount of clock cycles. As a result, if those data

blocks are kept inside the cache just long enough so that

they are ‘not’ evicted from the cache when the core

demands it. This is done by taking a new parameter for the

cache blocks which is called as the Re-Reference

Prediction Value or RRPV[1]. Unlike LRU where you

would know that the data is either recently used or not,

RRPV gives you a better insight on how recently it was

referred. If the RRPV value was given by ‘m’ number of

bits, then total possible RRPV values would be 2m-1. So, if

we consider that m = 2, then it means that total RRPV

values would be from 0 to 3, which is 4 (same as in figure

1), hence it can stay inside the cache until the RRPV value

has reached maximum which is 3. As a result, a block

which is re-referred before its evicted, gets its RRPV value

back to 0, and hence kept for a longer time inside the cache

incase of another re-reference.

When we take ABRIP into consideration with the

standard RRIP policy, ABRIP policy implements the

RRPV values at two levels, one at the core, and one at the

cache block itself (same as RRIP). Hence there is an

additional RRPV parameter at the core. This is called as

two-level RRPV. As discussed in section I, that single core

systems have become obsolete, the multicore environments

have a better way to separate the data blocks in terms of

their re-reference by the core RRPV values. So, if we

consider that in a dual core system, one of the cores is

working with a heavy working set, with new data needed to

fetched frequently and another core with a light working set

and the same data in the cache can be re-used, then there

can be interference issues inside the LLC because of the

difference in nature of the data that is fetched in.

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 116

Fig 2:- Observation of ABRIP in a Multicore Environment with Betterment over RRIP on the Workload Patter

a1b1b2b3a2b4b5b6a2b7b8b9a1 [2]

As we can see in figure 2, the ABRIP policy in a

multicore environment (dual core) is showing a more

efficient performance than RRIP. The access pattern of data

is a1b1b2b3a2b4b5b6a2b7b8b9a1…., with workload ‘a’

given to the first core and ‘b’ to the other. We can see from

the type of access pattern the difference between the nature

of the data blocks that are fetched into the LLC. When we

look at RRIP, it has no efficient mechanism to differentiate

between the cores, and hence workload ‘a’ is evicted before

it is re-referred. However, if we see at ABRIP, because of

RRPV at core level, we can now correctly differentiate

between the cores and the access rates of the cores. If a core

demands a data block and it is present in the cache (hit),

then both the core RRPV and block RRPV are made 0,

hence the cache friendlier data workloads remain the cache

longer as compared to less friendlier workloads or

streaming type workloads. The core RRPV value or the Cr

is weighted with a weight ‘α’, as a result, the core RRPV

value is of greater significance as compared to the block

RRPV value in determining which block to be evicted.

However, as you can see in the same figure (Fig 2),

between memory requests a2 and b4, the RRPV values of

the cache blocks for both instances are ‘2’, which isn’t

maximum, and the eviction only takes place whenever the

RRPV values reaches maximum. This is a issue as it will

have to wait an additional clock cycle to increment the

RRPV values to maximum. This is a slight glimpse of the

decaying issue which will be explained in section IV in

further detail. On seeing the case shown in figure 2, we see

that the system is of dual core, but if we increase the

number of cores to 4 or 8, there can be more interference

and more cores with different diverse data types in the

same LLC, which can lead to further clock cycles being

delayed because of the decaying. As a result, DND-ABRIP

is proposed, which addresses the decaying issue.

III. QUADCORE IMPLEMENTATION OF

RRIP AND ABRIP

As explained in section II and I, that most systems

today are on quadcore or more. Furthermore, the increase in

number of cores increase the sample space for number of

benchmarks running at the same time, which can give us

newer insights in the working of both RRIP and ABRIP

polices. In [2], we see the ABRIP policy for a dual core

environment, showing an average of 16% improvement

over RRIP. This paper shows the working of both RRIP

and ABRIP over quad cores.

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 117

Fig 3:- Quadcore IPC Comparison of ABRIP and RRIP

Fig 4 Observation of Decaying in a Typical Mixed Workload Operation

As we can see from figure 3, ABRIP still holds to be

the better replacement policy as compared to RRIP even in

the quadcore environment. The importance of having a

quadcore simulation is that the LLC size doesn’t change

much, however when you have a greater number of cores

working at different levels of workloads at the same time,

the data inside the LLC becomes more and more diverse.

We can also see the interactive effects of having three

programs that are cache friendly and one streaming

(3CF+1STR) and on the complete other way around one

cache friendly and 3 streaming type programs

(1CF+3STR).

From figure 2 we can see that ABRIP policy favors

the cache friendly type of behavior where one cache

friendly and one streaming type workloads is executed.

From the similar result that we see from figure 3 we can

say that ABRIP keep the cache friendlier workloads as

compared to streaming ones despite having more than one

cache friendly workloads. However, if all the workloads are

cache friendly, the management of ABRIP and the

effectiveness of separating the LLC in favor of cache

friendly data workloads fail as all the workloads are of

cache friendly types.

IV. DYNAMIC NON-DECAYING ABRIP

A. The Decaying Issue in ABRIP

As it is evident from figure 4, the processor waits until

one of the cache blocks reaches the maximum RRPV value,

hence if the entire cache is filled but none of them have

RRPV value as maximum, then those cache blocks will not

be evicted and the RRPV values will be incremented in

subsequent clock cycles until one of them reaches

maximum RRPV value. The phenomenon of the cache

blocks waiting for getting their RRPV value to maximum is

called the decaying issue and it is observed both in ABRIP

and RRIP (figure 2). This is also evident from the algorithm

proposed for ABRIP [2] where we can see that if the cache

blocks do not reach the maxAbr value, they will not be

evicted.

We can also have a situation where all cache blocks

with very low RRPV values, but the entire cache block is

filled, hence it has to wait for more clock cycles as

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 118

compared to figure 4 unless one of them reaches a

maximum ABr or RRPV value. Hence the decaying of

cache blocks is for a long time, further making the

processor wait and decreasing the overall IPC of the

operations of the multicore architecture. We also see the

effect of multiple cores working on the same size of LLC

(usually in the range of up to 20 Mbytes), which results in a

higher variety in the nature of the workloads of the data

present or fetched inside the cache blocks. As a result, it is

necessary to monitor the decaying issue as higher number

of cores for the same size of LLC creates larger bottlenecks

and larger decaying periods.

As we can see from the above proposed algorithm a

cache block will only be evicted if there is a block with

maximum ABr value (max_ABr), else there would be no

eviction. As a result, if the cache is full, and none of the

cache blocks are of maximum ABr or RRPV values, then

the processor will wait for a few cycles while incrementing

the respective values and then evict the bock with the

maximum ABr value.

B. Dynamic Non-Decaying ABRIP

In order to remove the decaying issue, we make a

slight change in the victim selection algorithm of the

ABRIP policy which is given in Algorithm 2

Algorithm 2 Victim selection policy for DND ABRip

Iterate

1. Perform same ABr calculation for each block as that of

ABRIP

2. If block ABr=max_ABr then

Block = candidate

Return victim

Increment Cr and Br values

Go to Iterate

3. Else if block ABr > Candidate ABr then

Block = candidate

Return victim

Increment Cr and Br values

Go to Iterate

Fig 5:- IPC Comparison between ABRIP and DND-ABRIP

From the above algorithm we can see that while victim

selection the processor will record the candidates ABr

value and compare it with other blocks’ ABr values, if any

other block has ABr value = maximum it will immediately

be selected for eviction, however if none of the blocks have

maximum ABr value, then the cache block which has the

maximum ABr value among all blocks in the cache will be

selected for eviction. Hence removing the need of waiting

to increment the RRPV or ABr values and solving the

decaying issue.

V. EXPERITMENTAL METHODOLOGY

A. Simulating Environment

To demonstrate the working of algorithm 2, we have

used Gem5 simulator. It is a multicore simulating

environment with 4 cores working at a time, however, the

environment supports invoking of additional cores if

needed. The architecture used is X86 architecture with

Gem5 using allotted main memory (RAM) of 512 Mbytes.

It is observed under DerivO3 (out-of-order) execution type

structure.

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 119

The L1 I and L1D private caches are of 64 and 32

Kbytes respectively with both working with 2-way

associavity. The L2 private cache is of 2 Mbytes and has 8-

way associavity and the LLC is of 16 Mbytes with 16-way

associavity. We compare the ABRIP and DND-ABRIP

policies over the LLC.

B. Benchmarks

We use 5 benchmark workloads in a combination of 7

types of mixes as shown in table 1. We run each benchmark

for about 100 million instructions after fast forwarding 1

billion instructions in order to prevent the initial

compulsory misses. We see the observation of each of the

benchmark in a dual core environment which is same as

that of [2]. The spec2006 benchmarks are linked with the

gem5 simulator by adding a python script which enables us

to observe and run these benchmarks via Gem5.

Mix No Benchmarks Mix Type

1 Bzip2+GCC Cf+Cf

2 Milc+lbm Str+Str

3 Milc+Gromacs Str+Str

4 Bzip2+lbm Cf+Str

5 GCC+lbm Cf+Str

6 Bzip2+milc Cf+Str

7 GCC+milc Cf+Str

Table 1:- Benchmark Mixes used

VI. RESULTS

The IPC Comparison or improvement in instruction

per cycles is given in figure 5. We see that DND-ABRIP is

overall on an average 0.1% better than ABRIP in terms of

IPC betterment. The number of read and write hits are

improved by 1.4 and 0.3% respectively. Such a small

improvement is observed as DND-ABRIP only removes

decaying of a few clock cycles in the entire operation

which gives only a slight improvement in the performance.

VII. CONCLUSIONS

There are two conclusions that can be drawn from this

project.

As we can see from figure 3, the ABRIP is better than

the existing policies. This was seen with workloads of

different natures combined and executed simultaneously to

give the result. The Quadcore assessment shows that not

only ABRIP is scalable to a greater number of cores but it

also has same improvement over RRIP i.e. 16%.

The second conclusion that can be drawn, as we can

see from figure 5 is DND-ABRIP improves 0.1% overall

IPC over ABRIP, as it saves a few clock cycles i.e. it

doesn’t allow the cache blocks to decay. Interestingly the

heterogenous combination of Cf+Cf type workload has a

decreased performance over ABRIP, which is as the same

nature of ABRIP as ABRIP also has a decreased

performance over RRIP in this situation.

ACKOWLEDGEMENT

I would firstly like to thank and dedicate this project

to my guide, Dr. Shoba Gopalakrishnan, who despite of her

doing a PhD and taking numerous lectures, always took the

time to help me with the project and her guidance has been

the biggest factor in the progress of the project. I would

also like to thank my Co-Guide, Prof. Arti Phadke, for all

her positive criticisms towards my presentation skills for

both Reports and PPTs and also for her continued guidance

and support during the year. I would then like to thank the

experts, both departmental expert Prof. Anil Thosar and

external expert Prof J, Kundargi for their support and

guidance towards the project over the years. I would

especially want to thank all of the aforementioned faculty

members and Dean Dr. Sudha Gupta and Dr. R. Karandikar

and Head of the Department, Dr. J. H. Nirmal for their

support for me, when I had contracted bronchitis in

between of the project and co-operating with me in the

delay of the First Stage Presentation because of the

aforementioned disease. I would like to thank my

classmates and my family for their support and motivation

and encouragement I had during the low points of the

project and helping me to try again and again.

REFERENCES

[1]. Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr.,

Joel Emer, "High Performance Cache Replacement

using Re-Reference Interval Prediction" 2010 IEEE

International Symposium on Computer Architecture

(ISCA), Saint-Malo, France, 2010

[2]. P. Lathigara, S. Balachandran and V. Singh,

"Application behavior aware re-reference interval

prediction for shared LLC," 2015 33rd IEEE

International Conference on Computer Design

(ICCD), New York, NY, 2015, pp. 172-179.doi:

10.1109/ICCD.2015.7357099

[3]. Newton, S. K. Mahto, S. Pai and V. Singh, "DAAIP:

Deadblock Aware Adaptive Insertion Policy for High

Performance Caching," 2017 IEEE International

Conference on Computer Design (ICCD), Boston,

MA, 2017, pp. 345-352. doi: 10.1109/ICCD.2017.60

[4]. X. Zhang, C. Li, H. Wang and D. Wang, "A Cache

Replacement Policy Using Adaptive Insertion and Re-

reference Prediction," 2010 22nd International

Symposium on Computer Architecture and High-

Performance Computing, Petropolis, 2010, pp. 95-

102.

doi: 10.1109/SBAC-PAD.2010.21

[5]. M. Bakhshalipour, P. Lotfi-Kamran and H. Sarbazi-

Azad, "Domino Temporal Data Prefetcher," 2018

IEEE International Symposium on High Performance

Computer Architecture (HPCA), Vienna, 2018, pp.

131-142. doi: 10.1109/HPCA.2018.00021

[6]. T. Zheng, H. Zhu and M. Erez, "SIPT: Speculatively

Indexed, Physically Tagged Caches," 2018 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), Vienna, 2018, pp.

118-130. doi: 10.1109/HPCA.2018.00020

http://www.ijisrt.com/

Volume 4, Issue 10, October – 2019 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT19OCT1699 www.ijisrt.com 120

[7]. N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma

and D. Sanchez, "KPart: A Hybrid Cache Partitioning-

Sharing Technique for Commodity Multicores," 2018

IEEE International Symposium on High Performance

Computer Architecture (HPCA), Vienna, 2018, pp.

104-117. doi: 10.1109/HPCA.2018.00019

[8]. W. Stallings, “Cache Memory,” in Computer

Organization and Architecture, 8th ed., Upper Saddle

River, NJ, USA: Pearson Prentice Hall, 2006, pp.117

[9]. Nicholas Carter, “Cache Memory Organization,” in

Computer Architecture and Organisation: Schaum's

Outlines Series, 2nd ed., McGraw-Hill Publications

[10]. Carl Hamache, “Cache Memory Organization,” in

Computer Organization, 5th ed., McGraw-Hill

Publications

http://www.ijisrt.com/

